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INTRODUCTION

Congenital heart disease (CHD) has been reported to 
occur in 5 to 8 per 1000 live births.[1] Brain injuries 
occur with high frequency in newborns with CHD. [2] 
Although most forms of CHD are now amenable to 
early surgical repair, deficits that impair widespread 
neurodevelopmental domains are identified in up to 
half of childhood survivors. It is not until school age 
that the full extent of neurological sequelae becomes 
apparent and the rapid pace of innovation in neonatal 

cardiac surgery prevents timely evaluation of changes 
in care.[3]

Although magnetic resonance imaging (MRI) shows focal 
brain injuries acquired before or after surgery,[4,5] the extent 
of these lesions may not account for global impairments 
in development that are seen later in childhood.[6,7] In 
normal neonates, N-acetylaspartate (NAA), a marker of 
neuronal integrity, increases with increasing maturity, 
whereas deceased NAA indicates impaired cerebral integrity 
or function.[4] Cerebral lactate, a marker of anaerobic 
metabolism, increases after hypoxic ischemic brain injury 
in newborn infants, thus suggesting its usefulness in 
detecting early brain injury.[8,9] Quantitative MRI is emerging 
as a powerful tool for the investigation of early brain 
development. Three-dimensional proton magnetic resonance 
spectroscopic imaging (MRSI) with specialized lactate-editing 
overcomes the limitation of conventional, single-voxel MRS 
with the use of a point-resolved spectroscopic sequence to 
acquire spatially resolved MRS data over most of the brain 

Impact of congenital heart disease on brain development in 
newborn infants
Moustafa M Abdel Raheem, Walid A Mohamed
Department of Pediatrics, Faculty of Medicine, Menia University, Minia, Egypt, Department of Pediatrics, College of Medicine, King Khalid University, 
Abha, Saudi Arabia

ABSTRACT

Objective : To assess brain development and brain injury in neonates with cyanotic and acyanotic 
congenital heart disease (CHD).

Methods : The study included 52 term infants with CHD who were divided into two groups: 
Cyanotic (n=21) and acyanotic (n=31). Fifteen healthy neonates of matched age and sex 
were enrolled in the study as controls. Three-dimensional proton magnetic resonance 
spectroscopic imaging and diffusion tensor imaging were used to assess brain 
development and injury. We calculated the ratio of N-acetylaspartate (NAA) to choline 
(which increases with maturation), average diffusivity (which decreases with maturation), 
fractional anisotropy of white matter (which increases with maturation), and the ratio 
of lactate to choline (which increases with brain injury).

Results : As compared with control neonates, those with CHD had significant decrease in NAA/
choline ratio (P<0.001), significant increase in lactate/choline ratio (P<0.0001), significant 
increase in average diffusivity (P<0.0001), and significant decrease of white matter 
fractional anisotropy (P<0.001). Neonates with cyanotic CHD had significant less brain 
development and more brain injury than those with acyanotic CHD (P<0.05).

Conclusions : Newborn infants with cyanotic and acyanotic CHD are at high risk of brain injury and 
impaired brain maturity.
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with a spatial resolution of 1 cm.[10-12] The lactate-editing 
MRSI technique detects and localizes the distributions of 
cerebral metabolites (N-acetylaspartate (NAA), choline (Ch), 
and lactate) through newborn’s brain. Diffusion tensor 
imaging (DTI), an advanced MRI technique, characterizes 
the three-dimensional spatial distribution of water diffusion 
in each voxel of MRI scan, providing a sensitive measure of 
regional microstructural development.[13] With increasing 
brain maturity, average diffusivity decreases,[14] owing 
to a decrease in water content and to the development 
of membranes in neuronal and glial cells.[15] Fractional 
anisotropy, a measure of the directionality of water 
diffusion, increases with the maturation of white matter. [16,17] 
The aim of this study was to assess brain development and 
brain injury in neonates with cyanotic and acyanotic CHD 
with the use of MRSI.

