
REPORT

A general lack of compensation for gene dosage
in yeast

Michael Springer1, Jonathan S Weissman2,3,4 and Marc W Kirschner1,*

1 Department of Systems Biology, Harvard Medical School, Boston, MA, USA, 2 Howard Hughes Medical Institute, University of California - San Francisco,
San Francisco, CA, USA, 3 California Institute for Quantitative Biosciences, San Francisco, CA, USA and 4 Department of Cellular and Molecular Pharmacology,
University of California - San Francisco, San Francisco, CA, USA
* Corresponding author. Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building 524, Boston, MA 02115, USA.
Tel.: þ 1 617 432 2250; Fax: þ 1 617 432 0420; E-mail: marc@hms.harvard.edu

Received 21.10.09; accepted 18.3.10

Gene copy number variation has been discovered in humans, between related species, and in
different cancer tissues, but it is unclear how much of this genomic-level variation leads to changes
in the level of protein abundance. To address this, we eliminated one of the two genomic copies of
730 different genes in Saccharomyces cerevisiae and asked how often a 50% reduction in gene dosage
leads to a 50% reduction in protein level. For at least 80% of genes tested, and under several
environmental conditions, it does: protein levels in the heterozygous strain are close to 50% of wild
type. For o5% of the genes tested, the protein levels in the heterozygote are maintained at nearly
wild-type levels. These experiments show that protein levels are not, in general, directly monitored
and adjusted to a desired level. Combined with fitness data, this implies that proteins are expressed
at levels higher than necessary for survival.
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Introduction

Recent studies have highlighted a wide range of differences
in genomic sequences between related species (Dumas et al,
2007), individuals within species (Kidd et al, 2008), and
even diseased and normal tissues in an individual (Giaever
et al, 1999). Central to interpreting the consequences of
these genomic changes on an organism’s phenotype is
the question of how changes in DNA copy number affect
protein abundance. Does a two-fold change in copy number
lead to a two-fold change in protein abundance or does
feedback buffer genotypic, stochastic, and environmental
changes?

Using microarray technology, studies of tumor cell lines
(Pollack et al, 2002) and of constructed aneuploidies in
S. cerevisiae (Torres et al, 2007) have shown that copy number
variation semiquantitatively correlates with mRNA expression
changes. Despite this correlation at the mRNA level, 13 of the
16 proteins examined in S. cerevisiae did not change in
abundance when their copy number was doubled (Torres et al,

2007). This suggests that compensation for protein abundance
could be common, and that protein abundance need not track
mRNA level. Furthermore, in several examples, feedback
regulation has been shown to ensure homeostasis at the level
of protein abundance, through several distinct mechanisms
(Cleveland et al, 1981; Pearson et al, 1982; Preker et al, 2002;
Ravid and Hochstrasser, 2007).

Such feedback at the protein level has been suggested
(Brooker et al) to underlie the general lack of haploinsuffi-
ciency observed in genetic studies in Drosophila melanogaster
(Lindsley et al, 1972) and S. cerevisiae (Deutschbauer et al,
2005). These studies show that in most cases, a single copy of a
gene is sufficient for fitness and normal development. In both
of these species, only 3–5% of the deletions are haploinsuffi-
cient. Potential explanations for this phenomenon include: (1)
feedback buffers protein levels; (2) cells normally produce at
least twice as much protein as they need; or (3) many fitness
changes are not experimentally measurable. Understanding
the contributions of these mechanisms would dramatically
affect both how we think about the relationship between
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genotype and phenotype and how we interpret differences
between and within organisms.

It is clear from numerous studies that the abundance
of almost every protein can be altered by putting genes on
multi-copy plasmids or expressing them under heterologous
promoters. Furthermore, drug-induced haploinsufficiency
profiling (Giaever et al, 1999), where drug action can be
inferred by hypersensitivity of a heterozygous strain to a drug,
shows that gene copy number can affect fitness when assayed
under the appropriate conditions. However, none of these
results give insight into the question of whether widespread
feedback occurs at the protein level. First, different genes
under the control of the same promoter show a large range in
protein abundance (Sopko et al, 2006), underscoring the fact
that significant control mechanisms operate at the level of
translation and protein turnover. Second, and counterintui-
tively, overexpression of proteins by multi-copy plasmids and
differential sensitivity to drugs between copy number variants
is expected even in the presence of strong feedback (Supple-
mentary information). In the presence of strong compensatory
mechanism that maintain protein levels, drug-induced haplo-
insufficiency would still be observed due to saturation of
feedback mechanisms. We therefore set out to determine the
relationship between genomic copy number and protein
abundance in the context of variation in genomic copy
number, by comparing the level of expression of 730 different
green fluorescent protein (GFP)-fusion proteins in the budding
yeast S. cerevisiae in wild-type and heterozygous diploid
strains. We show that in most cases, and in multiple
environments, protein abundance quantitatively matches
gene copy number.

