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5-Hydroxymethylcytosine (5hmC), one of the most important RNA modifications, plays an
important role in many biological processes. Accurately identifying RNA modification sites
helps understand the function of RNA modification. In this work, we propose a
computational method for identifying 5hmC-modified regions using machine learning
algorithms. We applied a sequence feature embedding method based on the dna2vec
algorithm to represent the RNA sequence. The results showed that the performance of our
model is better that of than state-of-art methods. All dataset and source codes used in this
study are available at: https://github.com/liu-h-y/5hmC_model.
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INTRODUCTION

Posttranscriptional modifications have been extensively studied over the last few years. More than
160 types of modification have been identified across all kingdoms of life (Boccaletto et al., 2018).
Posttranscriptional modifications play important roles in various biological processes, such as RNA
degradation (Sommer et al., 1978), RNA splicing (Lindstrom et al., 2003), and transcriptional
regulations (Cowling, 2009). To understand the mechanism of RNAmodifications, it is important to
pinpoint the modification sites in the RNA sequences (Dominissini et al., 2012; Meyer et al., 2012).

With the rapid development of high-throughput technology, several experimental methods for
identifying RNA modification sites have been developed, such as MERIP (Meyer et al., 2012) and
m6A-seq (Dominissini et al., 2012). These methods are more capable of picking up the modified
transcripts or regions on the transcripts, rather than accurately pinpointing the modification sites.
With the advances in modern life sciences, especially the cross-linking technology, methods for
identifying RNA modification sites at single-base resolution were also proposed, including miCLIP
(Linder et al., 2015), PA-m6A-seq (Kai Chen et al., 2015), and m7G-MeRIP-seq (Zhang et al., 2019).
However, these experimental methods are still costly and time-consuming. Therefore, computational
methods have been proposed as alternative approaches. A series of bioinformatics tools using
machine learning algorithms for predicting m6A (Wei Chen et al., 2015; Zhou et al., 2016; Huang
et al., 2018; Kunqi Chen et al., 2019; Zou et al., 2019), m5C (Qiu et al., 2017; Sabooh et al., 2018;
Akbar et al., 2020; Dou et al., 2020), m7G (Wei Chen et al., 2019, 7; Liu X. et al., 2020; Yang et al.,
2020; Dai et al., 2021), and many others have been developed. A recent review article has elaborated
on the differences between these studies, in the aspect of benchmarking datasets, feature encoding
schemes, and the main algorithms (Chen et al., 2020).

5-Hydroxymethylcytosine (5hmC) plays a key role in various cellular processes. 5hmC
modification exists on both RNA and DNA sequences (Zhang et al., 2016). Most of the existing
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studies focused on the DNA 5hmC modifications (Szwagierczak
et al., 2010; Pastor et al., 2011; Yu et al., 2012; Bachman et al.,
2014). The RNA 5hmCmodifications were much less studied (Fu
et al., 2014; Huber et al., 2015; Delatte et al., 2016; Miao et al.,
2016). Fu et al. first found that the m5C site can be catalyzed by
the Tet enzyme to form 5hmC sites with a ratio of about 0.02%
in vitro in mammalian RNA (Fu et al., 2014). In addition, a
discovery that Tet-mediated oxidation of m5C in RNA is much
less efficient than that in DNA (Fu et al., 2014). Huber et al.
verified that 5hmC is the result of m5C oxidation in vivo in a
mouse model using an isotope-tracing methodology (Huber et al.,
2015). They also found that in worms and plants, the formation of
5hmC in RNA does not require a Tet-mediated oxidation
mechanism. Miao et al. (2016) found that 5hmC in RNA is
rich in the mouse brain, which is potentially related to brain
functions. Delatte et al. (2016) systematically identified 5hmC
modifications inDrosophila transcriptome using the hMeRIP-seq
method. Using the data from Delatte et al., Liu et al. developed a
predictor iRNA5hmC for computationally identifying 5hmC
modifications with machine learning algorithms (Liu Y. et al.,
2020). Ahmed et al. also constructed a predictor iRNA5hmC-PS
(Ahmed et al., 2020) by using position-specific binary indicators
of RNA sequences. However, Delatte et al. did not provide the
exact location of 5hmC modification sites in the transcriptome
(Delatte et al., 2016). Liu et al. provided the exact location by
randomly selecting cytosine sites within the peak region detecting
by MeRIP-seq (Liu Y. et al., 2020). However, such a strategy may
lead to many false-positive samples (Kunqi Chen et al., 2019). To
avoid such uncertainty, we proposed a model based on low-
resolution data.