MATERIALS AND METHODS

A prospective study was conducted at our neonatal 
intensive care unit between October 2008 and September 
2010. The study was approved by the ethics committee 
of the hospital. During the study period, 52 term (> 37 
weeks gestational age) infants with CHD were enrolled in 
the study. They were divided into two groups: cyanotic 
(group I, n=21) and acyanotic (group II, n=31). Moreover, 
fifteen healthy term neonates of matched age and sex 
were included in the study as controls. The control 
group was recruited at a well-baby newborn nursery 
and with an Apgar score of 8-10 at 5 min, a birth 
weight appropriate for age, and no history of prenatal 
or perinatal complications. Written informed consent 
was obtained from all parents of patients and controls 
before the study. Neonates were excluded if they had 
intrauterine growth retardation, suspected congenital 
infection, genetic malformation syndrome, multiple 
congenital malformations associated with cardiac defects, 
perinatal asphyxia or CNS malformations.

Echocardiographic studies

Echocardiography was performed by a pediatric 
cardiologist. A Philips Sonos 5500 with 7.5-MHz transducer 
echo machine was used. Echo was done within 6 h after 
birth concerning morphological findings, anatomical 
defects, echo Doppler and color-flow mapping. M mode 
study was performed concerning cardiac dimensions and 
left ventricular systolic functions. Neonates proved to 
have persistent pulmonary hypertension of the newborn 
were excluded. Electrocardiogram (ECG) was done at 
the same time of echocardiographic examination. ECG 
included all standard leads was performed using a direct 
writing Hewlett Packard machine.

MRI studies

MRI studies were performed as soon as the baby could 
be safely transported to MRI scanner with the use of a 

specialized MRI-compatible isolette, which included a 
dedicated neonatal head coil.[18] Images were obtained 
after feeding without use of sedation. A radiologist who 
was unaware of all clinical information except for age 
and cardiac diagnosis scored each MRI scan for focal, 
multifocal, or global changes.

Three-dimensional proton magnetic resonance 
spectroscopic imaging

Magnetic resonance spectroscopic imaging (MRSI) was 
done and spectra were analyzed off-line using MRUI 
software with voxels (1 cm3) centered bilaterally on 
white matter (frontal, posterior, perirolandic, and optic 
radiation) and gray matter (basal ganglia, thalamus, and 
calcarine region). These regions were chosen because 
of their previously demonstrated sensitivity to hypoxic 
ischemic injury in neonates.[4] The lactate-editing MRS 
scheme provided the accurate detection of lactate as well 
as choline and NAA.

Diffusion tensor imaging

Diffusion tensor imaging (DTI) was performed with 
the use of a sequence for the same regions assessed by 
MRS with fractional anisotropy calculated from white 
matter regions. Images were acquired in 4.8min with 
the use of multi-repetition, single-shot echo planner 
sequence with six gradient directions, with a diffusion 
weighting of 700 s/mm2 (b value) and an image without 
diffusion weighting. The diffusion tensor describes an 
ellipsoid in space, with size, shape, and orientation given 
by the “maximum”, “intermediate”, and “minimum” 
eigenvalues and their corresponding eigenvectors. The 
maximum eigenvalue reflects axial diffusion, such as that 
parallel to organized white-matter tracts. In contrast, the 
intermediate and minimum eigenvalues reflect radial 
diffusion, perpendicular to white-matter tracts. Average 
diffusivity reflects the mean of these eigenvalues, 
expressed as 10−3 mm2/s, whereas fractional anisotropy 
reflects their variance (higher fractional anisotropy with 
increasing variance). Given the high spatial resolution, 
same regions of interest were smaller than those used 
for MRSI to separate white and gray matter as much as 
possible.[19]

Statistical analysis

Quantitative data were expressed as mean and standard 
deviations (SD). Student “t” test was used to compare 
mean values of two groups. The significance of comparison 
between more than two groups was performed by ANOVA 
for parametric continuous variables. Simple Pearson 
correlation coefficient was calculated to quantify the 
correlation between continuous variables. Qualitative 
data were expressed as number and percentage and were 
tested by Chi-square (χ2) and Fisher exact tests. P value 
< 0.05 was considered as significant. Statistical analysis 
was performed using SPSS software.
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RESULTS