Results

Construction and identification of strains

We constructed two libraries of diploid strains of S. cerevisiae
from a haploid GFP-fusion library (Huh et al, 2003). One
diploid library mimicked the homozygous wild type (X-GFP/
X). The other library was heterozygous (X-GFP/Dx) and was
constructed by mating the haploid GFP-fusion library to a
matched library of haploid deletion strains (Winzeler et al,
1999) (Figure 1; Supplementary Figure S1). If protein
expression levels are proportional to gene copy number, as
both strains carry only one GFP-tagged gene, both should
show the same level of fluorescence. In heterozygous strains
that fully compensate for the gene deletion, however, the GFP
fusion-tagged gene should be expressed at a two-fold higher
level than that seen in the wild type. To assess the amount of
GFP-fusion proteins, we used flow cytometry. Recent work
that has established this technique accurately reports protein
abundance and variance on a genome-wide scale (Newman
et al, 2006).

Note that these GFP fusions all contain a heterologous 30

UTR. Although regulation through the 30 UTR has been
identified, feedback regulation has not been widely reported,
and most fusion proteins behave like their untagged cognates
in terms of mRNA expression, localization, and degradation
(Ghaemmaghami et al, 2003; Huh et al, 2003; Newman et al,
2006). Nevertheless, it is possible that experiments using these
libraries may fail to capture some aspects of protein regulation
that require the endogenous 30 UTR.

X-GFP/X and X-GFP/Dx strains were cultured in the same
well. The homozygous strains all constitutively express
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Figure 1 Systematic analysis of protein compensation in a heterozygous strains. (A) Pairs of diploid strains were constructed where one strain is ‘wild type,’ containing
a single copy of a GFP fusion and constitutively expresses mCherry (WT, red-bordered cell). The matching strain is a heterozygous deletion of the GFP-fusion gene, it
contains one copy of the same GFP fusion but the second copy of the gene is deleted (HET, black-bordered cells). (B) The strains were co-cultured in 96-well plates.
Fluorescence from many cells was simultaneously recorded for each strain by flow cytometry and segmented into HET and WT populations (shown as a histogram).
(C) The mean GFP fluorescence was calculated for each population of cells (GFPHET and GFPWT). We defined a compensation metric, C¼log2 (GFPHET/GFPWT).
Two hypothetical examples are shown, the top panel depicts a situation where the heterozygous strain fully compensates for the deletion of one of the two copies of its
gene–C¼1. The bottom panel depicts a strain that does not compensate–C¼0. Details of our calculations are elaborated in the Supplementary information. As depicted
on the far right, in wild-type cells, half of protein X is GFP tagged (white circles with a green X), whereas the other half is untagged (black circles with a white X). All
molecules of protein X in the heterozygote strain are GFP tagged. If the protein has full compensation, the total amount of protein X should be the same in the
heterozygous and wild-type strains, and therefore the amount of X-GFP will be double than that in the wild-type strain. If there is no compensation, both strains will have
the same amount of X-GFP as the wild-type strain.
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mCherry, allowing us to distinguish the cells of the two strains
by flow cytometry at the same time as measuring GFP
fluorescence (Figure 1; Supplementary information). By
comparing the fluorescence of our ‘wild-type’ diploid library
(X-GFP/X) to a wild-type diploid library not expressing
mCherry, or to the haploid GFP library (X-GFP), we were able
to show that neither constitutive mCherry expression nor the
presence of a second wild-type copy of the gene alters the
expression of the GFP-tagged protein (Supplementary Figures
S2 and S3). Of the B3350 paired strains in our library, we were
able to accurately measure fluorescence levels for only B1600
pairs [similar to earlier studies (Newman et al, 2006)], due to
low levels of signal. After eliminating strains likely to be
aneuploid in the deletion collection (Hughes et al, 2000), we
identified 730 pairs of strains in which the signal-to-noise ratio
was high enough that we should be able to confidently detect
variations in protein expression level of under two-fold in two
different medias (rich and synthetic complete). We selected
these strains for further study (Supplementary Table SI).

