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Background: Radiomics can provide quantitative features from medical imaging that can
be correlated to clinical endpoints. The challenges relevant to robustness of radiomics
features have been analyzed by many researchers, as it seems to be influenced by
acquisition and reconstruction protocols, as well as by the segmentation of the region of
interest (ROI). Prostate cancer (PCa) represents a difficult playground for this technique,
due to discrepancies in the identification of the cancer lesion and the heterogeneity of the
acquisition protocols. The aim of this study was to investigate the reliability of radiomics in
PCa magnetic resonance imaging (MRI).

Methods: A homogeneous cohort of patients with a PSA rise that underwent
multiparametric MRI imaging of the prostate before biopsy was tested in this study. All
the patients were acquired with the same MRI scanner, with a standardized protocol. The
identification and the contouring of the region of interest (ROI) of an MRI suspicious cancer
lesion were done by two radiologists with great experience in prostate cancer (>10 years).
After the segmentation, the texture features were extracted with LIFEx. Texture features
were then tested with intraclass coefficient correlation (ICC) analysis to analyze the
reliability of the segmentation.

Results: Forty-four consecutive patients were included in the present analysis. In 26
patients (59.1%), the prostate biopsy confirmed the presence of prostate cancer, which
was scored as Gleason 6 in 6 patients (13.6%), Gleason 3 + 4 in 8 patients (18.2%), and
Gleason 4 + 3 in 12 patients (27.3%). The reliability analysis conversely showed poor
reliability in the majority of the MRI acquisition (61% in T2, 89% in DWI50, 44% in DWI400,
and 83% in DWI1,500), with ADC acquisition only showing better reliability (poor reliability
in only 33% of the texture features).

Conclusions: The low ratio of reliability in a monoinstitutional homogeneous cohort
represents a significant alarm bell for the application of MRI radiomics in the field of
prostate cancer. More work is needed in a clinical setting to further study the potential of
MRI radiomics in prostate cancer.
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BACKGROUND

Prostate cancer (PCa) is the most frequent male malignancy with
1.4 million new diagnoses per year worldwide (1), and it
represents the sixth leading cause of cancer death in men (2).

A pivotal role in clinical workup for PCa patients is played by
pathology through prostate biopsy (3, 4) and the Gleason score
assessment. The importance of tissue examination was recently
proven when, among the other prognostic factors, tumor
heterogeneity defined through genomic analyses showed to
directly impact on overall survival and cancer control (5–8).
Today, through biopsy and molecular assays, we can assess lesion
molecular pattern that is more and more important given that
PCa may show through several clinical scenarios. In fact, the
clinical presentation of prostate cancer can range from a slow,
localized, and indolent disease to a rapidly evolving lethal
metastatic disease (9).

Adopting radiomics as an available and cost-effective tool,
longitudinal monitoring as well as whole tumor examination is
possible (e.g., to assist diagnostic random biopsies when sampling
errors are likely to occur, due to intratumoral heterogeneity). The
widespread use of medical imaging and the increasingly unleashed
potential of radiomic features (RF) have made non-invasive
examination as important as the invasive one (which still
remains the gold standard to get a proper diagnosis of
malignancy). Given its current role, radiomics, as a quantitative
data extraction method, has received high expectations to become
the new frontier of precision medicine and clinical imaging. With
large image datasets and a “population-imaging” approach, RF
may also be used to discover previously unknown markers and
pattern of disease evolution, progression, and treatment response
(10–13). Because of the discrepancies in identifying cancer lesions
radiographically and within the various acquisition protocols, PCa
represents a difficult playground for radiomics although RF could
be truly helpful in many fields. For instance, radiomics could be
applied for tumor localization and detection, as well as for
prediction of prognosis, esteemed for a successful treatment (14,
15), or it could be used with follow-up imaging and combined with
preintervention data to stratify the risk of patients for a
personalized medicine approach.

