
fphys-12-634283 March 31, 2021 Time: 16:31 # 1

ORIGINAL RESEARCH
published: 08 April 2021

doi: 10.3389/fphys.2021.634283

Edited by:
Qiyuan Yang,

University of Massachusetts Medical
School, United States

Reviewed by:
Marcos Lopez,

University of Puerto Rico, Puerto Rico
Daniel Carneiro Moreira,

University of Brasilia, Brazil

*Correspondence:
Liuqin He

285687180@qq.com
Tiejun Li

tjli@isa.ac.cn
Yulong Yin

yinyulong@isa.ac.cn

Specialty section:
This article was submitted to

Redox Physiology,
a section of the journal
Frontiers in Physiology

Received: 27 November 2020
Accepted: 12 March 2021

Published: 08 April 2021

Citation:
Han H, Liu Z, Yin J, Gao J, He L,

Wang C, Hou R, He X, Wang G, Li T
and Yin Y (2021) D-Galactose Induces

Chronic Oxidative Stress and Alters
Gut Microbiota in Weaned Piglets.

Front. Physiol. 12:634283.
doi: 10.3389/fphys.2021.634283

D-Galactose Induces Chronic
Oxidative Stress and Alters Gut
Microbiota in Weaned Piglets
Hui Han1,2, Zemin Liu1,3, Jie Yin4, Jing Gao5,6, Liuqin He1,7* , Chenyu Wang1,3,
Ruoxin Hou1,3, Xingguo He8, Guoqiang Wang8, Tiejun Li1,3* and Yulong Yin1,3,7*

1 Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional
Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock
and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China, 2 State Key
Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,
3 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China, 4 College of Animal
Science and Technology, Hunan Agricultural University, Changsha, China, 5 Research Institute of Oil Tea Camellia, Hunan
Academy of Forestry, Changsha, China, 6 National Engineering Research Center for Oil Tea Camellia, Changsha, China,
7 Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human
Health, College of Life Sciences, Hunan Normal University, Changsha, China, 8 Changsha Lvye Bio-Technology Co., Ltd.,
Changsha, China

Oxidative stress commonly occurs in pig production, which can severely damage the
intestinal function of weaned piglets. This study was conducted to investigate the
effects of D-galactose with different levels used to induce chronic oxidative stress on
growth performance, intestinal morphology and gut microbiota in weaned piglets. The
results showed that addition of 10 and 20 g/kg BW D-galactose reduced average daily
gain and average daily feed intake from the first to the third week. 10 g/kg BW D-
galactose increased the concentration of serum MDA at the second and third week.
10 g/kg BW D-galactose significantly influenced the jejunal and ileal expressions of
GPx1, CAT1, and MnSOD. The results of 16S rRNA sequencing showed that compared
with the control, 10 and 20 g/kg BW D-galactose significantly decreased the relative
abundance of Tenericutes, Erysipelotrichia, Erysipelotrichales, and Erysipelotrichaceae,
while increased the relative abundance of Negativicutes, Selenomonnadales, and
Veillonellaceae. The results indicated that treatment with 10 g/kg BW/day D-galactose
for 3 weeks could induce chronic oxidative stress, reduce the growth performance and
alter gut microbiota in weaned piglets.

Keywords: D-galactose, chronic oxidative stress, gut microbiota, weaned piglets, growth performance

INTRODUCTION

Oxidative stress is regarded as an imbalance between the oxidative and antioxidative reactions
(Jiang et al., 2016; Yahata and Hamaoka, 2016). Under normal physiological circumstance,
reactive oxygen species (ROS) are maintained homeostasis and excessive ROS are eliminated
by the antioxidant system including non-enzymatic components and antioxidant enzymes,
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such as glutathione peroxidase (GSH-Px), catalase (CAT), and
superoxide dismutase (SOD) (Jiang et al., 2016). However, the
imbalance between the prooxidant and antioxidant activity will
lead to the excess production of ROS, which can cause oxidative
stress and do harm to cellular DNA, protein, and lipid (Ali et al.,
2015; Jiang et al., 2016).