A total of 52 newborn infants with CHD were included 
in the study. Patients were subdivided into 2 groups: 
Group I included 21 neonates with cyanotic CHD and 
group II included 31 neonates with acyanotic CHD. Group 
I comprised 8 patients (38.1%) with transposition of 
great arteries, 6 (28.6%) with Fallot’s tetralogy, 4 (19%) 
diagnosed as total anomalous pulmonary venous 
return and 3 (14.3%) had tricuspid atresia. In group II, 
15 neonates (48.4%) had VSD, 8 (25.8%) had critical 
pulmonary stenosis 5 (16.1%) had isolated PDA, and 
3 (9.7%) were diagnosed as aortic stenosis. We calculated 
the overall severity of illness in newborns with congenital 
heart disease with the use of the Score for Neonatal Acute 
Physiology–Perinatal Extension (SNAP–PE), in which 
scores range from 0 to 70, with higher scores indicating 
a greater severity of illness.[20] The clinical characteristics 
of patients and controls are shown in Table 1.

NAA/Ch mean ratio in three-dimensional MRS averaged 
across all of the brain regions in cyanotic patients 
compared to acyanotic and controls was significantly 
lower. Also, the ratio in acyanotic was significantly lower 
than in controls. These findings were detected across 
all studied segments in both white and gray matters 
[P<0.001, Table 2].

The mean ratio of lactate/Ch metabolite averaged 
across all of the brain regions was significantly higher 
in cyanotic neonates when compared to other studied 
groups (P<0.0001). The same results were observed in 
acyanotic patients when compared to controls. Both 
white and gray matter studied segments showed the 
same results [Table 3].

The mean value of average diffusivity from DTI across 
all the brain regions and both white and gray matter 
segments were significantly higher in cyanotic patients 
when compared to other groups (P<0.0001). The same 
results were observed in acyanotic neonates when 
compared to controls [Table 4].

The mean value of white matter fractional anisotropy 
was significantly lower in cyanotic neonates than in 
both acyanotic neonates and controls either allover 
white matter or as regarding isolated studied segments 
(P<0.001). Acynotic neonates showed the same results 
when compared to controls [Table 5]. Brain injury 
(lactate/Ch ratio) correlated positively with SNAP-
PE rating (r=0.61, P<0.05). No significant correlation 
between brain maturity (NAA/Ch, average diffusivity, 
fractional anisotropy) and SNAP-PE rating was detected.

DISCUSSION

Advances in cardiac surgical techniques and perioperative 
intensive care have led to improved survival in babies 

with congenital heart disease. While it is true that 
the majority of children with CHD today will survive, 
many will have impaired neurodevelopmental outcome 
across a wide spectrum of domains.[21] Advanced 
MRI can quantify brain development and injury at 

Table 1: Characteristics of newborns with 
congenital heart disease and controls
Variable Newborns with 

CHD (n=52)
Controls 
(n=15)

P value

Gestational age 
(weeks)*

38.7 ± 1.2 38.2 ± 1.1 0.14

Cesarean delivery, 
no (%)

13 (25) 2 (13.3) 0.49

Male sex, no (%) 30 (57.7) 10 (66.7) 0.76
Apgar at 5 min* 8.2 ± 1.4 8.5 ± 0.9 0.33
Prenatal diagnosis, 
no (%)

9 (17.3) 0 -

Birth weight (g)* 3241 ± 342.1 3401 ± 232.2 0.04
Length (cm)* 49.7 ± 3.1 51.1 ± 1.7 0.03
Head 
circumference (cm)*

32.9 ± 2.1 34.1 ± 1.8 0.04

Age at MRI (days)* 5.6 ± 2.1 4.7 ± 1.9 0.13
SNAP-PE rating† 29.2 ± 6.1 0 -
Mechanical 
ventilation, no (%)

19 (36.5) 0 -

Inotropic support, 
no (%)

11 (21.1) 0 -

*Values are mean±SD. †Score for neonatal acute physiology-perinatal 
extension (SNAP-PE), CHD: Congenital heart disease, SNAP–PE: Score 
for neonatal acute physiology–perinatal extension

Table 2: NAA/Ch metabolite ratio from three-
dimensional MRS for the studied groups*
Variable Cyanotic 

neonates 
(n=21)

Acyanotic 
neonates 
(n=31)

Controls 
(n=15)