Changes in copy number correlate
with protein levels

We quantitated the fluorescence in matched pairs of X-GFP/X
and X-GFP/Dx strains grown in synthetic complete medium
(SD) and found that the fluorescence level was predominantly
the same in both libraries (Figure 2A and B; Supplementary
information). As the X-GFP/X strain carries two X genes, one
of which is not fused to GFP, whereas the heterozygous strain
carries only the X-GFP gene, we infer that most proteins are
expressed at half the level in the heterozygous strain. Active
control of protein levels would result in the fluorescence level
in the X-GFP/Dx strain being greater than the fluorescence
level in the X-GFP/X strains. For most genes this is not the case.

The number of genes that show close to complete
compensation is very low: only 3% of the genes we studied
show a mean fluorescence in the heterozygote that is at least
175% of the level of the wild type (Supplementary Table SII).
In all, 14% of genes compensate to some degree, using a cutoff
of 23% deviation from wild-type expression (twice the s.d. of
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Figure 2 Quantitative flow cytometry reveals low levels of compensation for gene dosage. In these log2 plots, the black line indicates no change, whereas the red line
indicates a two-fold difference between strains (in A and C) or replicate runs (in B inset). (A) The graph (left panel) shows the averaged compensation level for all replica
runs for all strains in synthetic complete medium (SD) ordered by compensation level. The green circle and orange circle denote the compensation level of a
compensator (GND1) and a non-compensator (DEF1), respectively. The histograms (right panel) show one experimental run for GND1 and DEF1 grown in SD medium.
The heterozygous strain is show in black and the wild-type strain in red. If strains compensated fully, the ratios would be centered around the red line. Strains centered
around the black line indicate no compensation. Subtle differences in the wild type versus deletion background most likely account for the 4% offset of whole population
from no compensation (Supplementary information). (B) Histogram of the graph in (A) (left panel). The inset shows the reproducibility of replicate measurements. (C)
Average mean expression of diploid strains where both alleles are fused to GFP (X-GFP/X-GFP) compared with diploid strains where only one of the alleles is fused
to GFP (X-GFP/X). Strains centered around the red line have double the fluorescence when both alleles are tagged. (D) The percent coefficient of variance (CV) for the
X-GFP/X strains is plotted against the percent CV of the X-GFP/Dx strains.
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the measurement error, corresponding to a 10–20% false
discovery rate (Supplementary information)). A few
genes (4%) actually decrease expression by 423% in the
heterozygote (30–70% FDR). The degree of compensation
in each strain was reproducible (average coefficient of
variance, or CV, of 10%; inset Figure 2B; Supplementary
information).

One trivial explanation for the lack of observed compensa-
tion is that our method cannot accurately detect a two-fold
change in protein levels. To test this, we constructed a diploid
library in which both alleles were GFP tagged (X-GFP/X-GFP).
For the majority of strains, the diploid library with both alleles
tagged with GFP has nearly double the fluorescence of the
library with just one allele tagged with GFP (Figure 2C). Thus,
the lack of compensation we observe cannot be explained by a
failure to detect two-fold changes in protein expression levels.
A second possibility is that if compensation were mediated
through the 30 UTR, we might not detect compensation
because the genes in our collection have a shared non-
endogenous 30 UTR. We therefore tested seven N-terminal GFP
fusions; for these genes, we found that the 30 UTR is not a likely
source of compensation (Supplementary Table SVII). Another
possibility is that some, but not all, of the cells in the
population show compensation. However, the population
distribution of fluorescence is very similar for most of the
matched X-GFP/X and X-GFP/Dx strains. Accounting for
expression levels, there is no significant change in the
coefficient of variation between paired X-GFP/X and X-GFP/
Dx strains before or after filtering the data to eliminate the
contribution of cell-size variance (Newman et al, 2006)
(Figure 2D; Supplementary information). These data indicate
that the level of fluorescence accurately reports on the level of
protein expression. We therefore argue that our data conclu-
sively show that active feedback control of protein levels is
infrequent in the S. cerevisiae genome, at least under the
growth conditions examined. For most genes, the average
protein level is proportional to gene copy number and
expression from each allele is independent, at least in a range
close to wild-type expression.

