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Abstract: Controlling metastasis is an important strategy in cancer treatment. Nanotechnology and
nucleic acids with novel modalities are promising regulators of cancer metastasis. We aimed to develop
a small interfering RNA (siRNA) systemic delivery and anti-metastasis system using nanotechnology.
We previously reported that polyethylene glycol-polycaprolactone (PEG-PCL) and functional peptide
CH2R4H2C nano-micelle (MPEG-PCL-CH2R4H2C) has high siRNA silencing effects, indicated by
increased drug accumulation in tumor-bearing mice, and has an anti-tumor effect on solid tumors upon
systemic injection. In this study, we aimed to apply our micelles to inhibit metastasis and evaluated
the inhibitory effect of anti-RelA siRNA (siRelA), which is a subunit of NF-κB conjugated with
MPEG-PCL-CH2R4H2C, via systemic administration. We report that siRelA/MPEG-PCL-CH2R4H2C
had a high cellular uptake and suppressed the migration/invasion of cells in B16F10 cells without
toxicity. In addition, in a lung metastasis mouse model using intravenous administration of B16F10 cells
treated with siRelA/MPEG-PCL-CH2R4H2C, the number of lung nodules in lung tissue significantly
decreased compared to naked siRelA and siControl/MPEG-PCL-CH2R4H2C micelle treatments.
Hence, we show that RelA expression can reduce cancer metastasis, and MPEG-PCL-CH2R4H2C is
an effective siRNA carrier for anti-metastasis cancer therapies.

Keywords: polymer nano-micelles; siRNA; systemic delivery; metastasis; melanoma; NF-κB; RelA;
functional peptide

1. Introduction

Cancer causes millions of deaths worldwide, and the metastasis and invasion abilities of cancer
cells especially increases the number and pathological condition of cancer patients [1]. Lung metastases
are found in 20–54% of deceased cancer patients [2]. The metastatic spread of tumor cells from the
primary site to other organs via blood or lymph vessels causes high mortality rates and remains a serious
challenge for cancer treatment [3–5]. Organs prone to metastasis include the lung, liver, and brain.
While there have been good advances in clinical non-invasive modalities such as immunotherapies like
Nivolumab (Opdivo, Ono Pharmaceutical Co., Ltd., Osaka, Japan) or Ipilimumab (Yervoy, Bristol-Myers
Squibb, New York, NY, USA), and other antibody-based medicines, the therapeutic efficacy and patient
compatibility are quite limited and with some severe side effects [6,7]. Therefore, the epochal method of
controlling metastasis has been the focus of biological and clinical cancer research [7–9] to develop new
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strategies that are urgently needed. Indeed, the low efficacy of current therapies on cancer metastasis
is the result of poor drug delivery of current therapeutic agents to metastatic sites [10,11].

Breakthrough nanotherapeutics such as liposome or polymeric micelles hold great promise
for improving the amount of the anti-cancer drugs that can reach metastatic sites by enhancing
drug permeability and retention (EPR) [12–15]. A liposomal formulation (Onivyde: Merrimack
Pharmaceuticals, Cambridge, MA, USA) for the treatment of metastatic pancreatic cancer was approved
by the Food and Drug Association (FDA) in 2015 [16]. It is an irinotecan encapsulated liposome, which
improves the pharmacokinetics by increasing drug encapsulation and loading efficiency, prolonging
circulation time, rerouting the drug from sites of toxicity such as the gastrointestinal tract, and increasing
drug accumulation via the EPR effect without toxicity [17,18].

Nucleic acids are great anti-cancer treatment candidates with a novel modality that can target
molecules such as mRNA for cancer treatment. Although it is not part of the oncology field,
ONPATTRO® (Patisiran; Alnylam Pharmaceuticals Inc., Cambridge, MA, USA) was approved by the
FDA in August 2018 as a novel combination of lipid nanoparticles and nucleic acid (small interfering
RNA; siRNA) [19]. Therefore, expectations for nanotherapeutics are increasing.

Methoxy-polyethylene glycol combined polycaprolactone conjugated with a cytoplasm-responsive
peptide CH2R4H2C (MPEG-PCL-CH2R4H2C) has been previously confirmed to form micelles with
a particle size of 100 nm or less and has high drug accumulation in tumor-bearing mice [20,21].
Furthermore, the suppression of solid tumor growth by intravenous administration using siRNA against
vascular endothelial cell growth factor (VEGF) with MPEG-PCL-CH2R4H2C was also reported [20].
Hence, we aimed to trial our developed polymeric micelle as a novel nanocarrier for siRNA systemic
delivery that can both control pharmacokinetics and intracellular trafficking using the di-block
copolymer, MPEG-PCL-CH2R4H2C.

