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Cross-Platform Omics Prediction procedure: a statistical
machine learning framework for wider implementation of
precision medicine
Kevin Y. X. Wang1,2, Gulietta M. Pupo3,4, Varsha Tembe3,4, Ellis Patrick1,2,3,5, Dario Strbenac1,2, Sarah-Jane Schramm3,4,
John F. Thompson4,6,7, Richard A. Scolyer 1,4,7,8, Samuel Muller 2,9, Garth Tarr 2,5, Graham J. Mann3,4,10,11✉ and
Jean Y. H. Yang 1,2,5,11✉

In this modern era of precision medicine, molecular signatures identified from advanced omics technologies hold great promise to
better guide clinical decisions. However, current approaches are often location-specific due to the inherent differences between
platforms and across multiple centres, thus limiting the transferability of molecular signatures. We present Cross-Platform Omics
Prediction (CPOP), a penalised regression model that can use omics data to predict patient outcomes in a platform-independent
manner and across time and experiments. CPOP improves on the traditional prediction framework of using gene-based features by
selecting ratio-based features with similar estimated effect sizes. These components gave CPOP the ability to have a stable
performance across datasets of similar biology, minimising the effect of technical noise often generated by omics platforms. We
present a comprehensive evaluation using melanoma transcriptomics data to demonstrate its potential to be used as a critical part
of a clinical screening framework for precision medicine. Additional assessment of generalisation was demonstrated with ovarian
cancer and inflammatory bowel disease studies.
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INTRODUCTION
New “omics” technologies have allowed the measurement of a
wide range of high-throughput molecular information for
individual patients over the last 15 years. These high-resolution
molecular snapshots hold great promise in today’s era of precision
medicine, in which an individual’s molecular measurements can
be used to diagnose disease, direct care, guide therapy, and better
support patient and clinician decision-making, thus improving
over conventional protocols. Despite the large body of literature
on published “molecular signatures”, with a few notable excep-
tions, many of these signatures have limited reproducibility in
independent datasets and critical challenges still exist for the
effective clinical deployment of omics signatures. Using mela-
noma cancer as an example, it is apparent that while recent
progress in molecular biomarker discovery has found various
signatures1–6 and have shown strong associations of mRNA
expression phenotypes with prognosis in stage III melanoma
patients7, no validated molecular signature of prognosis is
currently endorsed by clinical guidelines for melanoma care, and
the few that are commercially available for early-stage melanoma
are limited to validating at a single location by the supplier8.
Widespread adoption of predictive models could be achieved if

omics signatures were measured consistently across different
platforms, e.g. when measuring gene expression using anything
from microarray to RNA-sequencing. We refer to the ability to
extract reliable predictions across heterogeneous samples as

“model transferability”, extending the notion of “platform-inde-
pendent markers”, which was recently explored in selected
diseases9,10. Here, we describe not only the reproducibility of
discovered biomarkers but also the importance of having a model
that requires no feature scale adjustment for any incoming new
data. In practice, a successful risk model must overcome the
challenge of transferability:11 it must be able to make predictions
on future data without having to re-normalise the data nor to re-
train the model. Most omics measurements exhibit high variation
between datasets due to batch effects, intra-platform protocol
changes, or other site-specific factors; this makes the prediction
challenge much harder than when using clinical variables that
have clearly defined measurement units such as age, height and
weight. This extra “noise” affects the risk model parameters
constructed from the training data and creates inaccurate
predictions for new and independent data.
Here, we address the transferability challenge for practical

implementation by developing a workflow for identifying
features that are comparable across multiple datasets and
multiple platforms, and for traditional microarray to modern
sequencing data. Our Cross-Platform Omics Prediction (CPOP)
procedure is a new end-to-end framework that accurately
predicts clinical outcomes. We developed CPOP in the context
of identifying a gene expression signature that can predict
prognosis outcomes in stage III melanoma across different
platforms. CPOP meets the transferability challenge through
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three distinct innovations. First, ratio-based features are con-
structed, resulting in features that are robust to inter-platform
scale differences. Second, the feature selection process incorpo-
rates weights that measure the stability of features across
multiple datasets. Third, selecting features that have consistent
estimated effects across multiple datasets in the presence of
noise. The model constructed for stage III melanoma is validated
on two published melanoma studies12,13 and a newly generated
dataset (n= 46) based on an independent cohort. Furthermore,
CPOP’s utility is further illustrated on two other complex
diseases, ovarian cancer and inflammatory bowel disease (IBD).
An interactive web portal (http://shiny.maths.usyd.edu.au/

CPOP/) has been constructed to illustrate how gene expression
data can be uploaded and predictions of outcomes for stage III
melanoma patients can be obtained in real-time. Together, these
innovations and methodologies deliver a molecular risk prediction
platform with statistical modelling improvements, thereby produ-
cing a coherent framework that can be adopted in multi-centre
and prospective settings.