The aim of this study was to investigate the reliability of
radiomics, focusing on the robustness of radiomic features, in
prostate cancer detection.
METHODS

Population
For the present study, we retrospectively evaluated a
homogeneous cohort of consecutive patients with a PSA rise
that underwent multiparametric MRI imaging of the prostate
before biopsy in a defined time period from July 2017 to March
2019. All the patients subsequently underwent a random prostate
biopsy and the presence of prostate cancer, as well as the Gleason
score, was retrospectively collected.
Frontiers in Oncology | www.frontiersin.org 2
Magnetic Resonance Imaging
Technical Protocol
Every patient underwent multiparametric MRI (mpMRI) of the
prostate. The MRI equipment and imaging protocols were made
as described in the Prostate Imaging–Reporting and Data System
(PI-RADS) version 2.1. MRI was performed on a 1.5-T scanner
(MAGNETOM Aera® ; Siemens Healthcare, Erlangen,
Germany), using a dedicated 16-channel phased-array body
coil (Siemens Healthcare). Multiplanar (axial, coronal, and
sagittal) T2-weighted (T2W) turbo spin-echo (Z 263 mm; X
350 mm; Y 350 mm; voxel size 0.6 × 0.6 × 3.5 mm) and diffusion-
weighted MRI (Z 193 mm; X 200 mm; Y 77 mm; voxel size 1.8 ×
1.8 × 3.5 mm) were performed with a single-shot echoplanar
imaging sequence (b-value 50; 800 and 1,500 s/mm2). The image
software automatically calculated apparent diffusion coefficient
(ADC) maps (Z 193 mm; X 200 mm; Y 77 mm; voxel size 1.8 ×
1.8 × 3.5 mm). Dynamic contrast-enhanced (DCE) MRI was
conducted using a 3D axial gradient echo sequence. Acquisitions
were obtained before and after the administration of gadolinium-
based contrast medium (gadobutrol Gadovist® 1.0; Bayer
Schering Pharma AG, Berlin, Germany) using a dose of 0.1
mmol kg at 1 ml s−1, using an automated injector (Ulrich
Medical, Ulm, Germany). After the dynamic series, image
subtraction of the contrast-enhanced images from the images
before the administration of the contrast agent was performed.

Feature Extraction
The identification of an MRI suspicious target lesion was done by
two radiologists with great experience in prostate cancer (>10
years) (see Figure 1).

After the identification, the regions of interest (ROI) were
contoured by the same specialists blinded to each other on all the
slides where the target lesion was visible. Both the segmentation
of the ROI and the extraction of texture features were performed
with the freeware software LIFEx© (16). This commercial
software is able to extract several features coming from the
gray-level histogram, shape, and four matrices of higher order
statistics (GLCM, NGLDM, GLRLM, GLZLM) (see Table 1).

Endpoints and Statistical Analysis
Our data consist of the repetition of measurements of texture
features for each target lesion identified on MRI imaging. As we
want to test the reproducibility and the repeatability of texture
features, with different operators, we decided to use intraclass
coefficient correlation (ICC) as it is recognized as a method that
is independent of the actual scale of measurement and of the size
of the error that is considered acceptable (17).

We scored ICC values less than 0.5 as poor reliability, values
between 0.5 and 0.75 as moderate reliability, values between 0.75
and 0.9 as good reliability, and values greater than 0.90 as
excellent reliability (18–21). ICC estimates and their 95%
confidence intervals were based on a mean rating, absolute
agreement, two-way mixed-effects model.

The distributions of ICC scores across the different classes of
texture features and across the different sequences of mpMRI
(multiparametric MRI) were compared with Friedman’s two-
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way analysis of variance by ranks and with the Wilcoxon
signed-rank test. We considered as statistically significant a
p-value <0.05. All the statistical analysis was calculated using
SPSS statistical package version 23 (SPSS Inc., Chicago,
IL, USA).
RESULTS

Population
Forty-four consecutive patients were included in the present
analysis. In 26 patients (59.1%), the prostate biopsy confirmed
the presence of prostate cancer, which was scored as Gleason 6 in
6 patients (13.6%), Gleason 3 + 4 in 8 patients (18.2%), and
Gleason 4 + 3 in 12 patients (27.3%).