Hematogenous metastasis occurs when cancer cells separate from the primary tumor site, invade
surrounding tissues like inter-stroma and migrate through blood vessels, and then adhere to vascular
endothelial cells. Initial adhesion occurs by cellular rolling on vascular endothelial cells and then
adhere to those cells by integrin, intercellular cell adhesion molecule (ICAM) and vascular cell adhesion
molecule (VCAM) [22]. In this study, we focused on RelA as a target molecule for inhibiting cancer
metastasis because it is a subunit of NF-κB that was recently reported to be involved in cancer metastasis,
especially migration and invasion [23,24]. In particular, we focused on suppressing migration to
anti-metastasis because metastasis would not spread without migration. NF-κB consists of two
subunits that form homo- or hetero-dimers, with the most typical complex consisting of p50 and RelA
(p65). RelA is normally present in the cytoplasm and exists as a complex with IκB, but in response to
inflammatory signals from extracellular cytokines, IκB is phosphorylated and NF-κB is translocated
into the nucleus by a nuclear translocation signal, where it exhibits transcriptional activity and controls
the expression of cell adhesion molecules E-selectin, ICAM, and VCAM [25,26].

NF-κB is a central inflammatory mediator and regulates multiple proinflammatory genes in
allergic diseases [27,28]. Recent studies demonstrate that RelA is also involved in tumor angiogenesis
in various malignances. Increases in NF-κB activity due to cancer or inflammation can also increase
production of proteins associated in neovascularization of tumor blood vessels such as VEGF, monocyte
chemoattractant factor-1, interleukin-8, and cyclooxygenase-2. Moreover, the suppression of NF-κB
activity is thought to be anti-growth and anti-metastatic for some cancers. Indeed, the inhibition
of RelA expression with RelA siRNA enhanced in vitro and in vivo colon cancer cell responses to
irinotecan [29,30]. These results indicate that RelA could offer another potential therapeutic strategy
for controlling metastasis [31].

The inhibitory efficiency of RelA with CH2R4H2C for treatment of allergy such as atopic dermatitis
or collagen-induced arthritis mice was previously reported [21,32–35]. The carrier with CH2R4H2C
is a revolutionary system that exhibits high siRNA delivery ability to inflammatory sites and has
a remarkable RelA silencing effect. Based on these findings, we hypothesized that siRelA with
MPEG-PCL-CH2R4H2C could inhibit cell-adhesion between migrating cancer cells and vascular
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endothelial cells by inhibiting the expression of RelA through gene silencing with siRelA, and
therefore improve tumor accumulation and the silencing effect of MPEG-PCL-CH2R4H2C through
systemic administration.

In this study, we evaluated the effect of siRelA/MPEG-PCL-CH2R4H2C on the metastatic potential
of the highly metastatic malignant tumor cells line, murine melanoma B16F10 in an in vitro system.
Moreover, we investigated whether siRelA/MPEG-PCL-CH2R4H2C administration, which is the
nano-system used to transfect siRNA into cells in situ and inhibited the pulmonary metastasis of
B16F10 melanoma after intravenous injection in mice.

2. Materials and Methods

2.1. Materials, Cells, and Mice

The anti-RelA siRNA (siRelA; sense: 5’-GGUGCAGAAAGAAGACAUU-3’),
Control siRNA (siControl; 5’-AUCCGCGCGAUAGUACGUA-3’) and Fluorescence
6-carboxyfluorescein-aminohexylphosphoramidite (FAM)-labeled siRNA (FAM-siRNA; sense:
5’-6FAM-AUCCGCGCGAUAGUACGUA-3’) were purchased from Nippon Gene Co., Ltd.
(Tokyo, Japan). Methoxy polyethylene glycol (Mn: 2000)-polycaprolactone (Mn: 2000)
(MPEG-PCL) was obtain from Taki Chemical Co., Ltd., Hyogo, Japan), CH2R4H2C peptide
(Cys-His-His-Arg-Arg-Arg-Arg-His-His-Cys) was obtained from BEX Co., Ltd. (Tokyo, Japan).
Dimethyl formamide (FUJIFILM Wako Pure Chemical Corporation, Osako, Japan), N-(3-Dimethyl
aminopropyl)-N’-ethyl carbodiimide 4-Dimethyl aminopyridine (Sigma-Aldrich Co., Milwaukee, WI,
USA) were used for synthesis of MPEG-CH2R4H2C. The mice melanoma B16F10 cell line and rat
retinal pigment epithelial RPE-J cell lines were purchased from American Type Culture Collection
(Manassas, VA, USA). Dulbecco’s modified Eagle medium (DMEM), certified fetal bovine serum
(FBS), penicillin/streptomycin stock solutions, 0.25% Trypsin-EDTA, and minimum essential medium
non-essential amino acid solution (NEAA) were purchased from Thermo Fisher Scientific, Waltham,
MA, USA. Lipotrust™ (Hokkaido System Science, Sapporo, Japan), cell counting kit-8 (CCK-8, Dojindo
Laboratories, Kumamoto, Japan) solution and dimethyl sulfoxide (DMSO; Wako Pure Chemical
Corporation, Osaka, Japan) were used for the cellular uptake and cytotoxicity assays in B16F10
cells. Additionally, Mitomycin C (Sigma-Aldrich Co., Milwaukee, WI, USA), and Bouin’s solution
(Sigma-Aldrich Co., Milwaukee, WI, USA) were used. All animal experiments were carried out in
accordance with a protocol approved by the Animal Care and Ethics Committee of Tokyo University
of Pharmacy and Life Sciences. The project identification code was P14-03 (8 May 2014), P15-67
(7 May 2015). The mice were housed under the standard conditions, temperature was 23.5 ± 1 ◦C,
humidity was 55% ± 5%, and light/dark-cycles every 12 h and food and water were supplied ad libitum.