RESULTS
Cross-Platform Omics Prediction (CPOP), a robust procedure
to select transferable biomarkers
To address challenges associated with the practical implementa-
tion of the risk models, we developed a robust Cross-Platform
Omics Prediction (CPOP) procedure, a five-step approach to select
transferable biomarkers (Fig. 1a, see Methods and Supplementary
Materials for a detailed description). The CPOP procedure begins
by identifying a collection of datasets with similar clinical
outcomes that can be used for joint modelling. This may entail
extracting relevant data from a public repository or developing a
clinical-ready molecular assay. Following that, CPOP creates
features that are the ratio of each gene’s expression to that of
other genes and then identifies from these ratios those that are
associated with clinical outcomes. Features that are predictive of
the clinical outcome are then selected using a regularised
regression modelling framework, a new strategy that focuses on
identifying features with consistent effect sizes across multiple
datasets. These selected features serve as the markers used for
final model construction. Further detail is presented in the
Methods section and in the Supplementary Materials.
CPOP overcomes the transferability challenges through the use

of three key strategies, which identify consistent features on
relative gene-expression differences across many datasets. The
collection of melanoma data presented in Fig. 1b (upper panel)
illustrates the large location and scale differences between
datasets that are typically observed in gene expression data. First,
biomarkers are ratio-based values rather than absolute expression
levels. Our ratio-based strategy is different from many others that
adjust all gene expressions by one or a group of specified control
genes. Our method of examining all pairs of features eliminates
the requirement for pre-determined sets of control genes and
accurately captures the relative changes in a gene expression
system. As a consequence, the use of ratio-based gene expression
features reduces between-data variation as shown in Fig. 1b
(lower panel). Second, each feature is assigned a weight
proportional to its between-data stability, in contrast to traditional
modelling procedures where only a single homogeneous data is
used for modelling. Third, CPOP selects features that yield
consistent estimated effects in the presence of between-data
noise, thus strengthening reproducibility across datasets contain-
ing similar biological signals. The conceptual innovation here is to
identify signals that are consistent in the presence of unwanted
variation rather than removing unwanted variation. Our CPOP
procedure was developed for and is applicable to any type of

outcome, whether diagnostic, prognostic or predictive of treat-
ment response.

Designed clinical-ready assay platform to deploy extended
gene signature
Informative datasets for the CPOP procedure can either be
identified in public literature or constructed from experiments.
Here, we constructed a clinical-ready molecular assay using the
NanoString nCounter™ platform (NanoString Technologies Inc.).
This technology was chosen for its low per-assay cost and wide
deployment. We constructed a gene set panel (Fig. 1c) consisting
of 186 differentially expressed (DE) genes that were most strongly
associated with prognosis in our previous microarray study
cohort7,14, known as the Melanoma Institute Australia discovery
(MIA discovery) cohort, and six housekeeping genes. The full list of
probes is presented in Supplementary Table 3. The baseline
characteristics of the MIA discovery cohort are described in
Table 1, and Supplementary Fig. 1 shows the survival time
distribution of the individuals. Next, we generated gene expres-
sion data from the MIA discovery cohort (n= 45) using the new
NanoString platform and the resulting dataset is referred to as
“MIA-NanoString”.
A direct comparison of the MIA-NanoString data to the

previously generated data using the Illumina cDNA microarray
platform (referred to as “MIA-Microarray”) on the same MIA
discovery cohort shows similar analytical results. We confirmed
that both the gene expression (Supplementary Fig. 2) and the log-
fold-differences of gene expression values between the good and
poor prognosis groups measured by the new NanoString assay are
very highly correlated (r= 0.9) with those originally measured in
MIA-Microarray (Fig. 1d). Based on the recurrence-free survival
(RFS), overall survival (OS) and the survival status of the patients,
we grouped patients into different prognosis groups and
confirmed that the classification performance of matching
patients using the new NanoString assay is better than the
original cDNA microarray data (Fig. 1e).