Reliability of Texture Features
The reliability of texture parameters across different MRI
acquisition has shown poor reliability among the two operators
in a significant percentage of patients (see Table 2).

Specifically, ICC was scored as poor in 74% of T2, in 22% of
ADC, in 82% of DWI50, in 54% of DWI400, and in 86% of
DWI1,500 (see Figure 2). The ADC sequences showed scores
with better reliability, with 33% of the texture parameters scored
Frontiers in Oncology | www.frontiersin.org 3
as good and excellent ICC. The median values of ICC were,
respectively, 0.25 ± 0.53 (T2), 0.49 ± 0.77 (ADC), 0.11 ± 0.92
(DWI50), 0.47 ± 0.33 (DWI400), and 0.12 ± 0.93 (DWI1,500).

Correlation of ICC With MRI Sequences
and Radiomics Analysis Subsections
The distribution of ICC across the different subsections of
radiomics analysis in the different MRI sequences was
significantly different in histogram (p: 0.046), GLCM (p: 0.001),
GLRLM (p: 0.014), and GLZLM features (p: 0.004) and was the
same in NGLDM (p: 0.066) and shape features (p: 0.326)
(see Figure 3).

Considering the ADC and the DWI400 sequences as the most
reliable sequences, there were significant differences in the
distribution of ICC in GLCM features (p: 0.018), with no
differences in the other subsections of shape features (p: 0.893),
GLRLM (p: 0.594), NGLDM (p: 0.109), and GLZLM (p: 0.594)
(see Figure 4).
DISCUSSION

Prostate cancer involves tumors with different biological patterns
and characteristics and, consequently, different prognoses. The
FIGURE 1 | Examples of the two segmentation of the two operators. Panels (A–C) represent the examples of segmentation (in burgundy) of the first operator, in the
T2, DWI. and ADC MRI sequences, respectively. Panels (D–F) represent the examples of segmentation (in yellow) of the second operator, in the same sequences,
respectively.
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TABLE 1 | Texture analysis parameters calculated with the LIFEx software and the corresponding description.

Type of radiomics feature Radiomics feature
name

Description

Co-occurrence matrix (GLCM): takes into account the arrangements of pairs of voxels
to extract textural indices

Homogeneity Homogeneity of gray-level voxel pairs
Energy Uniformity of gray-level voxel pairs
Correlation Linear dependency of gray levels in GLCM
Contrast Local variations in the GLCM
Entropy Randomness of gray-level voxel pairs
Dissimilarity Variation of gray-level voxel pairs

Gray-level run length matrix (GLRLM): gives the size of homogeneous runs for each gray
level

SRE (short-run
emphasis)

Distribution of the short homogeneous runs in an
image

LRE (long-run emphasis) Distribution of the long homogeneous runs in an
image

LGRE (low gray-level run
emphasis)

Distribution of the low gray-level runs

HGRE (high gray-level
run emphasis)

Distribution of the high gray-level runs

SRLGE (short-run low
gray-level emphasis)

Distribution of the short homogeneous runs with
low gray levels

SRHGE (short-run high
gray-level emphasis)

Distribution of the short homogeneous runs with
high gray levels

LRLGE (long-run low
gray-level emphasis)

Distribution of the long homogeneous runs with
low gray levels

LRHGE (long-run high
gray-level emphasis)

Distribution of the long homogeneous runs with
high gray levels

GLNUr (gray-level non-
uniformity for run)

Non-uniformity of the gray levels of the
homogeneous runs

RLNU (run-length non-
uniformity)