2.2. Synthesis of CH2R4H2C Conjugated to MPEG-PCL

The MPEG-PCL-CH2R4H2C was synthesized and the conjugation reaction was confirmed as
previously described [20,21]. The ratio and volume between MPEG-PCL and CH2R4H2C were
at optimal values after careful consideration. MPEG-PCL and CH2R4H2C were dissolved in
dimethylformamide (DMF) and then water soluble carbodiimide hydrochloride (WSCI) were added
to this mixture and allowed to react at room temperature for 24 h to cause the Cys-COOH on the
C-terminus of CH2R4H2C and the terminal –OH group on MPEG-PCL to form an ester bond. The
reaction solution was transferred to a dialysis membrane suitable for use with organic solvents
(Spectra/Por® Dialysis Membranes, MWCO: 3500) and dialyzed against distilled water for 3 days.
Afterwards, the product was lyophilized to yield MPEG-PCL-CH2R4H2C.

2.3. Preparation of siRNA/MPEG-PCL-CH2R4H2C

First, each siRNA and MPEG-PCL-CH2R4H2C solution was prepared using RNase free water.
Each solution was mixed at a nitrogen/phosphorous (N/P) molar ratio of 5, 10, 15, 20 and 30, and
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incubated for 30 min at 20 ± 5 ◦C before use. The siRNA/MPEG-PCL-CH2R4H2C complexes were
mixed in equal quantities.

The physical properties (particle size, zeta (Z) potential, and poly-dispersity index (PDI) of
siRNA/MPEG-PCL-CH2R4H2C micelles were measured with a Zetasizer Nano (Malvern P analytical,
Malvern, UK). The particle sizes were obtained by measuring the average particle size using the
dynamic light scattering method and calculating the volume average size as the particle size distribution.
Z potential was measured by electrophoretic light scattering. The results indicate the average data of
three experiments.

2.4. Evaluation of siRNA Cellular Uptake Ability of siRNA/MPEG-PCL-CH2R4H2C

The B16F10 cells were pre-cultured to about 80% confluence in DMEM containing 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin before in vitro transfection. Then, 2 × 105

B16F10 cells were seeded into 6-well culture plates and cultured at 37 ◦C in a humidified 5%
CO2 atmosphere. After 24 h incubation in DMEM containing 10% FBS, the cells were washed
with phosphate buffered saline (PBS) and fresh DMEM was added before transfection with naked
FAM-siRNA, or siRNA/MPEG-PCL-CH2R4H2C (N/P 5, 10, 20, and 30). The N/P ratio is the molar ratio
of arginine-derived N in the CH2R4H2C peptide to the phosphate group of siRNAs, and the cationic
charge increases with the N/P ratio. The siRNA concentration used for transfection was 1 µg/100 µL.
After 24 h incubation, the culture medium was aspirated, and the cells were washed with PBS. Cells
were detached by pipetting and resuspended in PBS and then analyzed using flow cytometry (BD
FACS Canto, Maywood, NJ, USA). Cell number was plotted relative to fluorescence intensity in the
control of the target cell group; this indicated that the range including 95% of the cells was defined as
the P1 region (10,000 cells) and the range in which the fluorescence intensity was stronger was defined
as the P2 region. Thus, the percentage of cells in the P2 region was used as an indicator of siRNA
uptake into the cells (control group was set to 5% in the P2 region). Additionally, the fluorescence
intensity per cell was calculated by the average value of fluorescence intensity in the P2 region as the
cellular uptake efficiency.