CPOP shows improved transferable performance and
robustness compared to competing procedure
We apply the CPOP procedure to the MIA-Microarray and MIA-
NanoString data to identify a molecular signature and construct a
corresponding prognostic model. We demonstrate transferable
properties as shown in the schematic drawing in Fig. 2a, b. We
construct a model using one dataset, A, and apply the model to a
new dataset, B, to generate a prediction outcome. This “cross-data
predicted outcome” (x-axis) reflects the prediction outcome across
platforms without renormalisation. We compare the prediction
findings to an ideal situation with no scale differences, where we
build a model from dataset B and apply it again to dataset B. We
refer to this result as “within-data prediction outcome” (y-axis). A
transferable model (Fig. 2b) will produce approximately the same
cross-data prediction outcome (x-axis) as the within-data predic-
tion outcome (y-axis). That is, on a scatter plot we expect the
results from these two models to cluster around the identity line
(i.e. y= x).
Here, we applied the CPOP procedure to generate a transferable

model using the MIA-Microarray and MIA-NanoString datasets and
applied the model to the TCGA melanoma data. Figure 2c shows
predicted probabilities built using the Lasso regression resulting in
a scale difference between the cross-platform and within-platform
predicted outcome with the TCGA data (similar evaluation is also
presented in Supplementary Fig. 3). In contrast, Fig. 2d shows that
CPOP produces predicted probabilities that are essentially the
same as the “desired” within-data prediction outcome built. Next,
we examined the concordance of the between-data prediction
hazard ratios and within-data (re-substituted) hazard ratios. We
applied the CPOP procedure to generate a transferable model for
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survival times using the MIA-Microarray and MIA-NanoString data
and used the model to make predictions on the TCGA and the
Sweden datasets. The panels in Fig. 2e compare the hazard ratio
prediction under the between-data setting (x-axis, with MIA-
NanoString and MIA-Microarray data as the training data) and the
idealistic within-data setting (y-axis, with either TCGA or Sweden
data as the validation data) and a transferable model will show a
high correlation of hazard ratio estimated in these two settings
(see Methods). Here, we demonstrate CPOP’s ability to produce
predictions that are on an equal scale and show major
improvement (substantially higher correlation; 0.79 vs 0.23 in
TCGA and 0.86 vs 0.06 in Sweden) compared to the commonly
used Lasso regression15 (Supplementary Fig. 4). The results of both
of these analyses indicate the stability of the model’s coefficients
in a between-data or cross-platform setting.
We next illustrate the robustness of the CPOP model to missing

features from incoming data or new samples. This type of
missingness is a common challenge arising in the event of a failure
of some probes (e.g. due to reagent or laboratory error) with some
features entirely not captured. Such a situation with entire missing
features is unlike in classical missing value problems where the
missingness occurs in the training data. Here, we examine the
situation where we have missingness in the incoming sample.
CPOP handles this situation by using additional regression models
on the reference training data to impute the missing feature in the
new/test data. We created two simulations and show our model is

robust to this type of missing data (Supplementary Figs. 5 and 6).
This makes the final implemented CPOP highly suitable for the
assimilation of gene expression data from diverse platforms and
cohorts.

CPOP validates well in external independent melanoma
cohorts without further normalisation or model modification
To further assess “model transferability” of the CPOP model on
external data, we applied the trained melanoma model on the
TCGA12 and Sweden13 data without further data normalisation or
model modification and examined its ability in predicting samples
of different survival classes. The Kaplan–Meier16 (KM) plots show
significant differences in survival probability between the good
and poor predicted classes from the CPOP model in TCGA (Fig. 3a,
p= 0.0076) and in the Sweden data (Fig. 3b, p= 0.0019). In
contrast, KM-plots that were generated for the Lasso model in
Supplementary Fig. 7 did not show statistically significant
difference (p= 0.096 for TCGA and p= 0.062 for the Sweden
data). As the training data (MIA-Microarray and MIA-NanoString)
and the validation data (TCGA and Sweden) were generated
from distinct gene expression platforms and distinct samples, we
have demonstrated that the CPOP procedure is able to select
features that are stable between platforms and sample selection.
We then establish the robustness of our results by repeating
the cross-data validation using different training-testing pairs.
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Fig. 1 Overview of CPOP and the motivating melanoma dataset. a Schematic illustration of the five-step CPOP procedure with emphasis on
the stable selection of features in Steps 3 and 4. b Quartile plot of the expression values of all genes (top panel) and all pairwise (bottom
panel) log-ratio features for each sample (n= 488) in the melanoma data collection. Each sample is represented by the median (a single solid
point), the first quartile (the lower end of a vertical line) and the third quartile (the upper end of a vertical line) of all the gene/feature values
for that sample. c NanoString probe selection (186 probes) based on results from our previous microarray studies7,14. d Scatter plot of log fold-
change for genes common between MIA-Microarray and MIA-NanoString. e Boxplot comparisons of overall accuracy for overall survival (OS)
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Supplementary Fig. 8 illustrates that 19 (79%) out of 24
combinations of training-testing pairs in the melanoma data
collection show statistical significance with p < 0.05. Furthermore,
Supplementary Fig. 9 show that the CPOP procedure with non-
normalised log-ratio features can have an equal or improved
performance compared to the Lasso model with ComBat17

normalisation on the log-ratio features.