Post-weaning piglets are subjected to oxidative stress caused
by the changes of nutritional source, physical and social
environments (Yin et al., 2014). During weaning, piglets have to
be suddenly separated from the sow, transported to a different
physical environment, regrouped with unfamiliar piglets from
other litters, changed from sow watery milk to feeding on
solid feed, and exposed to increased dietary or environmental
pathogens and antigens (Campbell et al., 2013). Amounting
studies have shown that gastrointestinal tract is highly susceptible
to oxidative stress and previous investigations have revealed that
oxidative stress can damage the intestinal barrier functions and
change the gut microbiome in piglets (He et al., 2017; Zheng et al.,
2017; Cao et al., 2018; Zhang et al., 2018). Gut microbiota and
intestinal barrier are strongly related to maintaining homeostasis
in intestine as well as other organs of host (Dam et al., 2019).
Disordered gut microbiota can produce excessive ROS to induce
oxidative stress that in turn lead to intestinal inflammation and
even various chronic diseases related to inflammation (Marciano
and Vajro, 2017; Vasquez et al., 2019). However, some gut
microbial metabolites, such as SCFAs, are able to alleviate
oxidative stress (Andrade-Oliveira et al., 2015; Rose et al., 2018).
Treatment with diquat and polyunsaturated fatty acids are always
used to induce acute or chronic oxidative stress in piglets (Di
Giancamillo et al., 2015; Shen et al., 2015; Cao et al., 2018;
Rossi et al., 2019). However, there are several disadvantages to
using diquat or polyunsaturated fatty acids as treatments. Firstly,
intraperitoneal injection of diquat can cause severe stress in
piglets, such as anorexia and diarrhea, which might affect the
results of following study (Xu et al., 2018). Secondly, vegetable oil
and fish oil enriched in polyunsaturated fatty acids are commonly
used to induced chronic oxidative stress but the fresh oil need
to be pre-oxidized and determined the peroxide value before
supplementation, which is a little complex (Shan et al., 2009; Di
Giancamillo et al., 2015; Wang et al., 2016).

To determine the mechanism whereby oxidative stress
exerts effects on intestinal health and gut microbiota, the
chronic oxidative stress is suitable for observing the change
trend of piglets than acute oxidative stress. D-galactose, as
a monosaccharide sugar, can be metabolized by mammalian
animals. However, excess administration of D-galactose can
induce oxidative stress in the body by three different ways.
Firstly, D-galactose, as a reducing sugar, can react with the
free amines of amino acids and produce a Schiff base (Shwe
et al., 2018). The Schiff is oxidized and form advanced glycation
end products, which can interact with specific receptors and
then induce the production of reactive oxygen species (ROS)
(Zhang et al., 2016). Excessive ROS cause excess peroxidation
of proteins, lipid, and DNA. Secondly, high level of D-galactose
can induce the production of hydrogen peroxide and MDA
and inhibit the levels of antioxidant enzymes, such as SOD
and GSH (Shwe et al., 2018; Zhang Z. et al., 2019). Thirdly,

D-galactose is reduced by galactose reductase and over-supply D-
galactose converts into galactitol, which cannot be metabolized
and then accumulate in the cell to generate amounts of
ROS (Thakur et al., 2017). It is well known that D-galactose
treatment is widely used as a chronic model to induce oxidative
stress in rats and mice (Shen et al., 2002; Qian et al., 2018;
Zhang X. et al., 2019). However, there is currently no study
on chronic oxidative stress induced by D-galactose in a pig
model. Thus, our study was conducted to test whether D-
galactose could be used as a model to induce chronic oxidative
stress and investigate the effects of chronic oxidative stress on
growth performance, intestinal morphology and microbiota in
weaned piglets.

MATERIALS AND METHODS

Animal and Experimental Design
This study was approved by the animal welfare committee
of the Institute of Subtropical Agriculture, Chinese Academy
of Sciences (2013020; Changsha, China). Thirty-two cross-
bred (Duroc × Landrace × Yorkshire; average body weight
(BW) = 5.44 ± 0.26 kg) healthy piglets weaned at 21 days
were randomly divided into four treatments (n = 8/group):
(1) control group, piglets were fed the basal diet; (2) 5 g/kg
BW D-galactose group, piglets were fed with the basal diet
supplemented with D-galactose at a dosage of 5 g/kg BW/day;
(3) 10 g/kg BW D-galactose group, piglets were fed with the
basal diet supplemented with D-galactose at a dosage of 10 g/kg
BW/day; and (4) 20 g/kg BW D-galactose group, piglets were
fed the basal diet supplemented with D-galactose at a dosage
of 20 g/kg BW/day. The BW were measured weekly and the
volume of D-galactose were calculated according to BW. Every
morning, after cleaning the through and weighing the remaining
feed, D-galactose was mixed in a small amount of diet and
given to the piglets. Then the piglets were fed with diet without
D-galactose until they eat up the diet containing D-galactose.
The composition and nutrient levels of the basal diet met
the nutrient specifications for 5 to 10 kg BW pig according
to recommendations of the National Research Council (2012)
(Table 1). During the whole experiment, piglets were housed
individually and given free access to water. The average daily
feed intake (ADFI) was monitored daily and ADFI and final
average daily gain (ADG) were calculated weekly. The duration
of the overall experiment was 21 days. The administration
dosages of D-galactose (Hubei Yuying Biotechnology Co.,
Ltd., Yichang, Hubei, China) were adopted according to the
previous mice experiments (Ma et al., 2018; Sun et al., 2018;
Sha et al., 2019).

Sample Collection
Blood sample of the piglets in every week were collected and
serum were obtained by centrifugation at 3,000 rpm for 10 min
under 4◦C and stored at −20◦C until analysis according to
our previous studies (Yin et al., 2017). On days 21, after blood
sampling, all piglets were anesthetized with an intravenous
injection of sodium pentobarbital (50 mg/kg BW) and bled by
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TABLE 1 | Composition and nutrient level of basal diet.