2.5. Evaluation of the Cytotoxicity of MPEG-PCL-CH2R4H2C on Normal Cells

RPE-J cells (6 × 103 cells/well) in 100 µL DMEM containing 10% FBS and 1% NEAA were seeded
into 96-well plates and incubated at 37 ◦C in a humidified 5% CO2 atmosphere. After 24 h, the cells were
washed with PBS and transfected with naked-siControl and siControl/MPEG-PCL-CH2R4H2C (N/P 5,
10, 15, 20, or 30; 100 nM of siRNA). After transfection for 4 h, CCK-8 solution (Dojindo laboratories,
Kumamoto, Japan) was added to each well and the cells were incubated for an additional 3 h. The
absorbance of the cells in each well was measured at 450 nm using a microplate reader (Varioskan
Flash 2.4, Thermo Fisher Scientific., MA, USA). The absorbance of the control cells was set as the 100%
viability standard.

2.6. Cytocidal Assay for siRelA/MPEG-PCL-CH2R4H2C

B16F10 cells (6 × 103 cells/well) in 100 µL DMEM containing 10% FBS were seeded into 96-well
plates and incubated at 37 ◦C in a humidified 5% CO2 atmosphere. After 24 h, the cells were washed
with PBS and transfected with siControl/MPEG-PCL-CH2R4H2C (N/P ratio; 10, siRNA concentration;
10, 50, 100 and 300 nM). After 4 h of transfection and 20 h incubation at 37 ◦C in a humidified 5% CO2

atmosphere, the same method for the cytotoxicity assay described in Section 2.5 was followed.

2.7. Wound Healing Migration Assay

B16F10 cells (4 × 105 cells/well) suspended in 2 mL DMEM containing 10% FBS were seeded
into 6-well plates and incubated at 37 ◦C in a humidified 5% CO2 atmosphere. After 24 h,
Mitomycin C (25 µg/mL) was added to the cells and incubated for 30 min [36]. After washing with
DMEM, lines (width: 2 mm) were drawn through a confluent monolayer of cells and naked-siRelA,
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siControl/MPEG-PCL-CH2R4H2C and siRelA/MPEG-PCL-CH2R4H2C (N/P ratio 10) were transfected
for 4 h at an siRNA concentration of 100 nM. The medium was aspirated and 2 mL DMEM was
added to each well before the cells were incubated for 68 h. The cells were washed and fixed by 4%
paraformaldehyde for 10 min. These samples of scratched area were observed by an optimal
microscope (BZ8000, KEYENCE, Osaka, Japan) and analyzed by ImageJ software version 1.45
(https://imagej.nih.gov/ij/index.html).

2.8. In Vivo Experimental Pulmonary Metastasis Assay

Six-week-old male C57BL/6 mice were divided into three groups (n = 4 for each group) and
B16F10 cells (1.5 × 105 cells/100 µL) were injected into the tail veins using a 27G needle. The
mice were injected with saline (Control), naked-siRelA, siControl/MPEG-PCL-CH2R4H2C and
siRelA/MPEG-PCL-CH2R4H2C (N/P ratio: 10, siRNA Dose: 20 µg) on days 0, 1, 2, 4, 6, 8 and
10. The mice were sacrificed on day 14 and the lungs were harvested. Lungs were fixed in Bouin’s
solution 30 min and the number of B16F10 nodules on the surface of the front and back of the lungs
were determined by visual inspection and imaged for further analysis.

2.9. Statistical Analysis

The statistical analysis was performed by BellCurve for Excel (Social Survey Research Information
Co., Ltd., Tokyo, Japan). The results of the experiments are represented as the mean± S.D. Comparisons
between multiple treatments were made using analysis of variance (ANOVA), followed by Dunnett’s
test. Group differences were considered statistically significant when p < 0.05. Statistical significance
was defined as * p < 0.05 and ** p < 0.01.

3. Results

3.1. Physical Properties, Cellular Uptake and Cytotoxicity of siRNA/MPEG-PCL-CH2R4H2C

The physical properties of siRNA/MPEG-PCL-CH2R4H2C were demonstrated to have a particle
size of approximately 50 nm and were positively charged at an N/P ratio of 10, as in shown Table 1.
When the N/P ratio increased, the particle size decreased and the Z-potential increased. PDI, which is
an indication of their quality with respect to size distribution was approximately 0.4 in any N/P ratio.

Table 1. The mean diameter and zeta potential of siRelA/MPEG-PCL-CH2R4H2C.