The CPOP procedure identified the most stable relationships
between gene expression values in diverse datasets, which may
enhance biological interpretation. The CPOP melanoma signature
is based on relative expression levels between genes and after
applying the CPOP procedure onto the MIA-Microarray and MIA-
NanoString data, the final CPOP signature consisted of 24 log-ratio
features derived from 40 genes as presented in Fig. 3d and

Table 1. Data summaries for five melanoma datasets, MIA-Microarray, MIA-NanoString, TCGA, Sweden and MIA-Validation.

MIA-Microarray and MIA-
NanoString

TCGA Sweden MIA-validation

Number of samples 45 139 210 46

Median age (years) 62 56 64 61

Sex F 17 (38%) 59 (42%) 86 (41%) 14 (30%)

M 28 (62%) 80 (58%) 124 (59%) 32 (70%)

Stage/metastasis type Stage III: 45 (100%) Stage III: 139 (100%) General: 23 (11%) Stage III: 46 (100%)

In-transit: 15 (7%)

Local: 11 (5%)

Primary: 15 (7%)

Regional:139 (66%)

NA: 7 (3%)

Median survival (months) OS: 22 OS: 26.9 DSS: 17.6 OS: 65.5

RFS: 8 RFS: 9

Survival status (Alive) Yes: 19 (42%) Yes: 78 (56%) Yes: 108 (51%) Yes: 26 (57%)

No: 26 (58%) No: 61 (44%) No: 102 (49%) No: 20 (43%)

Included are the number of samples, the median age of the cohort, gender (sex), the median survival time in month and survival status. OS, RFS and DSS refer
to overall survival, recurrence-free survival and disease-specific survival, respectively.
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Microarray and MIA-NanoString data. Each of the four panels illustrates a combination of the Lasso and the CPOP model predictions on the
TCGA and the Sweden data. R denotes the Pearson’s correlation coefficient.
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Supplementary Table 4. In this figure, an edge connecting two
genes (nodes) indicates the ratio is present in the CPOP signature
and its thickness indicates the magnitude of coefficient values in
the predictive model and their direction of correlation, respec-
tively. Genes most strongly implicated include CXCL918,19, CCL820,
TSPAN10, PLEK, CLEC10A21, SLAMF1, CLECL1, MAGEA10, CXCL13
and LYZ22, which all have been identified as potential biomarkers
in previous studies and show enrichment in the inflammatory
response.

New independent validation cohort confirms CPOP’s
suitability for prospective study
As a final validation of the CPOP-selected melanoma signature, we
further generated an independent cohort (referred to as “MIA-
Validation”, n= 46, see Methods) in 2020. These samples were
obtained from Melanoma Institute Australia and were accrued
since 2010 at the same centre, as described in Table 1 and
Supplementary Table 1. These samples served as an independent
and prospective validation of our methodology. We applied our
CPOP model to this cohort and this gives a significant difference in
survival probability in the KM plot between the predicted good

and poor predicted classes in Fig. 3c (p= 0.037). CPOP demon-
strated a consistent performance (evaluation framework shown in
Supplementary Fig. 10) in transcriptome data from different gene
expression platforms (microarray, RNA-Seq and NanoString), and
in independent cohorts widely separated in time and space. This
further validates the CPOP procedure and its suitability for
prospective settings and potential for wide-scale deployment for
clinical prognosis.

The generalisability of the CPOP procedure is illustrated in
two additional diseases
The need for model transferability and applications of the CPOP
procedure is presented in another two case studies. In the first
case study of ovarian cancer, we examined 1,189 samples
collected across nine different studies23 that are varied in clinical
survival times (Supplementary Fig. 11). The heterogeneity of study
cohorts presented a unique challenge that was only previously
dealt with using meta-analysis or pooling and reprocessing. We
applied CPOP from two selected studies24,25 to identify and build
a transferable signature and model. We were then able to make
stable cross-study predictions on the remaining seven datasets
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Fig. 3 Validation results of the melanoma dataset. a Kaplan–Meier plots show a significant difference in survival probability between the
predicted good (blue line) and poor (orange line) prognostic classes on the TCGA (n= 139). The CPOP model here is trained on MIA-
Microarray and MIA-NanoString based on the RFS-defined prognosis classes. b Similar evaluation for the Sweden (n= 210) data. c Similar
evaluation for the MIA-Validation data (n= 46) (including four imputed genes). d Network visualisation of the final CPOP model highlights the
ratio-based signatures developed from applying the CPOP model on the MIA-Microarray and MIA-NanoString data. Each node of the network
represents a gene and an edge connecting two genes (nodes) represents the log-ratio feature that is present in the signature. The colour and
thickness of each edge represent the sign and the magnitude of the size of the estimated coefficients, respectively. The genes are in alpha-
numeric ordering.
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(Supplementary Fig. 12), further highlighting the transferability of
the CPOP signature and risk model.
In another case study of inflammatory bowel disease26, a total