Length of the homogeneous runs

RP (run percentage) Homogeneity of the homogeneous runs
Neighborhood gray-level different matrix (NGLDM): corresponds to the difference of gray
level between one voxel and its 26 neighborhoods in three dimensions

Coarseness Level of spatial rate of change in intensity
Contrast Intensity difference between neighboring regions
Busyness Spatial frequency of changes in intensity

Gray-level zone length matrix (GLZLM): provides information on the size of
homogeneous zones for each gray level in three dimensions

SZE (short-zone
emphasis)

Distribution of the short homogeneous zones in an
image

LZE (long-zone
emphasis)

Distribution of the long homogeneous zones in an
image

LGZE (low gray-level
zone emphasis)

Distribution of the low gray-level zones

HGZE (high gray-level
zone emphasis)

Distribution of the high gray-level zones

SZLGE (short-zone low
gray-level emphasis)

Distribution of the short homogeneous zones with
low gray levels

SZHGE (short-zone high
gray-level emphasis)

Distribution of the short homogeneous zones with
high gray levels

LZLGE (long-zone low
gray-level emphasis)

Distribution of the long homogeneous zones with
low gray levels

LZHGE (long-zone high
gray-level emphasis)

Distribution of the long homogeneous zones with
high gray levels

GLNUz (gray-level non-
uniformity for zone)

Non-uniformity of the gray levels of the
homogeneous zones

RLNU (zone length non-
uniformity)

Length of the homogeneous runs

ZP (zone percentage) Homogeneity of the homogeneous zones
Indices from sphericity Sphericity Measures how spherical a volume of interest is

Volume (ml or vx) Measures the volume in voxels or milliliter
Surface Measures the surface of the volume of interest
Compacity Measures the degree to which the volume of

interest is compact
Indices from histogram: provides information derived from global histogram analysis Skewness Measures the asymmetry of the gray-level

distribution in the histogram
Kurtosis Measures whether the gray-level distribution is

peaked or flat relative to a normal distribution
Min Measures the minimal value of Hounsfield unit
Max Measures the maximal value of Hounsfield unit

(Continued)
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therapeutic approach is a field of fervent debate especially in
localized stages, with different strategies being adopted (22, 23).

A deeper knowledge of the specific biological pattern is needed
to provide the correct treatment in each PCa patient. Biological
Frontiers in Oncology | www.frontiersin.org 5
and molecular analysis had already been correlated with patterns
of disease, and nowadays, radiomics represents an increasingly
interesting frontier in the oncology field (10, 24). However, there
are still many limitations for the analysis of quantitative
TABLE 1 | Continued

Type of radiomics feature Radiomics feature
name

Description

Mean Measures the mean value of Hounsfield unit
Std Measures the standard deviation of the distribution

of Hounsfield unit histogram
TABLE 2 | Intraclass coefficient correlation (ICC) of the different texture features in the different mrMRI sequences.