N/P Ratio Particle Size (nm) Zeta Potential (mV) PDI

5 64.5 ± 2.7 −16.7 ± 3.8 0.469 ± 0.055
10 51.2 ± 1.3 +5.0 ± 0.5 0.473 ± 0.073
15 53.0 ± 5.5 +13.3 ± 1.3 0.427 ± 0.014
20 49.8 ± 2.3 +18.6 ± 1.9 0.431 ± 0.011

The cellular uptake ability of siRNA/MPEG-PCL-CH2R4H2C micelles by B16F10 cells was
evaluated with flow cytometry as shown in Figure 1A. The siRNA cellular uptake percentage (%)
indicated a high uptake ability that was above 90% compared to naked siRNA groups. We also
confirmed that MPEG-PCL-CH2R4H2C micelles with an N/P ratio of five or more had significantly
improved cellular uptake efficiency. In addition, the fluorescence intensity per cell increased in relation
to the N/P ratio; the fluorescence of micelles with an N/P five was not much different from naked
siRNA, whereas those with an N/P 10 had about five times the fluorescence of naked siRNA as shown
in Figure 1B. Micelles with an N/P 20 had an uptake efficiency that was more than 10 times that of
naked siRNA. Therefore, the fluorescence intensity per cell increased as the N/P ratio increased and
an increase in the N/P ratio indicated an increase in the ratio of MPEG-PCL-CH2R4H2C to siRNA
addition, Figure 1C shows the cytotoxicity of MPEG-PCL-CH2R4H2C itself using siControl with the
CCK-8 assay, which is a sensitive colorimetric assay method for the determination of cell viability.

https://imagej.nih.gov/ij/index.html
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The rat retinal pigment epithelial cell, RPE-J, was used as the normal cell to evaluate cytotoxicity.
Additionally, DMSO was used as the negative control because of its high cytotoxicity. As a result, the
high cytotoxicity of DMSO, and Lipotrust® which is a commercially available transfection reagent,
was demonstrated confirmed compared to the control group. On the other hand, the cytotoxicity of
MPEG-PCL-CH2R4H2C itself was never observed at any N/P ratio in normal cells.
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Figure 1. Cellular uptake ability and cytotoxicity of the siRNA/MPEG-PCL-CH2R4H2C. (A) siRNA
cellular uptake (%) compared to the control group. (B) Fluorescent intensity per cell of FAM-siRNA in
B16F10 cells. Naked FAM-siRNA or FAM-siRNA with MPEG-PCL-CH2R4H2C (N/P ratio; 5, 10, 20
and 30, siRNA concentration: 1 µg/100 µL) was transfected into B16F10 cells for 24 h and each sample
was measured by flow cytometry. Each bar represents the mean ± S.D. (n = 3) * p > 0.05, ** p > 0.01 vs.
naked siRNA group. (C) Cytotoxicity of MPEG-PCL-CH2R4H2C in RPE-J cells. Naked siControl and
siControl with MPEG-PCL-CH2R4H2C (N/P ratio: 5, 10, 15, 20 and 30, siRNA concentration: 100 nM)
were transfected into B16F10 cells for 4 h without serum. Cell viability was evaluated with a CCK-8
assay. The control value was taken as 100% and calculated as a relative value. Each bar represents the
mean ± S.D. (n = 5–8). ** p > 0.01 vs. Control group.
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3.2. Cell Migration Suppression of siRelA/MPEG-PCL-CH2R4H2C

To investigate the effect of siRelA/MPEG-PCL-CH2R4H2C on metastatic activity, the migration
activity of B16F10 cells was assessed at 0 and 72 h with a wound healing assay. This method can
semi-quantitatively measure cell migration for specifically evaluating cell migration in an in vitro
monolayer cell culture system. If cells can migrate after wounding, the area scratched and treated with
mitomycin-C is covered with cells over time; whereas if cell migration is suppressed, the treated area is
not repopulated. Besides, the N/P ratio of siRNA/MPEG-PCL-CH2R4H2C was selected as 10 based
on the above results. As the N/P ratio increases, the amount of MPEG-PCL-CH2R4H2C increases.
It was thought the N/P 10 was as little a carrier amount as possible while still showing the function.
Moreover, we have previously confirmed that the siRNA/MPEG-PCL-CH2R4H2C could be condensed
at N/P ratios above 5 [20,21].