The relationship between gene copy number
and protein levels is maintained in different
environments

In our initial studies, we grew cells in synthetic complete
media. However, a number of genes are only expressed under
certain environmental conditions, and we reasoned that
similarly compensation might also occur only under other,
potentially more stressful, environmental conditions. There-
fore, we looked for compensation in protein expression in a
number of different media: synthetic minimal medium in
which only essential amino acids are supplied, synthetic
complete medium with low glucose, synthetic complete
medium containing glycerol as the sole carbon source, and
rich media (YPD). The protein abundance of a large number of
genes changed under many of these conditions (Supplemen-
tary information). Nonetheless, both the overall frequency of
compensation (Figure 3A) and the specific genes that
compensated and exacerbated were similar in all the growth
media (Supplementary Table SIII). Exacerbators are

strains where the protein levels in the heterozygous strain
decrease by more than two-fold. Furthermore, genes that
changed protein abundance between two media were not
more likely to compensate, nor were compensators more
likely to change their protein abundance between these media
(Figure 3B and C).
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Compensators are represented in many gene
classes
Given that compensators seem to be consistent across
conditions, we asked whether there are recognizable simila-
rities among the compensators. We examined the compensa-
tors for overrepresentation of any of the following
characteristics: (1) common function, (2) duplicate genes,
(3) high noise levels, (4) reduced growth when deleted, (5)
common pathway, and (6) members of large complexes.
We found compensators in all of these gene classes, but did not
find a significant overrepresentation of compensators in any of
them. (1) We were unable to find any apparent pattern in the
functions of the compensating genes (Ashburner et al, 2000;
Zeeberg et al, 2003) (using multiple different cutoffs for
significance; Supplementary information). However, because
our library did not include low abundance proteins, such as
many signaling proteins and transcription factors, it is possible
that these classes of proteins may behave differently. There
was no correlation between expression level and compensa-
tors in our set (Supplementary Figure S4). (2) Compensators
do not share any obvious correlations such as over/under-
representation among duplicate genes, and (3) do not show
enhanced deviation from expected noise levels (DM) (New-
man et al, 2006). Interestingly, exacerbators do have higher
than expected noise levels (P-value of 0.01). As exacerbators
are proteins whose expression decreases by more than two-
fold when gene dosage is decreased by two-fold, one might
expect exacerbators to be involved in positive feedback
regulation (Supplementary information). Some genes in-
volved in positive feedback would be expected to be noisier
than genes not involved in feedback regulation, perhaps
explaining our observation (Supplementary information).
(4) Compensators and exacerbators are overrepresented
among genes that cause reduced growth when deleted, but
only modestly so (Supplementary Table SIV). We also
measured competitive fitness by flow cytometry (Breslow
et al, 2008) for our strains in YPD and found there was no
correlation between growth rate and compensation (Supple-
mentary Figure S5). The majority of the strains queried had no
growth defect as a heterozygous deletion, in agreement with
earlier work (Deutschbauer et al, 2005). (5) We also examined
many pathways for compensation at the pathway level.
We found evidence for compensation in the lysine pathway,
but no other pathways (Supplementary Table SV). (6) We also
examined the role of complex assembly, as some proteins are
unstable until they are assembled into larger complexes
(Gorenstein and Warner, 1977) and several of these proteins
appear to maintain protein levels in the face of aneuploidy
(Torres et al, 2007). Although we were unable to find any
correlation between compensation and members of protein
complexes, our library was biased against a number of
components of large protein complexes. To look at more
indirect interactions, we extracted physical interaction
data from BioGrid (Breitkreutz et al, 2008) (http://www.
thebiogrid.org) and looked for proteins involved in feedback
with a path length of five or smaller. Compensator and
exacerbators were not enriched in this set. Of note, exacer-
bators are enriched among genes with longer mRNA half-life
and significantly more likely to not express two-fold more GFP
in a X-GFP/X-GFP strain as compared with a X-GFP/X strain

(Supplementary Figures S7 and S8; Supplementary Table SIX).
In total though, compensators and exacerbators are most
notable for their lack of similarities.