The rapid development of deep learning has promoted natural
language processing studies. Word2vec is a remarkable
achievement in natural language processing technology
(Mikolov et al., 2013). Distributed representation of word
vector is the core idea of word2vec, which means the
representation of a word can be inferred from its context.
With the development of high-throughput sequencing
technology, the sequencing quality of biological sequences can
be guaranteed. Therefore, some researchers in bioinformatics
regard the biological sequences as a sentence, and k-mers as
words. The word2vec method can then be applied to represent the
biological sequences. Asgari et al. proposed BioVec based on the
skip-gram model for biological sequences representation (Asgari
and Mofrad, 2015). Kimothi et al. developed a model named
seq2vec based on doc2vec, which is an extension of the original
word2vec (Kimothi et al., 2016). The dna2vec model is dedicated
to representing variable-length words (Ng, 2017a). It has been
applied to several topics in bioinformatics. For example, Deng
et al. proposed D2VCB for predicting protein–DNA-binding sites
based on k-mer embeddings (Deng et al., 2019). Hong et al.
applied the pretrained k-mer embeddings to encode enhancers
and promoters (Hong et al., 2020). We employed the dna2vec
embeddings to represent k-mers of Drosophila genomic
sequences.

In this study, we represent the RNA sequences by using feature
embeddings. We applied an SVM classifier to create a model for
predicting 5hmC modification sites. Our model was trained on

the low-resolution modification datasets, which is more reliable
than the 1-base resolution set. The result suggests that our model
is effective in identifying 5hmC sites.

MATERIALS AND METHODS

Datasets
In this study, we constructed the benchmarking dataset according
to the experimental result from Delatte et al. (2016). The result
from Delatte et al. contains 3058 peak regions distributed on
chromosomes, which contain chr2L, chr2R, chr3L, chr3R, chr4,
chrX, chr2RHet, chr3LHet, chr3RHet, chrYHet, chrU, and
chrUextra. According to Hoskins et al. (2015), the genome
sequences are of high quality on chr2L, chr2R, chr3L, chr3R,
chr4, and chrX, while the remaining chromosome sequences are
of low quality. Therefore, we only used the sequence data from
chr2L, chr2R, chr3L, chr3R, chr4, and chrX. We got 2616 peak
regions containing 5hmC modification sites. Subsequently, we
obtained the transcription direction of every region by querying
the UCSC genome browser tracks (Karolchik et al., 2003). Finally,
2616 positive samples were curated, which are regions containing
5hmC modification sites. Non-peak regions within transcripts
carrying peak regions are curated as negative samples. The non-
peak regions were cropped to the same lengths as the peak regions
in a one-vs.-one strategy. A total of 2616 positive samples and
2616 negative samples were finally curated. We plot the density
distribution of sequence lengths in Figure 1.

K-Mer Embeddings
K-mer is a common and efficient way to represent RNA
sequences, which divided the biological sequences into short
segments of the length k. We employed the k-mer embeddings
for representing the k-mer instead of one-hot encoding. K-mer
embeddings can capture semantic and linguistic analogies and avoid
the curse of dimensionality (Mikolov et al., 2013). The dna2vec
model was used in this study for training k-mer embeddings (Ng,
2017a, 2). The corpus was collected from dm3 (Karolchik et al.,
2003) genome assembly. We selected high-quality six chromosome
sequences fromdm3, including ch2L, chr2R, chr3L, chr3R, chr4, and
chrX. The corpus was used as the input of the dna2vec. K-mer
embeddings were obtained by training dna2vec. Let p (k, i) (i = 1,
2,. . .4k) represent the i-th type k-mer fragment. The process of the
dna2vec model can be expressed as follows:

p(k, i)����→h(·) v(p(k, i)), (1)
where h(.) is the mapping from a k-mer fragment to k-mer
embedding and v(p (k, i)) is the embedding vector of the i-th
type of k-mer. In this study, we chose k from 3 to 8. The
dimension of v(p (k, i)) was set to 100.