Figure 2 shows the wound area, 72 h after wounding, was imaged and analyzed using
ImageJ. It showed that in the control, naked siRelA, and siControl/MPEG-PCL-CH2R4H2C, the
wounded area width was reduced from the initial wound width. Conversely, cells transformed with
siRelA/MPEG-PCL-CH2R4H2C clearly showed no cell migration into the wound area. These results
indicate that siRelA/MPEG-PCL-CH2R4H2C had anti-migration activity.
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Figure 2. In vitro wound healing assay of B16F10 cells expressing siRelA/MPEG-PCL-CH2R4H2C.
B16F10 cells were seeded onto 6-well plates and incubated for 24 h. Mitomycin C (25 µg/mL) was
added to the cultures and lines were scratched (width: 2 mm) into the confluent cell monolayer for 30 h.
Naked siRelA, siControl/MPEG-PCL-CH2R4H2C, and siRelA/MPEG-PCL-CH2R4H2C (N/P ratio; 10,
siRNA concentration; 100 nM). After 72 h, these samples were fixed in 4% paraformaldehyde for 10
min, observed with optical microscope and analyzed with ImageJ software. Upper panel: bright field
image; Bottom panel: example of a representative image in ImageJ used for analysis.

3.3. Cytocidal Activities of siRelA/MPEG-PCL-CH2R4H2C

Figure 3 shows the cytocidal activity of siRelA/MPEG-PCL-CH2R4H2C in B16F10 cells evaluated
with a CCK-8 assay. Unlike in the cytotoxicity evaluation, the difference between the results of the
cytotoxicity (siControl) and cytocidal activity (siRelA) experiments indicated the effect of siRelA because
siRelA was used for this cytocidal evaluation. The cell viability of siRelA/MPEG-PCL-CH2R4H2C
micelles did not decrease compared to the control, after 24 h even at 300 nM, which was a high
concentration. These results indicate that siRelA/MPEG-PCL-CH2R4H2C had anti-migration activity
without cytocidal activity.
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3.4. In Vivo Anti-Metastasis Activity by Intravenous Administration of siRelA/MPEG-PCL-CH2R4H2C

To explore the anti-metastatic effects of our siRNA delivery system, a lung metastasis model was
prepared by intravenously administering B16F10 cells to six-week-old male C57BL/6 mice and siRNA
agents by seven times, and then the number of lung metastasis nodules was measured on the 14th
day after treatment (Figure 4). This model is a well-established metastasis model that spontaneously
develops lung metastasis after intravenous administration of B16F10 cells [37–40]. In addition, the
survival rate of animals in this experimental was 100% and there were no weakened mice; thus, this
metastasis mice model was an appropriate method.

As shown in Figure 4, several lung nodules (e.g., black colonies) of B16F10 were observed on
the lung surface and inside in the untreated, siControl/MPEG-PCL-CH2R4H2C and naked siRelA
groups. However, metastatic nodules were significantly reduced in lungs from mice treated with
seven systemic injections of siRelA/MPEG-PCL-CH2R4H2C. Moreover, the number of nodules in mice
treated with siRelA/MPEG-PCL-CH2R4H2C was fewer than the other treatment groups.
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Figure 4. Anti-metastatic effects of intravenous administration of B16F10 cells expressing
siRelA/MPEG-PCL-CH2R4H2C in a lung metastatic mouse model Saline (Control), naked siRelA,
siControl/MPEG-PCL-CH2R4H2C and siRelA/MPEG-PCL-CH2R4H2C (N/P ratio:10, siRNA Dose:
20 µg) at on days 0, 1, 2, 4, 6, 8 and 10. The mice were sacrificed at day 14 and the lungs were removed.
Lungs were (A) fixed in Bouin’s solution for and (B) the number of B16F10 nodules on the surfaces of
the front and back sides of the lungs were imaged and quantified. Each bar represents the mean ± S.D.
(n = 4) ** p > 0.01 vs. control group.

4. Discussion

Controlling metastasis is one of the most important strategies in cancer treatment. Once cancer has
metastasized, it is difficult to suppress and is responsible for about 50% of cancer patient mortalities [2].
Chemotherapy after metastasis has been reported to improve therapy efficiency in reducing liver
metastasis in colorectal cancer; however, cancers can re-metastasize several times even after surgical
resection, with significantly reduced 5-year survival rates and quality of life (QOL) of patients [12].
Hence, novel treatment systems that can suppress cancer metastasis are desired by both the clinical
and public communities.

In this study, we aimed to develop a novel anti-metastasis system using a new modality for
siRNA and functional peptide-modified polymeric micelles and evaluated its anti-metastasis effect on
melanoma. Intractable metastatic cancer is one of the deadliest diseases. Additionally, melanoma is
one of the most metastatic forms of cancer. NF-κB affects cancer invasion and migration [21,24,25,41];
hence, RelA of the NF-κB subunit was selected as the molecular target for metastasis for testing this
new system.