Item Composition %

Corn 55.59

Soybean oil 0.72

Glucose 1

Sucrose 2

Expanded soybean 8

Soybean meal 21.5

Fish meal 4

Whey power 3.2

NaCl 0.4

Limestone 0.55

CaHCO3 0.87

ZnO 0.3

Lysine 0.4

Methionine 0.2

Threonine 0.14

Tryptophan 0.03

Choline chloride 0.1

Premix* 1

Nutritional Level

CP 19.74

Lysine 1.39

Methionine + Cysteine 0.84

Threonine 0.88

Tryptophan 0.24

*Premix provided the following per kilogram of the diet: Sepiolite, 6.043 g; pig
vitamin, 750 mg; Fe, 150 mg; Cu, 150 mg; Man, 80 mg; Zn, 120 mg; Se, 0.3 mg;
Co, 1 mg; I, 0.3 mg; VB4 1,000 mg.

exsanguination. The small intestine was dissected free of the
mesentery and sampled on a chilled stainless-steel tray. Ten-cm
segments were collected from the proximal jejunum and distal
ileum, respectively, thoroughly flushed with ice-cold phosphate-
buffered saline, and then frozen in liquid nitrogen and stored
at −80◦C for the analysis of gene expression, one segment was
fixed in 4% paraformaldehyde-PBS for examination of intestinal
morphology. Colonic digesta was collected to determine gut
microbiota. The heart, liver, spleen, and kidney were isolated
and weighted. Relative organ weight (g/kg) = organ weight
(g)/body weight (kg).

Intestinal Histomorphology
Jejunal and ileal sections were fixed with 4% paraformaldehyde-
PBS overnight, then dehydrated and embedded in paraffin
blocks and sectioned at 5–7 µm. The sections were further
deparaffinized and hydrated, and then stained with hematoxylin
eosin (H&E). Villus length and crypt depth were performed using
image J software.

Serum Biochemical Parameters and
Amino Acids Determination
Serum biochemical parameters, including total protein (TP),
albumin (ALB), alanine transaminase (ALT), glutamic oxalacetic
transaminase (AST), alkaline phosphatase (ALP), cholesterol

(CHOL), high density lipoprotein (HDL), low density lipoprotein
(LDL), were determined using automatic biochemical analyzer
(fully automatic bio analysis machine cobas c311, Roche
Co., Ltd.). Serum amino acids contents (His, Ser, Arg, Gly,
Asp, Glu, Thr, Ala, Pro, Cys, Lys, Tyr, Met, Val, Ile, Leu,
Phe, and Trp) were measured by High-speed Amino Acid
Analyzer L-8900 (Japan) according to our previous studies
(Duan et al., 2014).

Determination of Serum Antioxidant
Enzymes Activities and MDA Level
The activities of glutathione peroxidase (GSH-Px), catalase
(CAT), and superoxide dismutase (SOD) and the level of
malondialdehyde (MDA) in serum were measured with
corresponding assay kits (Nanjing Bioengineering Institute,
Nanjing, China) in accordance with the manufactures’
instructions. The GSH-Px activity was measured based on
the principle that oxidation of glutathione (GSH) and hydrogen
peroxide could be catalyzed by GSH-Px to produce oxidized
glutathione (GSSG) and H2O. GSH can act with 5,5′-dithio-
bis-2-nitrobenzoic acid to produce yellow 5-thio-2-nitrobenzoic
acid. The change in absorbance during the conversion of GSH
to GSSG was measured at 412 nm. The SOD activity was
measured based on the auto-oxidation of hydroxylamine. The
developed blue color was measured at 550 nm. CAT reacts with
H2O2 and this reaction can be terminated by molybdenum to
produce a yellow product. The activity of CAT was measured
based on the decrease in absorbance at 405 nm due to the
degradation of H2O2. The MDA level was measured based
on the principle that MDA can react with thiobarbituric acid
(TBA) to produce a red product (MDA-TBA), which was
measured at 532 nm. The activities of GSH-Px, CAT, and SOD
were expressed in U/mL, and the MDA level was shown in
nmol/mL, respectively.

Real-Time Quantitative (RT-PCR)
Total RNA from jejunum and ileum samples were isolated from
liquid nitrogen using TRIZOL reagent (Invitrogen, United States)
and then treated with DNase I (Invitrogen, United States)
according to the manufacturer’s instructions. The reverse
transcription was conducted at 37◦C for 15 min, 85◦C for
5 s. Primers used in this study were presented in the previous
studies (Table 2). β-actin was chosen as the house-keeping
gene to normalize target gene levels. Real-time PCR was
performed according to our previous study (Yin et al., 2018).
Relative expression was expressed as a ratio of the target
gene to the control gene using the formula 2−(11Ct), where
11Ct = (CtTarget – Ctβ -actin) treatment − (CtTarget – Ctβ -actin)
control. Relative expression was normalized and expressed relative
to the expression in the control group.