P value

Overall 0.56 ± 0.02 0.61 ± 0.07 0.66 ± 0.02 <0.001
White matter

Frontal 0.55 ± 0.01 0.60 ± 0.08 0.68 ± 0.01 <0.0001
Posterior 0.57 ± 0.01 0.62 ± 0.09 0.66 ± 0.02 <0.0003
Perirolandic 0.54 ± 0.03 0.57 ± 0.05 0.63 ± 0.03 <0.0001
Optic radiation 0.54 ± 0.01 0.59 ± 0.09 0.66 ± 0.01 <0.0001

Gray matter
Basal ganglia 0.57 ± 0.03 0.61 ± 0.07 0.67 ± 0.02 <0.0001
Thalamus 0.54 ± 0.04 0.62 ± 0.03 0.68 ± 0.05 <0.0001
Calcarine region 0.60 ± 0.01 0.64 ± 0.03 0.67 ± 0.01 <0.0001

*Values are mean±SD, NAA/Ch:N-acetylaspartate/choline

Table 3: Lactate/Ch metabolite ratio from three-
dimensional MRS for the studied groups*
Variable Cyanotic 

neonates 
(n=21)

Acyanotic 
neonates 
(n=31)

Controls 
(n=15)

P value

Overall 0.19 ± 0.06 0.16 ± 0.03 0.08 ± 0.03 <0.0001
White matter

Frontal 0.20 ± 0.01 0.17 ± 0.03 0.08 ± 0.03 <0.0001
Posterior 0.23 ± 0.09 0.18 ± 0.01 0.08 ± 0.02 <0.0001
Perirolandic 0.21 ± 0.06 0.17 ± 0.05 0.08 ± 0.03 <0.0001
Optic radiation 0.19 ± 0.05 0.16 ± 0.03 0.08 ± 0.02 <0.0001

Gray matter
Basal ganglia 0.18 ± 0.07 0.14 ± 0.05 0.08 ± 0.04 <0.0001
Thalamus 0.19 ± 0.07 0.16 ± 0.01 0.08 ± 0.03 <0.0001
Calcarine region 0.17 ± 0.09 0.13 ± 0.01 0.08 ± 0.02 <0.0001

*Values are mean ± SD
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a time when intervention for brain protection may 
be possible, allowing for incorporation of these data 
into the development and assessment of new clinical 
interventions for this population. The discovery of 
abnormal brain microstructure and metabolism shortly 
after birth in newborns with congenital heart disease is 
consistent with mounting evidence that these newborns 
have impaired brain development in utero, possibly 
related to impaired cerebral oxygen and substrate 
delivery prenatally.[22,23] Information regarding brain 
maturation may be important in considering when to 
perform these interventions.[24]

In the present study, newborn infants with CHD had brain 
abnormalities as evidenced by altered brain metabolism 
and microstructure even in the absence of visible injury 
on MRI and in uninvolved regions. MRSI showed that 
the mean ratio of NAA/Ch, across all of brain regions 
was significantly lower in neonates with cyanotic and 
acyanotic CHD compared to the controls. However, the 
mean ration of lactate/Ch across all brain regions was 
significantly higher. These findings are consistent with 
that reported by previous studies.[25,26]

As the brain develops, membranes in neuronal and 
glial cells usually develop with more barriers to water 
diffusing through tissues, which means that diffusivity 
decreases with maturity.[27] In the current study, the 

mean value of average diffusivity across all brain 
regions was significantly higher in neonates with CHD 
than in controls, indicating that less brain maturity 
and development among patients with CHD. Our results 
showed that white-matter fractional anisotropy was 
significantly lower in patients with CHD than in the 
control group. Abnormal brain development and brain 
injury were observed more in neonates with cyanotic 
than those with acyanotic CHD.