Parameter T2 ADC DWI 50 DWI 400 DWI 1,500

HIST_min 0.573 0.658 0.346 0.593 0.113
HIST_mean 0.723 0.637 0.317 0.807 0.127
HIST_std 0.644 0.440 0.070 0.596 0.151
HIST_max 0.749 0.587 0.164 0.675 0.204
HIST_Skewness 0.170 0.499 0.395 0.299 −0.273
HIST_Kurtosis 0.302 0.542 0.299 –0.131 0.397
SHAPE_Volume.ml 0.328 0.106 0.118 0.308 0.87
SHAPE_Volume.vx 0.365 0.313 0.196 0.192 0.111
SHAPE_Sphericity 0.025 0.022 0.067 0.155 −0.310
SHAPE_Surface 0.201 0.736 −1.282 0.524 0.004
SHAPE_Compacity 0.076 0.611 −1.480 0.700 −0.114
GLCM_Homogeneity 0.559 0.920 0.713 0.710 0.841
GLCM_Energy −0.860 0.187 −0.238 0.060 −1.554
GLCM_Contrast 0.601 0.868 0.395 0.684 0.066
GLCM_Correlation 0.286 0.910 0.088 0.728 0.620
GLCM_Entropy_log10 −1.736 0.790 −3.527 0.218 −1.478
GLCM_Entropy_log2 −1.736 0.790 −3.527 0.218 −1.478
GLCM_Dissimilarity 0.630 0.926 0.620 0.741 0.482
GLRLM_SRE 0.378 0.295 0.535 0.717 0.626
GLRLM_LRE 0.374 0.393 0.608 0.571 0.391
GLRLM_LGRE −0.209 −0.245 −0.100 0.076 −0.320
GLRLM_HGRE −0.058 0.801 −1.219 0.189 −2.259
GLRLM_SRLGE −0.201 −0.228 −0.098 0.088 −0.255
GLRLM_SRHGE −0.065 0.807 −0.784 0.143 −1.719
GLRLM_LRLGE −0.247 −0.322 −0.115 0.041 −0.492
GLRLM_LRHGE −0.025 0.771 −0.806 0.594 −5.126
GLRLM_GLNU 0.546 0.347 0.608 0.496 0.015
GLRLM_RLNU 0.310 0.383 0.041 0.102 0.127
GLRLM_RP 0.391 0.379 0.562 0.678 0.639
NGLDM_Coarseness 0.125 0.528 0.515 0.795 0.113
NGLDM_Contrast 0.241 0.101 −0.023 0.170 −0.892
NGLDM_Busyness 0.560 0.137 0.272 0.702 −0.057
GLZLM_SZE 0.513 0.789 0.427 0.863 0.433
GLZLM_LZE 0.257 0.433 0.410 0.952 0.000
GLZLM_LGZE −0.246 −0.120 −0.141 0.101 −0.276
GLZLM_HGZE −0.146 0.827 −0.836 −0.185 −0.816
GLZLM_SZLGE −0.165 0.039 −0.110 0.214 0.345
GLZLM_SZHGE 0.011 0.877 0.535 −0.111 −0.152
GLZLM_LZLGE 0.124 −4.067 0.417 −0.104 −0.011
GLZLM_LZHGE 0.355 0.179 0.106 0.972 0.000
GLZLM_GLNU 0.332 0.481 0.285 0.470 0.284
GLZLM_ZLNU 0.003 0.637 −0.443 0.106 −0.241
GLZLM_ZP 0.669 0.811 0.477 0.916 0.656
Poor reliability (ICC < 0.5) 32 (74%) 22 (51%) 35 (82%) 23 (54%) 37 (86%)
Moderate reliability (ICC 0.5–0.75) 11 (26%) 7 (16%) 8 (18%) 14 (32%) 4 (9%)
Good reliability (ICC 0.75–0.9) 0 11 (26%) 0 3 (7%) 2 (5%)
Excellent reliability (ICC > 0.9) 0 3 (7%) 0 3 (7%) 0
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parameters through dedicated software to enter the routine
diagnostic pipeline, relying on the reproducibility of collected
data. MpMRI is routinely used as part of the diagnostic workup
and staging algorithm in PCa (25). In fact, recent studies suggest
that mpMRI reduces the number of unnecessary prostate biopsies
in patients with PI-RADS score of 3 or more. T2, DWI, and ADC
Frontiers in Oncology | www.frontiersin.org 6
are the most commonly employed sequences assessing PI-RADS
score. ADC could heavily support clinical workflow in decision-
making for patients with PI-RADS score <3 who are considered at
risk for PCa (26, 27).

Thus, the implementation and validation of radiomic features
is seemingly feasible and convenient, to gather more information
FIGURE 3 | The distribution of ICC of radiomics features across the different MRI sequences.
FIGURE 2 | Intraclass coefficient correlation (ICC) distribution of texture features across the different mpMRI imaging acquisitions.
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with limited additional costs as well as avoid invasive diagnostic
procedures (e.g., transrectal gland biopsy).