of 983 samples were assayed on a customised NanoString panel in
three distinct batches across two years, see Fig. 4a and
Supplementary Fig. 13. Such a batch effect is typical of a
prospective study utilising omics technologies over an extended
period of time. Here, we apply CPOP to account for the change
between distinct batches by training our model on the first two
batches and see if we can predict the outcome without
renormalisation. Figure 4b presents our evaluation strategy for
the feature selection property of the CPOP method where the
more stable methods will have points more tightly correlated on
the y= x line on the scatter plot. Figure 4c shows that CPOP again
outperforms Lasso regression in concordance performance
metrics and is able to make a more stable cross-batch prediction
on inflammation samples demonstrating its strength for large
cohort prospective study.

DISCUSSION
This paper presents a new transferable procedure, CPOP, for
biomarker omic analysis motivated by challenges in melanoma
research. To the best of our knowledge, this is the first transferable

risk prediction model for melanoma with a strong emphasis on
addressing practical challenges in the implementation of biomar-
kers/assays.
Importantly, the concept of transferability is not the same as

data integration, data harmonisation or data normalisation. To
date, the most popular method for adjusting data scales between
different datasets is through the use of normalisation, often
divided into two broad categories of z-score standardisation and
between-data normalisation. We refer to z-score standardisation
as a pre-processing step where each omics predictor is centred at
zero and its sample variance is scaled to one. This procedure has
been widely used, for example for investigating ovarian cancer23.
On the other hand, between-data normalisation aims to correct
the statistical distributions of genes in the validation data to be
similar to that of training data. Through the act of combining
multiple data and calculating summary statistics like a sample-
wise mean, both of these methods introduce interdependencies
between the samples and may not be suitable for processing and
predicting on a single omics profile (Criterion 15 in McShane
et al.27). Here, we are addressing a translational gap where
renormalisation for incoming samples together with an existing
cohort is not possible due to constraints with consent, data
security, or other practical reasons. Therefore, data normalisation
alone is not enough to address the various challenges in
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implementing precision medicine utilising omics data with
additional considerations relating to the model transferability
and reproducibility also being necessary.
It is important to highlight that while the calculation of (log)-ratios

is not a new idea, the work presented in this paper challenges the
practice of using only genes as features but not functions of sets of
genes. Specifically, in our framework, we propose using (log-)ratios of
all gene pairs as potential features when working with transcrip-
tomics data. Traditionally, most model prediction frameworks begin
with value adjustments on genes through the use of either
endogenous or artificial “control genes”. However, in practice, it
often means that the values of these control genes become
dominant in deriving any prediction score, sometimes even more
dominant than the statistical prediction model itself. This is
problematic especially given the controls can be dataset-
dependent. The calculation of these (log-)ratios is intended to obtain
a quantitative measure for the relative differences between the gene
expression values, which we have found to be better preserved
across different patient cohorts and data generation platforms. As
this (log-)ratio value is calculated within a sample, we are assuming
that the relative interactions between the omics features are dataset-
independent and cross-platform, provided that all the omics
platforms in question can unbiasedly estimate the relative expression
level of features. The prefix of ‘log’ simply reflects the prevalence of
the log transformation in dealing with omics data. While this all-
pairwise feature construction is not suitable to be applied to the
whole genome (e.g. whole genome RNA-sequencing) directly due to
the large dimensionality, this approach is achievable on targeted
omics assays. These targeted omics assays typically provide a higher
signal-to-noise ratio for candidate features that are of higher clinical
relevance and are in wide use in clinical validation, translational work
and in the implementation phase of precision medicine. It is critical
to note that this concept of ‘relative difference’ is not limited to
transcriptomics (e.g. similar attempts were made in Qin et al.28).
The CPOP procedure combines ratio-feature construction and