Distribution Representation of RNA
Sequences
Given an RNA sequence r with length l, it can be represented as
follows:
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r � n1n2/nl, (2)
where nu (u = 1, 2,. . ., l) represents u-th nucleotide in RNA
sequence. The RNA sequences are segmented into k-mers in an
overlapping way. For example, we convert AUAGC into three
3-mers: “AUA,” “UAG,” “AGC.” Therefore, sequence r divided
by k can be represented as follows:

r � {w1, w2, . . . , wl−k+1}, (3)
where wj (j = 1, 2,. . ., l−k+1) ∈ {p(k, i) |k = 3, 4,. . ., 8, i = 1, 2,. . .,
4k}. The fragment of k-mer RNA sequence can be considered as
an RNA word. With the mapping h(.) from dna2vec, wi was
converted into the corresponding embedding vector. Sequence r
can be expressed in a matrix as follows:

FIGURE 1 | Sequence length distribution. The X-axis represents the length of sequences. The Y-axis represents the density of distribution. (A) Histogram density
for the distribution of the length of positive sequences. (B) Histogram density for the distribution of the length of positive sequences.
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E(r, k) � [ v(w1) v(w2) . . . v(wl−k+1)], (4)
Since dna2vec was trained by a corpus of DNA sequences, the

k-mers from dna2vec do not contain uracil. We replaced thymine
with uracil on k-mers for using the mapping. Considering the
sum of dna2vec embeddings along the sequence is related to
concatenating k-mers (Ng, 2017b), we sum the embedding vector
in E(r, k) for representing the sequence r, as follows:

e(r, k) � ∑l−k+1
i�1

v(wi)/l − k + 1. (5)

In this study, we chose k = 3, 4, 5, 6, 7, and 8. The final feature
vector is formed by concatenating e(r, k) with different k, as
follows:

e(r) � [ e(r, 3)T e(r, 4)T . . . e(r, 8)T ]T. (6)

Model Construction Algorithm
We evaluated three machine learning algorithms in this task,
including SVM, CNN, and C4.5 classification tree. For the SVM
classifier, we applied the radial basis function (RBF) kernel, as
follows:

κ(ei, ej) � exp( − γ




ei−ej



2), (7)

where γ is a parameter and ||.|| vector norm operator.
For the CNN classifier, the max-pooling layer and dropout

layer are used to avoid the over-fitting problem. The sigmoid
function followed by a fully connected network is applied for
performing the output. We used stochastic gradient descent to
optimize parameters (Bottou, 2012). The binary cross-entropy
function is used as the loss function (de Boer et al., 2005), as
follows:

L(θ) � 1
N

∑N
i�1
yilog(hθ(e)) − (1 − yi)log(1 − hθ(e)), (8)

where yi is the label of the i-th sample, hθ(e) the output of the
neural network, and N the number of samples.

For C4.5 algorithm, the information gain ratio for selecting
appropriate features is defined as follows:

Gr(D, ei) � G(D, ei)
IV(ei) , (9)

where D is the whole dataset, Gr (D, ei) the information gain,
IV(ei) the intrinsic value of ei (Salzberg, 1994), and ei the i-th
feature of feature e.