Gut Microbiota
Total genome DNA from colonic digesta was extracted using
QIAamp DNA Stool Mini Kit and DNA concentration and
purity was monitored on 1% agarose gels. The V3-V4 region
of the bacterial 16S ribosomal RNA gene were amplified by
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TABLE 2 | Primers used for quantitative reverse transcription PCR.

Gene Accession no. Sequence (5′-3′)

β-actin XM_0031242803 F: CTGCGGCATCCACGAAACT R:
AGGGCCGTGATCTCCTTCTG

MnSOD NM_001190422.1 F: GAGCTGAAGGGAGAGAAGACAGT
R: GCACTGGTACAGCCTTGTGTAT

CuZnSOD NM_214127.2 F: CTGGACAAATCTGAGCCCTAAC R:
GACGGATACAGCGGTCAACT

GPx1 NM_214201 F: CGATGCCACTGCCCTCAT R:
GGCCCACCAGGAACTTCTC

GPx4 NM_214407 F: GCTGGCTACAACGTCAAATTTG R:
TCCCCTTGGGCTGGACTT

CAT1 NM_001012613 F: GGCAAGACCAAACTCTCCTTC R:
AGCCTATCAGCATCCACACTG

F, forward; R, reverse.

using specific primer. Amplicons were extracted from 2%
agarose gels and purified using the GeneJET gel extraction kit
(Thermo Scientific) according to the manufacturer’s instructions.
After quantified and purified, amplicons were sequenced. The
sequences were analyzed and assigned to operational taxonomic
units (OTUs; 97% identity). Alpha diversity was analyzed using
QIIME (Version 1.7.0), which included calculation of ACE, Chao
1, Shannon, and Simpson indices. Beta diversity was analyzed
using principal component analysis (PCA) and unweighted
Unifrac cluster tree.

Statistical Analysis
All data were analyzed using the one-way analysis of variance
(ANOVA) followed by Duncan’s multiple comparisons (SPSS
22.0 software). In this study, comparisons were made between

different experimental groups at the same time and no
comparisons between different treatment times were made. Data
are expressed as the mean± SEM. Probability values≤ 0.05 were
taken to indicate statistical significance.

RESULTS

D-Galactose Decreased Body Weight
and Average Daily Feed Intake in Piglets
To investigate whether D-galactose could induce chronic
oxidative stress in piglets, we determined the growth performance
and organ index of piglets fed the basal diet with different levels
of D-galactose. The results showed that 10 and 20 g/kg BW D-
galactose significantly reduced BW, ADG, and ADFI from the
first week to the end as compared to the control and 5 g/kg BW
D-galactose (P < 0.05) (Figures 1A–C). Notably, 10 g/kg BW D-
galactose administration markedly decreased the heart/BW ratio
at the third week (P < 0.05) (Figure 1D), while D-galactose
failed to affect the liver/BW, spleen/BW, and kidney/BW ratio
(P > 0.05) (Figures 1E–G).

D-Galactose Had a Negative Effect
Jejunum and Ileum Morphology in
Piglets
In the jejunum, although D-galactose have no significant effects
on the villus height, crypt depth, and villus height/crypt depth
(P > 0.05) (Figures 2A–C,I), the villus surface area of 20 g/kg BW
D-galactose group was significantly lower than the other groups
(P < 0.05) (Figure 2D). In the ileum, 5 g/kg BW D-galactose
slightly increased villus height, whereas 20 g/kg BW D-galactose
markedly reduced the villus height compared to the control group

FIGURE 1 | Effects of D-galactose on growth performance. (A) Body weight; (B) Average daily gain; (C) Average daily feed intake; (D) Relative weight of heart to
body weight; (E) Relative weight of liver to body weight; (F) Relative weight of spleen to body weight; (G) Relative weight of kidney to body weight. Data were
expressed as the mean ± SEM. Different lower-case letters indicate a significant difference among different dosage of D-galactose (P < 0.05).
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FIGURE 2 | Effects of D-galactose on jejunal and ileal morphology. (A) Jejunum villus height; (B) Jejunum crypt depth; (C) Jejunum villus height/crypt depth;
(D) Jejunum villus surface area; (E) Ileum villus height; (F) Ileum crypt depth; (G) Ileum villlus height/crypt depth; (H) Ileum villus surface area; (I) Representative
images of HE staining in the jejunum and ileum. Data were expressed as the mean ± SEM. Different lower-case letters indicate a significant difference among
different dosage of D-galactose (P < 0.05).

(P < 0.05) (Figure 2E). Meanwhile, 10 g/kg BW D-galactose
decreased the crypt depth (P < 0.05) (Figure 2F). D-galactose had
no significant effects on the villus height/crypt depth (P > 0.05)
(Figures 2G,I). The villus surface area was significantly lower
in the 20 g/kg BW D-galactose group than the control group
(P < 0.05) (Figure 2H).