using penalised regression classifiers. A natural question is to ask if
the regression method under the CPOP procedure can be
replaced by another state-of-the-art method, e.g. random forest,
transfer learning or neural network. We need to first acknowledge
that any machine learning method does not automatically resolve
feature scaling differences. Because the CPOP procedure is
intended to provide interpretability and transparency in feature
selection, an ensemble-type model (e.g. random forest) that does
not state explicitly how decisions are made is not considered as
such a model would obscure clinical interpretability. We ultimately
opted for a regression-based modelling approach because of its
relative simplicity and prevalence in the literature. In the CPOP
procedure, the difference in the scaling of features is further
mitigated by using weights in the penalised regression model to
preferentially select features with stable distributions and
estimates across multiple datasets. While in principle it is possible
to derive platform and batch agnostic features or weighted
statistics for other machine learning methods as the training
sample size increases, the resulting procedure will still need to be
carefully adapted and tested to ensure that the increase in model
complexity is also matched by the relative gain in accuracy.
In summary, in order to enable multi-centre implementation of

gene expression signatures of prognosis in stage III melanoma
specifically and omics signatures more widely in clinical practice, we
have developed a new Cross-Platform Omics Prediction (CPOP)
procedure that closes an important gap between molecular
biomarker discovery and wider clinical use. The CPOP approach
accounts for differences in feature scaling in omics data by
performing weighted feature selection and estimation that prefer-
entially selects stable features across multiple datasets. Our
application of the CPOP method on multiple melanoma studies
and validation work using the NanoString technology serve as
important components towards the future implementation of this

methodology into clinical practice. We construct a web portal that is
available online at http://shiny.maths.usyd.edu.au/CPOP/ for prog-
nostic prediction in stage III melanoma patients. This interactive tool
illustrates how gene expression data can be uploaded and
predictions to develop stage III melanoma can be obtained in
real-time. For creating CPOP models for other data and diseases, an
R package is made available at https://sydneybiox.github.io/CPOP/.
Using the CPOP package, we demonstrate the generalisability of the
procedure to two other diseases: an ovarian cancer data collection
(nine datasets) and a large IBD dataset with 983 samples. In
conclusion, we deliver a molecular (omics) risk prediction platform
with substantial improvements in reproducibility and stability that
can be adopted in multi-centre and prospective settings.

METHODS
Melanoma molecular signature assay with the NanoString
nCounter platform
NanoString sample selection. Tumour samples were obtained from the
Melanoma Institute Australia (MIA) Biospecimen Bank, a prospective
collection of fresh-frozen tumours accrued with written informed patient
consent and Institutional Review Board approval (Sydney South West Area
Health Service institutional ethics review committee (Royal Prince Alfred
Hospital (RPAH) Zone) Protocol No. X08-0155/HREC 08/RPAH/262, No. X11-
0023/HREC 11/RPAH/32, and No. X07-0202/HREC/07/RPAH/30) since 1996
through MIA, formerly the Sydney Melanoma Unit. Both the data, MIA-
Nanostring and MIA-Validation were generated (see ‘Melanoma data
collection’ section below for details) from this biospecimen bank with non-
intersecting samples.

NanoString assay construction. Gene expression profiling was carried out
using the NanoString nCounter® platform (Seattle, WA). NanoString
designed and manufactured customised probes corresponding to 192
probes. 186 of these were identified in our previously reported studies7,14.
Of the 186 probes, 46 were found to be differentially expressed genes
between poor and good prognosis patients (stratified based on overall
survival time and vital status7), and 180 probes were identified in a model
built to predict prognosis7. Between the two studies, 39 of these probes
overlapped. In instances where there was more than one probe per gene,
the most informative probe based on an inclusion frequency of 30% for
that particular gene was included in the NanoString panel. Six house-
keeping genes were selected from a list of previously reported house-
keeping genes29 and had variances in the lowest quintile (20%) of the data
presented in two previous studies7,14, a differential expression p value
greater than 0.5. These housekeeping genes were selected to cover a
range of high expression (CENPB, CTBP1, GNB2L1), medium (RERE,
SNRPD2) and low expression (UQCR). A complete list of the customised
probe set is given in Supplementary Table 3.

NanoString experimental procedure. Tumour RNA was extracted as
previously described by Mann et al.7 RNA purity and concentration were
assessed using the Agilent TapeStation system. The nCounter® gene
expression assay (NanoString Technologies, Seattle, WA) was performed
according to the manufacturer’s instructions using 100 ng of total RNA. For
each assay, a high-density scan (encompassing 600 fields of view) was
performed.