Degree of Separation
To measure the degree of separation in the visualization analysis,
we introduced the J-score. We first define the intra-class
divergence sw and interclass divergence sb, as follows:

sb � (�e+ − �e−)(�e+ − �e−)T, (10)

sw � ∑m+

j�1
(e+(rj) − �e+)(e+(rj) − �e+)T

+∑m−

j�1
(e−(rj)

− �e−)(e−(rj) − �e−)T

, (11)
where

�e+ � 1
m+

∑m+

j�1
e+(rj), (12)

�e− � 1
m−

∑m−

j�1
e−(rj), (13)

where e+(rj) is the feature vector of the j-th positive sample, e-(rj)
is the feature vector of the j-th negative sample, and m+ and m-
are the number of positive and negative samples, respectively.

The J-score can now be defined as follows:

J � sb
sw
. (14)

The higher J-score indicates a better degree of separation
between positives and negatives.

Framework of This Study
The framework of i5hmcVec is illustrated in Figure 2. We
obtained the k-mer embeddings using dna2vec (Ng, 2017a),
which is trained by the Drosophila genome sequences version
dm3. RNA sequences were encoded by the embedding vectors for
variable-length k-mers. SVM was applied as a classifier to
distinguish the positive and negative samples.

Parameter Calibration
In this section, we give a detailed introduction to optimizing
parameters. SVMwas implemented by the Python package scikit-
learn. We chose to use the radial basis function (RBF) as the
kernel function. A grid search strategy was applied to find the
optimal parameters c and γ. The parameter c is the cost parameter
in SVM, while γ is the parameter in the RBF kernel function. The
range of parameter c is (2-5, 215), while the range for parameter γ
is (2-15, 2-5). The step for generating the logarithm searching grid
is 2 and 2-1 for c and γ, respectively. The CNN algorithm is
implemented by Keras. The batch size was set to 16. A logarithm
grid search strategy was used to find the optimal parameters
epoch e and learning rate a. The range of parameter a: 10-4, 5 ×
10-4, 10-3, 5 × 10-3, 10-2, and 5 × 10-2. The range of parameters e
is 100, 150, 200, 250, and 300. We used the weka package to
implement C4.5. We evaluated the performance on different
parameters C, which is the confidence threshold for pruning.
The range of C is [0.2, 0.5] with a step of 0.05.

Performance Measures
Four statistics, including sensitivity (Sen), specificity (Spe),
accuracy (Acc), and Matthews correlation coefficient (MCC),
were used to measure the prediction performance of our
method. These performance measures can be defined as follows:
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FIGURE 2 | Flowchart of this study. Step 1: RNA sequences are segmented into k-mers in the overlapping way, where k = 3, 4, 5, 6, 7, 8. Step 2: k-mers
embeddings were trained by the dna2vec model with corpus from dm3. Step 3: We perform summation and concatenation on these k-mers embeddings to encode
RNA sequences. Step 4: SVM is used as a classifier for distinguishing positive and negative samples.
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Sen � TP

TP + FN
, (15)

Spe � TN

TN + FP
, (16)

Acc � TP + TN

TP + FP + TN + FN
, and (17)

MCC � TPTN − FPFN�������������������������������������(TP + FN)(TN + FN)(TP + FP)(TN + FP)√ , (18)

FIGURE 3 | Performance of different kinds features on SVM, CNN, and C4.5. Cyan, orange, gray, yellow, blue, and green, respectively, represent the performance
of 3-mer, 4-mer, 5-mer, 6-mer, 7-mer, and 8-mer embedding features. Purple, pink, and red, respectively, represent the performance of 4, 5, 6-mer concatenated
embeddings, 6, 7, 8-mer concatenated embeddings, and 3, 4, 5, 6, 7, 8-mer concatenated embeddings. (A,B) Performance of different kinds of feature on SVM. The
standard deviation of SVM on 3-mer, 4-mer, 5-mer, 6-mer, 7-mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer, and 3, 4, 5, 6, 7, 8-mer is in the range (0.001, 0.003), (0.001,
0.003), (0.001, 0.003), (0.001, 0.003), (0.001, 0.003), (0.001, 0.004), (0.001, 0.004), (0.001, 0.003), and (0.001, 0.003); (C,D) Performance of different kinds of feature
on CNN. The standard deviation of CNN on 3-mer, 4-mer, 5-mer, 6-mer, 7-mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer, and 3, 4, 5, 6, 7, 8-mer is in the range (0.003, 0.026),
(0.008, 0.071), (0.006, 0.049), (0.015, 0.056), (0.016, 0.055), (0.016, 0.059), (0.008, 0.044), (0.011, 0.058), and (0.008, 0.045); (E,F) Performance of different kinds of
features on C4.5. The standard deviation of CNN on 3-mer, 4-mer, 5-mer, 6-mer, 7-mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer, and 3, 4, 5, 6, 7, 8-mer is in the range (0.005,
0.545), (0.007, 0.531), (0.005, 0.049), (0.007, 0.685), (0.003, 0.440), (0.007, 0.489), (0.008, 0.630), (0.006, 0.567), and (0.005, 0.518).
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where TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives in the cross-
validation process, respectively.