D-Galactose Influenced Serum
Biochemical Parameters
At the first week, 20 g/kg BW D-galactose significantly increased
the level of TP (P < 0.05) (Figure 3A), whereas 20 g/kg BW D-
galactose markedly decreased the level of ALB at the third week
(P < 0.05) (Figure 3B). The level of ALT was significantly higher
in the 20 g/kg BW D-galactose group than that in the control
and 5 g/kg BW D-galactose groups (P < 0.05) at the first 2 weeks
(Figure 3C). 5 g/kg BW D-galactose markedly increased the level

of AST compared to the other groups (P < 0.05) (Figure 3D).
However, D-galactose had no effect on the levels of serum ALP,
CHOL, HDL, and LDL in piglets (P > 0.05) (Figures 3E–H).

D-Galactose Induced an Imbalance in
Serum Amino Acids of Piglets
At the first week, compared to the control group, 5 g/kg BW D-
galactose significantly decreased the concentration of His, Leu,
and Asp and increased the Trp content in serum (P < 0.05)
(Figures 4, 5). The concentration of Val, Leu, His, Phe, and Tyr
are significantly lower in 10 g/kg BW D-galactose group than that
in the control group (P < 0.05) (Figures 4, 5). 20 g/kg BW D-
galactose markedly increased the concentration of Arg and Thr
in serum (P < 0.05) (Figure 4).

At the second week, compared to the control group, 5 g/kg
BW D-galactose significantly decreased the concentration of
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FIGURE 3 | Effects of D-galactose on serum biochemical parameters. (A) TP; (B) ALB; (C) ALT; (D) AST; (E) ALP; (F) CHOL; (G) HDL; (H) LDL. Data were
expressed as the mean ± SEM. Different lower-case letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

Cys, while 20 g/kg BW D-galactose significantly decreased the
abundance of Ile (P < 0.05) (Figures 6, 7).

At the third week, the concentration of Ile, Leu, and Ala in
the 5 g/kg BW D-galactose group is significantly higher than that
in the control group (P < 0.05) (Figures 8, 9). 10 g/kg BW D-
galactose markedly increased the abundance of Ala and 20 g/kg
BW D-galactose significantly increased the concentration of Arg,
Thr, Pro, Ala, and Tyr in serum (P < 0.05) (Figures 8, 9).

D-Galactose Affected Serum Antioxidant
Enzyme Activities and MDA Level in
Piglets
To confirm whether the model of D-galactose induced piglet
chronic oxidative stress was successful, serum antioxidant
enzymes (GSH-Px, SOD, and CAT) activities and MDA
level in piglets were measured. Although the MDA level
at the first week were not changed among these groups,
10 g/kg BW D-galactose significantly increased the level of
MDA (P < 0.05) at the second week (Figure 10A). 5 g/kg
BW D-galactose significantly increased the level of MDA
compared to the control and 20 g/kg BW D-galactose groups

(P < 0.05) at the third week (Figure 10A). Meanwhile,
10 g/kg D-galactose (5.48 ± 0.06) tend to increase the MDA
concentration compared to the group (6.29 ± 0.46) at the third
week, although the difference was not significant (P > 0.05)
(Figure 10A).

At the first week, the activity of GSH-Px markedly increased
in response to 5 g/kg BW D-galactose, whereas 10 and 20 g/kg
BW D-galactose significantly decrease the activity of GSH-Px
(P < 0.05) (Figure 10B). However, 10 and 20 g/kg BW D-
galactose significantly increased the activity of GSH-Px at the
second week compared to the control and 5 g/kg BW D-galactose
groups (P < 0.05) (Figure 10B). At the third week, 10 g/kg BW
D-galactose markedly increased the activity of GSH-Px (P < 0.05)
(Figure 10B). In addition, 5 g/kg BW D-galactose significantly
reduced the activity of CAT when compared that of the 10 and
20 g/kg BW D-galactose groups (P < 0.05) at the first week
(Figure 10C). 5 g/kg BW D-galactose markedly increased the
activity of CAT compared to the other groups at the third week
(P < 0.05) (Figure 10C). However, administration of D-galactose
failed to affect the activity of SOD from the first week to the end
(P > 0.05) (Figure 10D).

Frontiers in Physiology | www.frontiersin.org 6 April 2021 | Volume 12 | Article 634283

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-634283 March 31, 2021 Time: 16:31 # 7

Han et al. D-Galactose-Induced Chronic Oxidative Stress

FIGURE 4 | Effects of D-galactose on essential amino acids in the serum at the first week. Data were expressed as the mean ± SEM. Different lower-case letters
indicate a significant difference among different dosage of D-galactose (P < 0.05).

FIGURE 5 | Effects of D-galactose on non-essential amino acids in the serum at the first week. Data were expressed as the mean ± SEM. Different lower-case
letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

D-Galactose Influenced the mRNA
Expressions of GPx1, CAT1, and MnSOD
in Jejunum and Ileum of Piglets
D-galactose treatment had no significant effects on the jejunal
mRNA expression of MnSOD, CuZnSOD, and Gpx4 (p > 0.05)

(Figures 11A,B,D). 5 g/kg BW D-galactose significantly increased
the jejunal mRNA expression of GPx1 compared with the
control group (P < 0.05) (Figure 11C). 10 g/kg BW D-galactose
increased the jejunal mRNA expression of CAT1 (P < 0.05)
(Figure 11E). In the ileum, the mRNA expression of MnSOD was
significantly higher in the 10 g/kg BW D-galactose than that in
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FIGURE 6 | Effects of D-galactose on essential amino acids in the serum at the second week. Data were expressed as the mean ± SEM. Different lower-case letters
indicate a significant difference among different dosage of D-galactose (P < 0.05).