In radiomics, it is of paramount importance to understand that
most of the features were originally developed for non-medical
imaging and for planar images. In the context of clinical
investigation, the final aim of radiomics is to use texture features
as surrogate biomarkers of different clinical endpoints. Thus,
surrogate biomarkers must be correlated to the endpoint, and at
the same time, their mensuration must be accurate and robust
(28, 29).

Every single process in the workflow of radiomics (image
acquisition and reconstruction, segmentation, feature extraction,
data analysis, model building, and validation) has its own
challenges, and in particular, the challenges relevant to
robustness of radiomics features has been analyzed by many
researchers in recent years (30, 31).

Our study focused on reliability validation of specific radiomic
parameters extracted from mpMRI in a diagnostic setting, while
recently published reports in the application of radiomics at a
therapeutic level investigated radiomics feature reliability carrying
out a thorough assessment of repeatability and reproducibility of
MRI radiomics features in MRI-guided radiotherapy (MRgRT) in
PCa (32). Similar to our results, in this study, the differences
originating from MRI acquisition were notably described as the
most impactful on reliability (33), and only a few features showed
good to excellent repeatability and reproducibility coefficients,
although such identification is still insufficient for a reliable
radiomics study (32). The observed reliability is poor also in
other studies, in accordance with our results (34, 35).
Frontiers in Oncology | www.frontiersin.org 7
Detection of PCa lesions using radiomics feature extracted
from mpMRI (36) images and an objective increase in sensitivity
and specificity in detecting PCa (37) with computer-aided
diagnosis tools are already possible although non-negligible
uncertainties may occur. Moreover, in Gleason and PI-RADS
prediction, texture-based features, geometric parameters, and
contrast and homogeneity GLCM features in different studies
have shown radiomics-augmented capability to predict GS. The
future uses of radiomics could involve aftertreatment evaluation
of biochemical recurrence risk, to better stratify patients after
radical prostatectomy, therefore helping the clinician to adapt
postoperative management.

Despite its potential, the low reproducibility of radiomics
approaches represents a significant hurdle to enter the routine
clinical workup of PCa.

Homogeneous protocols based on radiomics are yet to be
developed in both diagnostic and therapeutic settings. The poor
reliability of datasets does not allow comparisons between
cohorts of different patients.

The causes of low reliability are several and complex to analyze.
A fundamental role is played by the experience of the operator, but
given the relatively recent development of radiomics, it is rare to
identify operators with significant and consistent experience.

Furthermore, the diagnostic assessment of PCa through
mpMRI has always been challenging far earlier than the
radiomics approach, due to the difficulties and heterogeneity in
prostate cancer segmentation and PI-RADS score assignment
(38–40). To date, no guidelines are available for contouring
prostate cancer inside the gland, as visible on mpMRI, and the
FIGURE 4 | The distribution of ICC across the different subclasses of radiomics features in the different MRI sequences. * are the outliers.
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analysis of the contourings of the multicenter phase III FLAME
trial showed significant different interpretations in tumor
contouring between institutes (40).

In this regard, sharing images, radiomics feature, and contouring
guidelines and the implications derived from them represent an
unmet need that must be solved in the near future. Further studies
on genomics feature are needed to face the poor reliability issue,
empowering the role of radiomics applications for PCa.
LIMITATIONS

We recognize many limitations in our work. Firstly, we
performed a retrospective analysis of a single cohort of
homogeneous patients with suspicious prostate cancer. At the
same time, the number of analyzed patients is low.
CONCLUSIONS

In our study, we demonstrated that the reliability of MRI features
in prostate cancer is extremely low. These findings reinforce the
pivotal importance of preclinical studies before applying
radiomics in clinical practice.
Frontiers in Oncology | www.frontiersin.org 8
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