Compensators are rare among essential genes
and overexpressed genes

To test whether essential (Ess) genes behave differently from
non-essential genes, we created 40 diploid strains where one
copy of an essential gene was fused to GFPand the second copy
was under the control of doxycycline (EssX-GFP/TetO7pr-EssX)
(Mnaimneh et al, 2004). In the presence of 10mg/ml
doxycycline, production from the tetracycline promoter is
blocked, creating a functionally heterozygous strain that can
be compared directly with a wild-type strain (EssX-GFP/EssX).
Two of the 40 genes compensated (Supplementary Table SVI),
a similar proportion to that seen with non-essential genes.
One gene showed altered expression in the absence of
doxycycline, raising the possibility that in some cases
there may be compensation for overexpression (Torres et al,
2007). The finding that most essential genes do not compen-
sate indicates that essential genes behave similarly to
non-essential genes.

To test whether protein levels compensate for overexpres-
sion, we created 65 strains where one copy was fused to GFP
and a second plasmid-borne copy was under the control of a
galactose-inducible promoter (X-GFP pGALpr-X) (Gelperin
et al, 2005). When cells are grown in medium with raffinose as
the sole carbon source, only the GFP fusion of protein is
expressed; in medium with galactose as the sole carbon
source, the GFP fusion of the protein is expressed and the
plasmid-borne allele is overexpressed. If protein abundance
is sensitive to overexpression, the GFP fluorescence should be
suppressed in galactose medium but not in raffinose medium.
In all, 8% of the GFP alleles showed suppression in over-
expression conditions (Supplementary Table SVII). A caveat of
galactose overexpression is that the degree of overexpression
is often much larger than the absolute expression of the
protein. As argued for drug-induced haploinsufficiency profil-
ing (Supplementary information), this degree of overexpres-
sion may hide compensation. In general, protein abundance
does not compensate for galactose overexpression.

Discussion

By making a series of 730 heterozygous deletion strains in
S. cerevisiae, we showed that protein abundance quantitatively
corresponds to gene copy number. This result was consistent
in a variety of environmental conditions; cells grown in five
different media produced similar results. We also confirmed
this result for essential proteins and overexpressed proteins.
Given that our data show a correspondence between gene copy
number and protein abundance, our data also quantitatively
support, on a single gene basis, the semiquantitative result that
mRNA abundance tracks gene copy number (Torres et al,
2007) (Pollack et al, 2002). Although our results are not
consistent with an earlier study that compared protein levels
with gene dosage for 16 gene in aneuploid strains (Torres et al,
2007), this inconsistency most likely represents the accuracy of
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using GFP fluorescence over westerns to quantitate protein
levels or our larger sample size.

Environmental perturbations often alter gene and protein
expression. Homeostasis is an essential feature of life, and
feedback regulation often attenuates (or exacerbates) the
response to a new environment over time. A priori, one might
therefore have expected that monitoring the relationship
between protein levels and gene copy number would uncover
many examples of feedback. In particular, one might expect
genes involved in negative feedback to compensate for
changes in gene dosage, and genes involved in positive
feedback to exacerbate changes in gene dosage. The fact
that compensation is observed so rarely suggests that, in
S. cerevisiae, direct regulation is more common than feedback
regulation (Levy et al, 2007) or that feedback regulation is
relatively insensitive to protein levels. Supporting this, a
number of human disorders are caused by haploinsufficiency
in transcription factors (Seidman and Seidman, 2002). If
feedback regulation were predominant, transcription factor
haploinsufficiency in humans would be less common. Inter-
estingly, this would suggest that transcription factors, a class of
protein underrepresented in our study, are in many cases not
present in humans at twice the necessary level.

Because of the constraints of flow cytometry, our study
primarily included highly abundant proteins. It is therefore
possible that lower abundance proteins such as transcription
factors and signaling molecules, which were underrepresented
in our study, may behave differently. Furthermore, proteins
that are integrally packed in large macromolecular complexes
are often difficult to successfully tag with GFP, which may bias
us against discovering feedback in these cases. As the proteins
in this study comprise the majority of total cellular proteins, in
terms of bulk protein abundance, most of the cellular proteins
are not controlled by feedback.