First of all, the siRelA/MPEG-PCL-CH2R4H2C complex was prepared, and its physical properties
were evaluated. siRelA and MPEG-PCL-CH2R4H2C could form stable complex having particle size of
approximately 50 nm and positively charged at an N/P ratio of 10 (Table 1). Moreover, PDI values
were approximately 0.4. PDI values of more than 0.7 show a broad particle size distribution. A PDI
value of 0.05 or less is considered to be the ideal mono-dispersion. However, a PDI value of 0.4
may not be as good regarding dispersibility. This suggests that further improvement is needed. We
hypothesized that our MPEG-PCL-CH2R4H2C micelles form a “V” shape spontaneously that would
expose hydrophilic PEG chains and CH2R4H2C on the surface of the micelle, and that the hydrophobic
PCL would fold to allow each moiety to exert its respective function (Scheme 1). It was proposed that a
hydrophilic–hydrophobic–hydrophilic tri-block polymer micelle also forms “V”-shaped polymers that
confer a high silencing effect on the micelles and siRNA complexes both in vitro and in vivo [42,43].
In terms of functionality, a PEG chain with MPEG-PCL is expected to improve blood retention and
tumor accumulation due to the EPR effect, and CH2R4H2C would further improve intracellular
dynamics as our previous studies [44,45]. Generally, arginine (R) forms a complex by electrostatic
interaction with siRNA, which improves intracellular ability and helps the siRNA escape endosomal
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degradation by the histidine (H) proton sponge effect. Moreover, cysteine (C) releases siRNA through
the cleavage of disulfide bonds in the cytoplasm. We have reported that the MEPG-PCL-peptide and
CH2R4H2C are useful for many intractable diseases for siRNA delivery [20,21,32–35,44–47], and we
tried to apply this method of therapeutic delivery to metastatic cancer in the present study. Regarding
PCL, MPEG-CH2R4H2C can act as a nucleic acid carrier, but micellization does not occur without PCL,
which is a hydrophobic part. Additionally, the micelles do not stabilize and can be large because the
internal structure cannot be made. Therefore, we believe that PCL is indispensable for the preparation
of the stable micelles that can be administered intravenously with a particle size of 100 nm or less.
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Additionally, we confirmed that MPEG-PCL-CH2R4H2C micelles with an N/P ratio 5 or more
had significantly improved the siRNA cellular uptake efficiency in melanoma B16F10 cells (Figure 1A).
In particular, the complex with a N/P ratio of more than 10 had about above five times that of naked
siRNA (Figure 1B). The fluorescence intensity per cell indicated the ability for carrier uptake directly
into cells. Therefore, the cellular uptake ability increased as the N/P ratio increased and an increase in
the N/P ratio indicated an increase in the ratio of MPEG-PCL-CH2R4H2C to siRNA. The intracellular
uptake efficiency is improved by increasing the N/P ratio because of the contribution of the guanidino
group in arginine. In a future study, qualitative evaluation using confocal laser microscopy will be
evaluated. Then, the cytotoxicity of MPEG-PCL-CH2R4H2C itself was never observed at any N/P ratio,
even at an N/P ratio of 30, in normal cells (RPE-J) (Figure 1C). Therefore, these results suggest that
MPEG-PCL-CH2R4H2C is a safe and effective siRNA carrier.

Next, we investigated the effect of siRelA/MPEG-PCL-CH2R4H2C on cell migration activity of
B16F10 metastatic cells assessed with a wound healing assay. Cancer metastasis occurs in the order of
invasion, migration, circulation, and extravasation. Among these stages, migration is considered to be
the most important factor that determines the prognosis of metastasis. As migration is associated with
RelA expression, the suppression of RelA is crucial for the suppression of metastasis and measuring
the degree of wound healing is a useful method to visualize the degree of migration. Besides, the N/P
ratio of siRNA/MPEG-PCL-CH2R4H2C was selected as 10 based on the above results. As shown in
Figure 2, it was confirmed that cells transformed with siRelA/MPEG-PCL-CH2R4H2C clearly showed
no cell migration into the wound area Conversely, the wounded area width was reduced from the
initial wound width in the control, naked siRelA, and siControl/MPEG-PCL-CH2R4H2C. These results
indicate that siRelA/MPEG-PCL-CH2R4H2C had anti-migration activity of melanoma. At this time, the
cell viability of siRelA/MPEG-PCL-CH2R4H2C group did not decrease, unlike that in the control group,
after 24 h even at 300 nM, which was a high concentration (Figure 3). In other words, suppression of
RelA did not directly kill cancer cells, but suppressed metastasis/invasion. Furthermore, the effects of
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siRNA were improved by the high intracellular introduction efficiency of the MEPG-PCL-CH2R4H2C
micelles. Moreover, it suggested that RelA made a significant contribution to cancer cell migration and
invasion by suppressing the expression of cell adhesion factors like ICAM.