In addition, we also draw the receiver operating characteristic
(ROC) curve and precision–recall (PR) curve to describe the
performance of our method. The area under the ROC curve
(AUROC) and the area under the PR (AUPR) curve were also
recorded as performance indicators.

RESULTS

Performance of Diffident Kind Features and
Classifiers
In this study, nine kinds of k-mer embeddings were obtained,
including six kinds of single k value embeddings and 3 kinds of
multiple k value combinations. The single k values range from 3
to 8. The multiple k value combinations include the 4, 5, 6-mer
combination, 6, 7, 8-mer combination, and 3, 4, 5, 6, 7, 8-mer
combination. We first evaluate the performance of each single k
value embedding. After that, we evaluate three multiple k value
combinations.

Three machine learning-based classifiers were applied in this
study. They are SVM, CNN, and C4.5. The parameters of these
classifiers are optimized as in the method section. The
optimization process is recorded as mesh surf plots in
Supplementary Figures S1–S3 in the supplementary materials.
The data for quantitative analysis is recorded in Supplementary
Tables S1–S27. The optimal parameters for different classifiers
are: the c and γ of SVM on the 3-mer, 4-mer, 5-mer, 6-mer, 7-

mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer and 3, 4, 5, 6, 7, 8-mer are (29,
2–5), (27, 2–5), (27, 2–5), (27, 2–5), (27, 2–5), (27, 2–5), (25, 2–5),
(25, 2–5), and (24, 2–5); the a and e of CNN on the 3-mer, 4-mer,
5-mer, 6-mer, 7-mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer and 3, 4, 5, 6,
7, 8-mer are (5 × 10-2, 200), (5 × 10-2, 150), (5 × 10-2, 150), (5 × 10-
2, 250), (5 × 10-2, 150), (5 × 10-2, 250), (5 × 10-2, 150), (5 × 10-2,
100), and (5 × 10-2, 150); the C of C4.5 on the 3-mer, 4-mer, 5-
mer, 6-mer, 7-mer, 8-mer, 4, 5, 6-mer, 6, 7, 8-mer and 3, 4, 5, 6, 7,
8-mer are 0.45, 0.3, 0.2, 0.5, 0.2, 0.45, 0.25, 0.3, and 0.3. The
performances of all models are evaluated by 10 times 5-fold cross-
validations. The optimal performance is recorded in Figure 3 and
Supplementary Tables S28–S54.

Semantic Symmetry of K-Mer Embeddings
One of the most important functions of word2vec is that the word
embeddings can solve semantic and linguistic analogies (Mikolov
et al., 2013). Therefore, the semantic relation of the k-mer
embeddings from dna2vec needs to be discussed. Principal
component analysis (PCA) was applied to reveal the
relationship of k-mer fragments. For 5-mer embeddings,
the number of words is 1024. To present the results
clearly, we only plot the PCA results of 3-mer and 4-mer
embeddings in Figure 4. As in Figure 4, many words show
symmetry trends about the horizontal axis, such as (CGC,
GCG), (CTT, AAG), and (TACT, AGTA). Many words with
such property have the characteristics of complement or
reverse complement. Zou et al. regarded this phenomenon
as semantic symmetric in the human genome (Zou et al.,
2019). We observe and confirm this phenomenon in
Drosophila genome.