What are the consequences of the rarity of feedback at the
protein level? The range of observed protein levels is
determined by the rate at which selection eliminates strains
with suboptimal protein expression and by the frequency of
mutations that alter protein levels. The fitness of a given
protein level is constrained by the benefit and cost of
producing a given amount of a protein. Experimentally, our
knowledge of these constraints is minimal. The cost of protein
expression has been well studied for the lac system in
Escherichia coli (Dekel and Alon, 2005), but even in this
system, we do not know where the cost of protein expression
arises (Stoebel et al, 2008), nor do we know whether these
results are general for gene expression in bacteria, or whether
they hold for eukaryotes (Gelperin et al, 2005; Sopko et al,
2006). It is entirely possible that in eukaryotes, excess protein
production is a fitness advantage, as it can be used as a storage
form for nitrogen. Balancing these selective forces is the large
number of mutations that could affect protein stability or
translational efficiency; such mutations can easily alter protein
levels, especially in the absence of feedback. It is quite possible
that the levels of many eukaryotic proteins can be neutral for
fitness over a broad range, and that the levels of these proteins
can change dramatically with little or no evolutionary
consequences.

Combined with earlier studies and our own data that
most heterozygous S. cerevisiae strains do not have altered

fitness (Deutschbauer et al, 2005), our study suggests that a
majority of yeast proteins are expressed at least twice the
needed level. Other explanations for the prevalence of
dominance, which are not necessarily mutually exclusive,
include enzyme saturation (Fisher, 1928; Wright, 1934;
Kacser and Burns, 1981), distributed sensitivities in pathways
(Fisher, 1928; Kacser and Burns, 1981), and a requirement for
high levels of protein expression under rare physiological
conditions (Haldane, 1933).

Although variations in individual protein levels may not
intrinsically lead to a fitness cost, they will often lead to
quantitative differences in phenotype that may under some
environments convey a selective advantage or disadvantage
(Breslow et al, 2008; Hillenmeyer et al, 2008). Our results
show that individual variations in gene copy number can be
expected to cause concomitant variations in protein level.
The effects of such variations on susceptibility to disease
and the response to drugs will be a major area of future
investigation.

Materials and methods

Strains and media

The strains used in this study were in the S288C background. All the
libraries constructed were derived from three sources: the yeast GFP-
fusion library (Huh et al, 2003), the MAT a yeast deletion collection
(Winzeler et al, 1999), the yeast tetracycline inducible essential library
(Mnaimneh et al, 2004), the yeast galactose overexpression library
(Gelperin et al, 2005), and the SGA query strain (Tong and Boone,
2007). mCherry expressed under the TEF1 promoter and linked to a
Kanamycin resistance cassette was integrated at the TRP1 locus in the
SGAquery strain. A second SGA query strain was made by integrating a
Kanamycin resistance cassette at the TRP1 locus. Diploid libraries
were made by crossing the MAT a GFP library to the yeast deletion
collection, the SGA query strains, or other libraries made from haploid
spores of these initial crosses. The libraries were grown in 96-deep well
format (600 ml/well) at 231C. Saturated overnight cultures were grown
in YPD for each library. To compare two libraries, a second saturated
overnight culture was made by pinning each of the libraries into the
same 96-deep well plate in YPD. Each well thereby contained both
a query strain and a reference strain. The night before an experiment,
the cultures were diluted with a pinner into the media of interest. The
cells were grown until OD600 0.3–0.7 at 231C in a platform shaker,
which took B12 h. More detail about strain construction and growth
are in the Supplementary information.

Flow cytometry

Cells were pelleted by centrifugation at 3000 g for 3 min at RT. Cells
were washed twice with TE (10 mM Tris, 1 mM EDTA pH 7.5).
A BioMek FX liquid handling robot was used to transfer the cells from
96 well to 384 well plates. A flow cytometer with a high-throughput
autosampler (LSRII with a HTS, Becton Dickinson) was used to
record fluorescence from GFP and mCherry fluorophores as well as
forward and side scatter (more detail are in the Supplementary
information).

Data analysis

Analysis was performed largely as described by Newman et al (2006)
except that a much less stringent size cutoff was used (only 10% of all
cells were removed). Typically, 10 000–60 000 cells were counted per
well. The presence or absence of mCherry fluorescence was used to
differentiate the query and reference cells. The difference between the
mean fluorescence between the control and experimental cells was on
average two orders of magnitude; hence the separation was
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unambiguous. The GFP channel was recorded for each cell and the
autofluorescence background was subtracted from each. This back-
ground was determined from running a series of cells, which did not
express GFP. The logarithm of the ratio of the GFP expression of the
experimental strain divided by the control strain was determined for
each well. Replicate measurements were averaged and were used to
determine the s.d. of the measurements. The s.d. between the replicate
measurements was used to calculate the false discovery rate assuming
no compensation. More extensive details of these calculations are
given in the Supplementary information online.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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