Finally, we explored the anti-metastatic effects of our siRNA delivery system in vivo using a lung
metastasis model prepared by intravenously administering B16F10 cells and siRNA agents seven times.
The intravenous administration of cancer cells and the injection of cancer cells into the spleen for liver
metastasis are well-established methods to prepare an animal model of hematogenous metastasis,
which is one of the major routes of cancer metastasis. Additionally, the survival rate of animals in this
study was 100% and no mice were weakened, suggesting that this was a sufficiently safe experimental
method. As shown in Figure 4, metastatic nodules were significantly reduced in lungs from mice
treated with seven systemic injections of siRelA/MPEG-PCL-CH2R4H2C compared to that in the
untreated group and was fewer than the other treatment groups on the 14th day after treatment. In
general, NF-κB regulates the expression of genes involved in many processes that play key roles in the
development and progression of cancer such as proliferation, migration and apoptosis. Aberrant or
constitutive NF-κB activation has been detected in many human malignancies [21,24,25,48]. Treatment
with siRelA/MPEG-PCL-CH2R4H2C significantly decreased the number of lung nodules, which were
quantified by measuring visible nodules (Figure 4) and while this provides evidence of anti-metastatic
effects, this result should be further validated. The administration of siRNA alone proved difficult
to show that the effect is due to degradation and low bioavailability [49,50]. Therefore, siRNA
carriers are indispensable. According to a report of nanotherapeutics for the treatment of metastasis,
poly-ion complex micelles composed of PLL and PEG with a particle size of 30 nm encapsulated
in dahaplatin penetrated blood vessels in tumors that had spread to lymph nodes can penetrate
deep into the metastasis [13]. In addition, there are cases where tumor metastasis can be suppressed
by intravenous administration of liposomal nanoparticles carrying the tumor-homing pentapeptide
CREKA without side effects [51]. MPEG-PCL-CH2R4H2C was more effective than naked siRelA
and improved siRNA delivery to the metastatic site; therefore, MPEG-PCL-CH2R4H2C indicated as
a useful in vivo anti-metastatic siRNA delivery system. Moreover, although the pharmacokinetics
was improved by PEG modification to the drug carrier, PEG is a hindrance for intracellular kinetics,
which is known as the “PEG dilemma” [52,53]. Our micelles did not appear to have this behavior
and may be useful for pharmacokinetics and intracellular kinetics. In addition, we have previously
reported the silencing effect of RelA mRNA level at the lesioned site after intravenous administration of
siRelA/MPEG-PCL-CH2R4H2C by RT-qPCR method and demonstrated a remarkable inhibitory effect
on the mRNA expression [21]. Therefore, in this study, we suggested that MPEG-PCL-CH2R4H2C
worked as a useful siRNA carrier which has silencing ability in vivo and actually showed a metastasis
inhibitory effect compared with naked siRelA and siControl/MPEG-PCL-CH2R4H2C, indicating that
migration and invasion could be suppressed by RelA inhibition. In the future, we must demonstrate
the silencing effect of siRelA/MPEG-PCL-CH2R4H2C on RelA expression in vitro and in vitro by qPCR,
as we believe this will support the results in this study.

Based on these results, we suggest that the intravenous administration of MPEG-PCL-CH2R4H2C
enhances siRelA delivery to the lung and enhances anti-metastatic activity.

5. Conclusions

MPEG-PCL-CH2R4H2C suppressed a cell migration/invasion effect in melanoma B16F10 cells.
In vivo intravenous administration of siRelA/MPEG-PCL-CH2R4H2C micelles in a lung metastasis
mouse model increased MPEG blood retention and accumulation at metastatic sites, as well as
increased siRNA introduction into cancer cells. The inhibition of RelA affected the expression of cell
adhesion factors, cell migration and invasion, and significant suppression of metastasis compared to
the control conditions. From now on, measurement of RelA mRNA or protein level will be needed
to elucidate more detailed effect and mechanism of this nano-micelle. Based on these experiments,
siRelA/MPEG-PCL-CH2R4H2C micelles are expected to be effective in the suppression of cancer



Pharmaceutics 2020, 12, 64 12 of 14

metastasis and we are confident that they are useful as novel siRNA carriers for cancer treatment.
These findings may contribute to the clinical care of many cancer patients.
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