FIGURE 7 | Effects of D-galactose on non-essential amino acids in the serum at the second week. Data were expressed as the mean ± SEM. Different lower-case
letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

the other groups (P < 0.05) (Figure 11F). Administration of D-
galactose markedly reduced the expression of ileal GPX1 (5,10,
and 20 g/kg BW D-galactose) and CAT1 (5 and 20 g/kg BW
D-galactose) (P < 0.05) (Figures 11H,J). D-galactose failed to
affect the mRNA expression of CuZnSOD and Gpx4 (p > 0.05)
(Figures 11G,I).

D-Galactose Influenced Colonic
Microbiota in Piglets
The colonic microbiota was analyzed by sequencing V3 + V4
regions of 16S rRNA genes and an average of 72,951.48 raw
reads were generated from each sample. After removing the
low-quality sequences, an average of 68,692.55 clean tags were
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FIGURE 8 | Effects of D-galactose on essential amino acids in the serum at the third week. Data were expressed as the mean ± SEM. Different lower-case letters
indicate a significant difference among different dosage of D-galactose (P < 0.05).

FIGURE 9 | Effects of D-galactose on non-essential amino acids in the serum at the third week. Data were expressed as the mean ± SEM. Different lower-case
letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

clustered into OTUs. To identify the microbial biodiversity, the
reads were clustered into operation taxonomic units (OTUs)
basing on 97% identity.

ACE and Chao 1 indexes were examined for the community
richness and Shannon and Simpson were examined for the
community diversity. As shown in Figures 12A–C, compared to
the control and 5 g/kg BW D-galactose groups, 10 and 20 g/kg
BW D-galactose significantly decreased the ACE, Chao 1 and

Shannon indexes (P < 0.05). Meanwhile, 20 g/kg BW D-galactose
also significantly decreased the Simpson index when compared to
the other groups (P < 0.05) (Figure 12D).

To further understand the microbial composition between
different groups, we evaluated beta-diversity by using Principal
Component Analysis (PCA) and unweighted Unifrac cluster
tree based on UPGMA. The results showed that the microbial
community structure in 10 and 20 g/kg BW D-galactose groups
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FIGURE 10 | Effects of D-galactose on the level of MDA and activities of antioxidant enzymes. (A) MDA; (B) GSH-Px; (C) CAT; (D) SOD. Data were expressed as the
mean ± SEM. Different lower-case letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

FIGURE 11 | Effects of D-galactose on intestinal expressions of MnSOD, CuZnSOD, GPx1, GPx4, and CAT1. (A–E) mRNA abundances of MnSOD, CuZnSOD,
GPx1, GPx4, and CAT1 in the jejunum; (F–J) mRNA abundances of MnSOD, CuZnSOD, GPx1, GPx4, and CAT1 in the ileum. Data were expressed as the
mean ± SEN. Different lower-case letters indicate a significant difference among different dosage of d-galactose (P < 0.05).

differed significantly from that in control and 5 g/kg BW D-
galactose groups (Figures 12E,F).

The overall microbial composition in the groups differed
at the phylum, class, order, and family levels. As shown
in Figures 13A,B, at the phylum level, D-galactose (10 and
20 g/kg BW) significantly decreased the relative abundance
of Tenericutes (P < 0.05), while it had little effect on the
relative abundances of these two largest phyla (Firmicutes and
Bacteroidetes) (P > 0.05). At the class level, compared to
control and 5 g/kg BW D-galactose, 10 and 20 g/kg BW
D-galactose significantly increased the relative abundance of

Negativicutes and significantly decreased the relative abundance
of Erysipelotrichia (P < 0.05) (Figures 13C,D). The relative
abundance of Clostridia was significantly lower in 20 g/kg
BW D-galactose groups than control and 5 g/kg BW D-
galactose groups (P < 0.05) (Figures 13C,D). The order
level analysis demonstrated that the relative abundance of
Clostridiales was significantly lower in the 20 g/kg BW D-
galactose group than the control and 5 g/kg BW D-galactose
administration groups (P < 0.05) (Figures 13E,F). 10 and 20 g/kg
BW D-galactose significantly decreased the relative abundance
of Erysipelotrichales, while significantly increased the relative
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FIGURE 12 | Effects of D-galactose on colonic microbial diversity and unweighted Unifrac distances. (A) ACE index; (B) Chao 1 index; (C) Shannon index;
(D) Simpson index; (E) Principal Component Analysis (PCA); (F) Comparison of unweighted Unifrac distances between pairs os samples. Data were expressed as
the mean ± SEN. Different lower-case letters indicate a significant difference among different dosage of D-galactose (P < 0.05).

abundance of Selenomonnadales when compared to control and
5 g/kg BW D-galactose (P < 0.05) (Figures 13E,F). At the family
level, 10 and 20 g/kg BW D-galactose significantly increased the
relative abundance of Veillonellaceae and significantly decreased
the relative abundance of Erysipelotrichaceae when compared
to control and 5 g/kg BW D-galactose groups (P < 0.05)
(Figures 13G,H). The relative abundance of Lachnospiraceae
were significantly lower in the 20 g/kg BW D-galactose than
the other groups (control and 5 g/kg BW D-galactose groups)
(P < 0.05) (Figures 13G,H).