NanoString hybridisation protocol. A thermal cycler is preheated to 67 °C.
Tagset and RNA samples are removed from a freezer and thawed at room
temperature. The tubes are inverted to mix and then briefly spun down. A
hybridisation master mix is created by adding 70 μL of hybridisation
buffer and 7 μL of the Probe A working pool directly to the tube
containing the Tagset. The solution is inverted several times to mix and
spin down. 7 μL of the Probe B working pool is added to the master mix.
8 μL of the master mix is added to each of the 12 strip tubes then 7 μL of
RNA sample is added to each tube. Strip tubes are inverted several times
and flicked to increase mixing. The tubes are briefly spun and immediately
placed in the preheated 67 °C thermal cycler, incubated for 16 h and then
ramped down to 4 °C.

NanoString data pre-processing and quality assessment. NanoString data
was read into R30 using the NanoStringQCPro package31. For the purpose of
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illustrating cross-platform noise, we performed a simple log2-
transformation on the raw counts. This allows us to assess if the panel
can facilitate prospective experiments without model modification. Of all
the samples measured in the “MIA-NanoString” data, 45 samples overlap
with previous microarray studies7,14, named “MIA-Microarray”. This allows
us to correlate genes between the two data in Supplementary Fig. 2. Of the
192 common genes (matched through official gene symbols), the median
correlation is 0.86 with the first and third quartiles being 0.79 and 0.90
respectively.

Statistical analysis - RFS assessment. Clinical follow-up time for samples
presented in Mann et al.7 and Jayawardana et al.14 is updated in 2018 and
we define recurrence-free survival (RFS) as the time difference between the
date of the first recurrence after tissue banking and the date of tumour
banked. Based on RFS, we further defined:

● “Good” prognosis group being RFS greater than four years and alive
with no sign of recurrence.

● “Poor” prognosis group being RFS less than one year and died due to
melanoma.

This resulted in 19 samples in the good prognosis group and 26 samples
in the poor prognosis group. Using these RFS-defined prognosis classes for
these 45 samples, we use limma32 to compute moderated t-statistics for all
192 overlapped genes.

Statistical analysis - Prognostic assessment. We validate the prognostic
assessment for the MIA-NanoString datasets by comparing its performance
accuracy for both overall survival (OS) and RFS against the same samples in
the MIA-Microarray data. Performance accuracy is obtained by using the
ClassifyR33 package to compute 100 repeats of 5-fold cross-validation with
the limma32 feature selection and support vector machine classifier. This is
specified via the parameters ResubstituteParams(nFeatures= c(20, 50, 100),
performanceType= “balanced error”, better= “lower”) before executing the
function runTests. All analyses are performed in R30 version 3.6.2.

Data collection

(a) Melanoma data collection: We collected five melanoma datasets
mostly consisting of late-stage samples, see Supplementary Table 1.
Three of these data are samples from the MIA and the other two are
publicly available data. Of the three MIA data, one is measured by
Illumina microarray technology and two are measured by our
customised NanoString assay as described in the “Melanoma molecular
signature assay with the NanoString nCounter platform” section.

(b) Ovarian cancer data collection: Data is obtained from the curatedOvar-
ianCancer Bioconductor package and analysed using the process
described by Waldron et al.23 and Yoshihara et al.24, with a few
modifications (detailed in Supplementary Information). We focus on
the 126-genes signature reported in Yoshihara et al.24 and select genes
that are also present in all nine datasets (Supplementary Table 2). This
results in 94 genes with corresponding 4371 log-ratio features.

(c) Inflammatory bowel disease data: A study of the inflammatory bowel
disease (IBD) with 983 samples and 712 genes. Raw NanoString data is
downloaded from Gene Expression Omnibus with accession GSE73094.
The data contains three batches, IBD2 (n= 303), IBD3 (n= 295) and
IBD4 (n= 385) from chemical reagent changes26.

Detailed descriptions of the processing workflow for all three data
collections are provided in Supplementary Materials.

Cross-Platform Omics Prediction (CPOP) method overview
Cross-Platform Omics Prediction (CPOP) is a procedure that enables sample
prediction across gene expression datasets with different scales (e.g.
different sample means). We will use the generic phrase of “scale
difference” to encompass all situations where multiple gene expression
data exhibit different scales in the data due to, for example, the use of
different experimental instruments/platforms or drifts in measurements in
a prospective setting. We use the term “biomarker” and “feature”
interchangeably. We will use the term predictive in a statistical sense and
the term predictive markers in a generic way, referring to all forms of
biomarkers, whether they are diagnostic, prognostic or predictive. We use
the term training set interchangeably with reference set (or sets), and restrict
usage of the term test set or validation set to situations with known patient

outcomes, i.e. to situations where we are assessing or comparing the
performance of CPOP. We use the term test sample or validation sample
when the unknown subjects are to be predicted.
A major consideration in developing CPOP is to make predictions on a

single sample without normalisation or combining it with additional data.
The CPOP procedure has the following three key characteristics:

1. CPOP uses (log)-ratios of genes as biomarkers (features), which are
more stable than using individual gene expression values (Step 2
of CPOP).