FIGURE 4 | Visualization of k-mer embeddings with PCA. Each dot represents a k-mer embedding vector. (A) 3-mer embedding. (B) 4-mer embedding.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8969257

Liu and Du i5hmcVec

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Feature Visualization
We used the t-distributed stochastic neighbor embedding (t-SNE)
(van der Maaten and Hinton, 2008) method to help visualize
the sequence features. The t-SNE algorithm is an effective way
of reducing dimensions for visualization purposes. According
to the visualization of t-SNE, we can judge whether the positive
and negative samples are separable in the feature space. We
applied the t-SNE for reducing the dimension of the feature to
2 and 3. We also calculated the J-score, which has been
elaborated in the method section, as a quantitative
separation measure in the reduced feature space. As shown
in Figure 5, positive and negative samples are highly separable.
The J-score of 2 and 3 dimensions of t-SNE are 0.202 and
0.165, indicating an acceptable level of separation.

Performance Comparison With Existing
Methods
The i5hmCVec is constructed based on a low-resolution
modification dataset. WeakRM (Huang et al., 2021) was
also proposed for identifying the 5hmC modification sites
on low-resolution data. We summarized the dataset

distribution used in the i5hmCVec and WeakRM in
Table 1.

We used the dataset fromWeakRM for training the i5hmCVec
model. We also reproduced WeakRM for obtaining more
types of performance metrics. Due to inevitable randomness
errors, our reproduced performances are slightly different
from the original reports. The differences are so tiny that the
comparison results would not change. As in Table 2,
i5hmCVec achieved 0.846, 0.920, 0.908, and 0.692 on Acc,
AUROC, AUPR, and MCC, respectively, which are higher
than the performance values of WeakRM. In addition, we
make a comparison of training time between i5hmcVec and
WeakRM. Training WeakRM takes about 500 s, while
i5hmCVec takes about 25 s. To describe the results more
intuitively, we displayed the ROC curve and PR curve of two
models, as in Figure 6. As in Figure 6, both the AUROC and
AUPR of i5hmCVec are slightly better than the WeakRM. In
total, iRNA5hmCVec achieved better performances than
WeakRM on a low-resolution modification dataset.

FIGURE 5 | Visualization of sequence features. The red dots represent the positive samples. The blue dots represent the negative samples. (A) Visualization of 2-
dimensional t-SNE. (B) Visualization of 3-dimensional t-SNE.

TABLE 1 | Dataset distributions of i5hmcVec and WeakRM.

Method Positivea Negativeb Window size

i5hmCVec 2616 2616 209 nt~8097 nt
WeakRM (training) 1875 1875 210 nt~8090 nt
WeakRM (validation) 235 235 210 nt~8090 nt
WeakRM (testing) 234 234 210 nt~8090 nt

aPositive samples are sequences, which contain the 5hmC sites.
bNegative samples are sequences, which do not contain the 5hmC sites.

TABLE 2 | Performance of i5hmcVec andWeakRM on the dataset fromWeakRM.

Method Acca Senb Spec AURORd AUPRe MCCf

WeakRM 0.790 0.617 0.967 0.892 0.905 0.619
i5hmCVec 0.846g 0.838 0.855 0.920 0.908 0.692

aAcc is short for accuracy.
bSen is short for sensitivity.
cSpe is short for specificity.
dAUROC means the area under the ROC curve.
eAUPR means the area under the PR curve.
fMCC is short for Matthews correlation coefficient.
gBoldface indicates the best performance on each metric among methods.
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DISCUSSION

Identifying modification sites is an important work for studying
5hmC modification. In this study, we used machine learning
methods to construct the model. There are three key steps for a
machine learning problem.

First, a high-quality dataset is essential for building an effective
model. We constructed the low-resolution benchmarking dataset
from experimental results (Delatte et al., 2016). We did not use
the strategy of randomly selecting cytosine sites within peak
regions like Liu Y. et al. (2020). Because such a strategy may
lead to many false-positive samples (Kunqi Chen et al., 2019). In
addition, to ensure high quality of sequences, we only employed
the high-quality chromosomes sequences in the genome
assembly.