DISCUSSION

It has been reported that D-galactose could be changed into
galactitol, which will accumulate in the cell and then generate
the excess of ROS, thereby leading to oxidative stress (Zhang X.
et al., 2019). Previous studies reported that administration of
D-galactose could lower body weight and disrupt antioxidant
enzymes in mice, thereby causing chronic oxidative stress (Mo
et al., 2018; Zhang X. et al., 2019). Similarly, in the present study
we found that 10 and 20 g/kg BW D-galactose decreased BW
and ADFI from the first week to the end in piglets. The integrity
of intestine is conducive to the absorption of various nutrients
and form a protective barrier to defend kinds of stresses. It is
known that oxidative stress can cause intestinal injury, such as
decreasing villus height and increasing the production of ROS in
the small intestine of piglets (Zheng et al., 2017; da Silva et al.,
2019). In the present study, our results showed that addition
of 20 g/kg BW D-galactose decreased villus height and villus

surface area in ileum of piglets. In view of the above data, we
speculated that excessive addition of D-galactose could affect the
growth performance in piglets and disrupt ileal morphology. This
may be that the accumulation of D-galactose was converted into
indigestible galactitol, then which caused to generate amounts of
ROS in the body, however, the detailed mechanisms need to be
further studied.

Amino acids are essential nutrient which have been required
for tissue protein synthesis and other metabolic function in
animals. Our previous study has revealed that oxidative stress
could cause alterations of serum amino acid levels in piglets
(Duan et al., 2016). In this study, consistent with the decreased
performance growth, D-galactose administration also changed
the concentrations of serum amino acids, such as EAA His, Arg,
Trp, Thr, Val, Leu, Phe, and NEAA Tyr, Cys, Asp. Amounting
evidence has showed that amino acids involve in modulating
oxidative stress. For example, Val and Leu can induce oxidative
stress by producing excessive ROS (Zhenyukh et al., 2017), while
Arg and Thr can ameliorate oxidative stress (Qiu et al., 2019;
Yu et al., 2020). In this study, we found that10 g/kg BW D-
galactose enhanced the serum concentration of Arg and Thr at
the first week, which might protect host against D-galactose-
induced oxidative stress; 5 and 10 g/kg BW D-galactose increased
serum Val and Leu concentrations at the third week, which
might aggravate oxidative stress. Serum ALP, AST, and ALT act
as specific indicators of liver injury (Cao et al., 2019). Studies
have showed that oxidative stress increased serum and liver AST
and ALT levels in piglets (Di Giancamillo et al., 2015; Luo et al.,
2016; Pu et al., 2016). Injection of D-galactose increased the
serum levels of AST and ALT in mice, which indicated that
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FIGURE 13 | Effects of D-galactose on colonic macterial composition at the phylum, class, order, and family levels. (A,B) Phylum level; (C,D) Class level; (E,F) Order
level; (G,H) Family level. Data were expressed as the mean ± SEN. Different lower-case letters indicate a significant difference among different dosage of
D-galactose (P < 0.05).

D-galactose could cause liver injury (Lin et al., 2018). Hepatic
AST is present in the cytoplasm and mitochondria and ALT is
distributed in the cytoplasm (Feng et al., 2018). The damaged
liver release AST and ALT into the circulation system, which
enhanced the serum concentrations of AST and ALT (Feng et al.,
2018). The present study found that 5 g/kg BW D-galactose
significantly increased the concentration of serum AST at the
second week. Moreover, 20 g/kg BW D-galactose significantly
increased serum ALT level at the first 2 weeks, while decreased
serum ALB level at the third week. However, D-galactose have
no effect on the concentrations of serum ALP, AST, and ALT at
the third week. These data suggested short-term exposure of D-
galactose might lead to hepatic damage, while long-term exposure
of D-galactose might have no harmful effect on liver in piglets due
to feedback regulation.