2. CPOP uses the Elastic Net model34 to perform feature selection
using weights proportional to the stability of features across more
than one dataset. This allows the selection of common predictive
markers (Step 3 of CPOP).

3. CPOP selects for features with high similarity in their between-data
estimated effects (Step 4 of CPOP).

Suppose we have an omics data matrix, X, of size n × p, where n is the
number of samples and p is the number of omics features (e.g. genes on a
gene expression platform). We define the “log-ratio matrix” as a matrix, Z,

of dimension n × q, where q ¼ p
2

� �
and each column of Z is the pairwise

difference between two log-transformed columns in X. Formally, each
column of Z is given by enumerating all log-ratio features log xlð Þ � log xmð Þ
for 1 � l <m � q, where xl and xm being columns of X.
In the Main Fig. 1a, CPOP is presented as a five-step procedure. These

steps can be further described as follow.

1. Data selection: the first step of data selection is dependent on the
research questions to be addressed and one should select data with
similar and appropriate clinical outcomes of interest. For example,
the selected cohort can consist of independent samples at the same
cancer stage. In the rest of the procedure, we assume we have two
gene expression data and the CPOP model training will aim to find
features consistently predictive in both data.

2. Log-ratio matrices construction: The associated log-ratio matrices for
the two gene expression data are constructed as above and
denoted as Z1 with size n1 × q and Z2 with size n2 × q. Here, n1 and
n2 are the sample sizes for the two datasets, respectively. We do not
impose the restriction of paired samples across the two data;
however, we assume the two data measure the same q log-ratio
features, or we restrict our modelling to the common q log-ratio
features between the two datasets. For both data, we also have a
clinical outcome measurement, denoted as y1 and y2 associated with
data 1 and 2 respectively.

3. Selecting common predictive features: Fit a Weighted Elastic Net
(WEN) model (see Supplementary Materials for more details) for
both datasets Z1 and Z2 to obtain estimated regression coefficients

β̂
1ð Þ
1 and β̂

1ð Þ
2 for datasets Z1 and Z2 respectively. The superscript

denotes that this is the first step of the CPOP feature selection. In
fitting the WEN models, we propose to use weights that measure
the similarities between log-ratio features in the two data. In this
paper, we primarily use the differences between column-means as
weights: wj ¼ mean Z1j

� ��mean Z2j
� ��� �� for each j ¼ 1; ¼ ; q. Other

choices for weights can be specified by the end-users in our CPOP
package. Since WEN generates sparse estimates, thus it also
naturally selects features from our data as those features with

non-zero estimates in β̂
1ð Þ
1 and β̂

1ð Þ
2 . We further define a set of

features that collects all non-zero features selected into both models
in both data. Mathematically, this set can be written as

S 1ð Þ ¼ j β̂
1ð Þ
1;j ≠ 0; β̂

1ð Þ
2;j ≠ 0

���n o
. An iterative component can be added

to this step to enhance the quality of feature selection, see
Supplementary Materials.

4. Selecting features with between-data stability: Next, we fit an
unweighted ridge regression model to the two matrices including

only features present in S(1) and obtain β̂
2ð Þ
1 and β̂

2ð Þ
2 . This is the

second feature selection step where we select features with
coefficients that are similar between both data. Mathematically,

this set can be written as S 2ð Þ ¼ j sign β̂
2ð Þ
1;j

� �
¼ sign β̂

2ð Þ
2;j

� ����n o
. An

iterative component can be added to this step to enhance the
quality of feature selection, see Supplementary Materials.

5. Final model estimation: The final CPOP models are the unweighted
ridge regression models fitted on the subset of the data including
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only features present in S(2), which are features that are common
between two datasets and with similar coefficients. We will refer to

these models as β̂
CPOP
1 and β̂

CPOP
2 , respectively. Predictions on new

samples could be made by taking the average of the two to produce

a singular β̂
CPOP

.

Additional methodological details, including statements of data collec-
tion and curation, mathematical formulations and method evaluations and
discussions are available in Supplementary Materials. The CPOP package is
available at https://sydneybiox.github.io/CPOP.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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