Second, the samples from the dataset should be represented by
an informative digital vector. We encode RNA sequences using
the k-mer embeddings, which are derived from dna2vec.
According to our results, the feature vector can effectively
separate positive and negative samples. These results suggest
that this encoding scheme is suitable for our study.

Finally, a suitable classifier should be used for constructing the
model. We compared the performance of SVM, C4.5, and CNN.
The SVM classifier has the best performance. In addition, we
optimize the parameters using a grid search strategy.

Although our model was trained on low-resolution data, we
tried to evaluate the performance of ourmodel on high-resolution
data. We performed 10 times 5-fold cross-validations on the
benchmarking dataset from iRNA5hmC (Liu Y. et al., 2020). The
sequence data in iRNA5hmC are 41 nt. The results are recorded

in Table 3. According to the results, the i5hmCVec does not
receive expected performance on a high-resolution modification
dataset. We speculated that there may be two reasons for this
phenomenon. One is the low quality of the high-resolution
dataset. The high-resolution dataset of 5hmC modification was
developed by Liu et al. with a random site picking strategy (Liu Y.
et al., 2020), which may lead to many false positives.

The other is the limitation of resolution in our model. The
length of low-resolution sequences is between 209 nt and 8097 nt,
while the length of high-resolution sequences is 41 nt, which is
much shorter than the lower bound of the low-resolution dataset.
To estimate the resolution of our model, we evaluate the
performance of the 5hmC on negative samples with different

FIGURE 6 | ROC and PR curves of i5hmcVec andWeakRM on the dataset fromWeakRM. (A) ROC curve. The X-axis is the false positive rate, and the Y-axis is the
true positive rate. (B) PR curve. The X-axis is the recall, and the Y-axis is the precision.

TABLE 3 | Performance of i5hmcVec and iRNA5hmC on the benchmark dataset
from iRNA5hmC.

Method Acca Senb Spec AUROCd AUPRe MCCf

iRNA5hmC 0.655g 0.677 0.644 0.697 0.685 0.310
i5hmcVech 0.642 0.636 0.647 0.684 0.676 0.284

±0.008 ±0.010 ±0.009 ±0.007 ±0.007 ±0.016

aAcc is short for accuracy.
bSen is short for sensitivity.
cSpe is short for specificity.
dAUROC means the area under the ROC curve.
eAUPR means the area under the PR curve.
fMCC is short for Matthews correlation coefficient.
gBoldface indicates the best performance on each metric among different methods.
hPerformance of i5hmcVec on the benchmark dataset from iRNA5hmC with 10 times 5-
fold cross-validation. Results are expressed as the mean and standard deviation of
10 times experiments.
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length restrictions. We re-select RNA sequences with sequence
lengths ranging from 20 to 8100 on the non-peak region within
the transcript carrying peak region as an independent testing
dataset. It is worth noting that to prevent information leakage,
there is no regional intersection between these negative samples
and the negative samples in the benchmarking dataset. In
addition, since there are only labels for negative samples, Spe
is used as a performance metric. As shown in Figure 7, when the
length of the sequence is less than 1000 nt, the performance of spe
gradually drops. When the sequence length is around 100, the
performance value takes a deep dive. Although the performance
increases drastically when the sequence length is less than 100, we
believe this is caused by over-fittings on negative samples.
Therefore, the i5hmCVec model is not suitable for working on
the high-resolution dataset.

CONCLUSION

In this study, we proposed a novel model named i5hmCVec for
identifying 5hmC modification sites. We proposed a high-quality
low-resolution 5hmC modification dataset. We construct the
i5hmCVec based on dna2vec technology. The i5hmCvec
achieved better performances than state-of-the-art methods on
a low-resolution dataset. In addition, we analyze the semantic
symmetric with the Drosophila genome. We hope our findings
may be useful for future studies.
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