Previous investigations have reported that D-galactose
treatment decreased the activities of SOD, CAT, and GSH-Px and
elevated the level of MDA in mice serum, liver, and brain (Qiu

et al., 2017; Zhou et al., 2017; Lin et al., 2018; Ma et al., 2018;
Zhang X. et al., 2019; Wang et al., 2020). However, D-galactose
increased the activity of CAT and decreased the activity of SOD,
while fail to affect the activity of GSH-Px in erythrocytes of
rats (Delwing-de Lima et al., 2017). These results showed that
D-galactose can induce oxidative stress and have various effects
on different models. In this study, we also found that 5 g/kg
BW D-galactose decreased the activity of CAT at the first week,
while increased the activity of CAT at the third week. 10 g/kg
BW D-galactose increased the activity of GSH-Px and the level
of MDA at the second and third week. A study showed that
antioxidant enzymes prevented hosts against oxidative stress
by increasing their activities (Travacio and Llesuy, 1996). In
addition, although it is still unclear that whether the oxidative
stress is induced by weaning itself or other environmental factors,
Zhu et al. (2012) found that weaning-induced oxidative stress
decreased the activities of SOD and increased the level of MDA
in serum of piglets (Zhu et al., 2012). Thus, we speculated that
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administration of D-galactose eventually could induce chronic
oxidative stress in piglets via influencing the antioxidant
enzymes activities.

Small intestine is the main organ for nutrient digestion and
absorption in mammals and is highly susceptible to oxidative
stress (Duan et al., 2014; Yin et al., 2015; Hussain et al., 2016).
To further investigate whether D-galactose could induce chronic
oxidative stress, the mRNA expressions of antioxidative related
genes GPx1, CAT1, and MnSOD in jejunum and ileum were
determined. In this current study, we found that 5 and 10 g/kg
BW D-galactose increased jejunal GPx1and CAT1 expressions,
respectively. 5, 10, and 20 g/kg BW D-galactose downregulated
ileal GPx1 and CAT1 expression in piglets, which is consistent
with the previous study (Mo et al., 2018). Evidence has showed
that oxidative stress increased the mRNA expression of GPx1
in the jejunum of piglets (Cheng et al., 2019). Similarly, an
in vitro study also showed that D-galactose decreased the
mRNA expressions of CuZnSOD, MnSOD, and GPx4 in IPEC-
J2 (Cao et al., 2020). These data showed that D-galactose could
induce intestinal oxidative stress by modulating the expressions
of antioxidant enzymes. Our previous study also found that
essential nutrient which hav oxidative stress enhanced the mRNA
expressions of CuZnSOD and GPx1 in the jejunum and ileum
of piglets (He et al., 2018). Therefore, we speculated that in the
jejunum, 5 and 10 g/kg BW D-galactose might exhibit a feedback
regulatory mechanism against oxidative stress via enhancing
GPx1 and CAT1 expression. However, in the ileum, D-galactose
treatment inhibited antioxidant capacity since it decreased the
expressions of GPx1 and CAT1. Additionally, we speculated that
D-galactose might only induce alteration of antioxidant status in
the ileum in piglets.

Additionally, amounting studies indicated that oxidative stress
has direct correlation with gut microbiota in piglets and sows
(Qiao et al., 2013; Li et al., 2019; Nie et al., 2019; Wang et al.,
2019). A previous study has showed that Tenericutes is associated
with improving apparent crude fiber digestibility in pigs (Niu
et al., 2015). In addition to this, the relative abundance of
Tenericutes is higher in healthy humans than individuals with
metabolic disorders (Lim et al., 2017). Oxidative stress decreased
the relative abundance of Tenericutes in rats (Zhou et al., 2018).
Consistently, in this study, we also found that 10 and 20 g/kg BW
D-galactose downregulated the relative abundance of Tenericutes.
These results suggested that D-galactose supplementation had
negative effect on metabolism in piglets. Lactobacillus frumenti
appears to improve the antioxidant capacity in weaned piglets
(Nie et al., 2019). Studies have showed that Lactobacillus and
Bifidobacterium can alleviate oxidative stress via scavenging
free radicals (Lin and Chang, 2000). However, in the current
study, D-galactose supplementation had no effect on the relative
abundance of Lactobacillus and Bifidobacterium. A study have
showed that oxidative stress increased the relative abundance of
Clostridium perfringens, E. coil, and enterococcus, while decreased
the relative abundance of lactobacilli in mice (Qiao et al., 2013).
Decreased relative abundance of Erysipelotrichia and Clostridia
Chronic have been reported to contribute to gastrointestinal
disease (Minamoto et al., 2015). In addition, injection of
D-galactose increased the relative abundance of Firmicutes

and Clostridiales, while decreased the relative abundance of
Bacteroidetes and Lactobacillus in mice (Zhao et al., 2018).
In the current study, D-galactose treatment decreased the
relative abundance of Erysipelotrichia and Clostridia classes
and Clostridiales and Erysipelotrichales orders. Based on these
results, we infer that D-galactose could reduce microbial diversity
and further cause metabolic dysbiosis and intestinal diseases
in piglets.

In conclusion, we suggested that the optimal modeling
method is a final dosage of 10 g/kg BW/day D-galactose treated
with weaned piglets for 3 weeks for D-galactose-induced chronic
oxidative stress modeling. Additionally, administration of D-
galactose had negative effects on the growth performance and
influenced gut microbiota in piglets.
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