Approximately 3% of systemic blood flow returns to the 
left heart without perfusing the systemic vascular bed. In 
cyanotic CHD, this amount may increase up to 30 – 40% of 
the systemic blood flow which causes under perfusion of 
the systemic circulation affecting all organs including the 
brain.[2] In acyanotic CHD, abnormal brain development 
and brain injury may be attributed to decreased systemic 
blood flow and potentially cerebral blood flow.[28] 
Van  Houten and co-workers,[29] reported that newborns 
with coarctation of aorta and ventricular septal defects 
had a high incidence (71%) of cranial ultrasound 
abnormalities. The findings of lower ratios of NAA/
Ch, higher average diffusivity, and lower white-matter 
fractional anisotropy in newborns with congenital heart 
disease are similar to findings in premature newborns 
approximately one month before full term age. This 
similarity to the preterm brain led the authors to suggest 
that infants with CHD have abnormal brain development 
in utero.[12,14] The pattern of white-matter injury in 
premature newborns is attributed to cell populations that 
are vulnerable to ischemia, inflammation, and oxidative 
stress.[30] Though predominant injury to neurons would 
be the expected response to these insults in term 
newborns with congenital heart disease,[31] white-matter 
injury, the pattern of injury that is typical in premature 
newborns, occurs frequently.[4] Our findings suggest 
that white-matter vulnerability in term newborns with 
congenital heart disease is related to impaired brain 
development that is detected shortly after birth. The 
increase in white-matter radial diffusion (perpendicular 
to axon tracts) in newborns with congenital heart disease, 
as in premature newborns, suggests an abnormality of 
cells associated with axons forming white-matter tracts, 
such as oligodendrocyte progenitors or glia.[32]

Newborns with cyanotic and acyanotic CHD have 
evidence of cerebral metabolites (NAA, choline, lactate) 
abnormalities indicating immaturity of their brain, 
together with brain injuries early in their neonatal 
period, and these findings could be significant risk factors 
for later neurodevelopmental impairment.

The total number of patients enrolled in this study was 
small; therefore, further controlled, multicenter studies 
with larger sample sizes should be undertaken.

In the future, fetal management and intervention 
strategies for specific defects may ultimately play a role 

Table 4: Average diffusivity from DTI for the 
studied groups* 
Variable Cyanotic 

neonates 
(n=21)

Acyanotic 
neonates 
(n=31)

Controls 
(n=15)

P value

Overall average 
diffusivity 

1.64 ± 0.06 1.42 ± 0.07 1.16 ± 0.05 <0.0001

White matter
Frontal 1.67 ± 0.07 1.54 ± 0.09 1.36 ± 0.05 <0.0001
Posterior 2.53 ± 0.06 1.47 ± 0.07 1.31 ± 0.07 <0.0001
Perirolandic 1.43 ± 0.08 1.37 ± 0.07 1.28 ± 0.09 <0.0001
Optic radiation 2.49 ±0.07 2.40 ± 0.06 1.29 ± 0.08 <0.0001

Gray matter
Basal ganglia 1.13 ± 0.05 1.09 ± 0.07 1.04 ± 0.01 <0.0001
Thalamus 0.95 ± 0.04 0.88 ± 0.09 0.80 ± 0.01 <0.0001
Calcarine region 1.29 ± 0.06 1.20 ± 0.05 1.1 ± 0.07 <0.0001

*Values are mean ± SD, DTI: Diffusion tensor imaging

Table 5: White matter fractional anisotropy from 
DTI for the studied groups*
Variable Cyanotic 

neonates 
(n=21)

Acyanotic 
neonates 
(n=31)

Controls 
(n=15)

P value

Overall fractional 
anisotropy 

0.13 ± 0.01 0.18 ± 0.08 1.02 ± 0.03 <0.001

White matter
Frontal 0.81 ± 0.07 0.85 ± 0.05 0.89 ± 0.01 <0.001
Posterior 0.11 ± 0.02 0.16 ± 0.04 0.19 ± 0.01 <0.001
Perirolandic 0.15 ± 0.01 0.20 ± 0.05 0.25 ± 0.06 <0.001
Optic radiation 0.18 ± 0.03 0.22 ± 0.05 0.29 ± 0.04 <0.001

*Values are mean ± SD, DTI: Diffusion tensor imaging
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to improve in utero hemodynamics and increase cerebral 
oxygen delivery to enhance brain maturity and improve 
early neurodevelopment.

CONCLUSIONS

Newborn infants with either cyanotic or acyanotic 
congenital heart disease are at high risk of brain injury 
and impaired brain maturity. Early identification of 
infants at risk permits the initiation of early intervention 
programs to enhance the outcome of survivors. The 
state of brain maturation and the pattern of brain injury 
suggest that new and specific neuroprotective strategies 
may be needed in this population. Larger, controlled 
studies are warranted.
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