
354  |     CNS Neurosci Ther. 2022;28:354–363.wileyonlinelibrary.com/journal/cns

1  |  INTRODUC TION

Epilepsy is one of the most common diseases of the nervous sys-
tem in the elderly, second to dementia and stroke,1 and is charac-
terized by recurrent, unpredictable spontaneous epileptic seizures. 

Epidemiological data indicate that about 70 million people world-
wide suffer from epilepsy.2 In China, the prevalence of active ep-
ilepsy is 0.48%– 8.5%, and about 9 million people on the mainland 
suffer from epilepsy. Long- term recurrent seizures can lead to pro-
gressive brain tissue damage and cognitive impairment in patients 
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Abstract
Introduction: Epilepsy is a serious hazard to human health. Minimally invasive surgery 
is an extremely effective treatment to refractory epilepsy currently if the location of 
epileptic foci is given. However, it is challenging to locate the epileptic foci since a 
multitude of patients are MRI- negative. It is well known that DKI (diffusion kurtosis 
imaging) can analyze the pathological changes of local tissues and other regions of 
epileptic foci at the molecular level. In this article, we propose a new localization way 
for epileptic foci based on machine- learning method with kurtosis tensor in DKI.
Methods: We recruited 59 children with hippocampus epilepsy and 70 age-  and sex- 
matched normal controls; their T1- weighted images and DKI were collected simulta-
neously. Then, the hippocampus in DKI is segmented based on a mask as a local brain 
region, and DKE is utilized to estimate the kurtosis tensor of each subject's hippocam-
pus. Finally, the kurtosis tensor is fed into SVM (support vector machine) to identify 
epilepsy.
Results: The classifier produced 95.24% accuracy for patient versus normal controls, 
which is higher than that obtained with FA (fractional anisotropy) and MK (mean kur-
tosis). Experimental results show that the kurtosis tensor is a kind of remarkable fea-
ture to identify epilepsy, which indicates that DKI images can act as an important 
biomarker for epilepsy from the view of clinical diagnosis.
Conclusion: Although the classification task for epileptic patients and normal controls 
discussed in this article did not directly achieve the location of epileptic foci and only 
identified epilepsy on certain brain region, the epileptic foci can be located with the 
results of identifying results on other brain regions.

K E Y W O R D S
DKI, kurtosis tensor, machine learning, MRI negative

www.wileyonlinelibrary.com/journal/cns
mailto:
https://orcid.org/0000-0001-7040-3591
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:jjhuang_atr@163.com
mailto:tijzhang@163.com


    |  355KANG et Al.

with epilepsy,3,4 which are highly dangerous. Temporal lobe epilepsy 
is one of the most common focal epilepsy, and the most common 
pathological change is hippocampal sclerosis.5,6 For MRI- positive 
temporal lobe epilepsy patients, because of clinical characteristics of 
unilateral temporal lobe hypometabolism, it is easy to diagnose and 
treatment. However, it is challenging to locate the lesion since some 
patients with temporal lobe epilepsy are MRI- negative, which can-
not be captured by conventional MRI. Conventional MRI- negative 
epilepsy accounts for 30% of the epilepsy population and up to 80% 
of the first seizure epilepsy patients.7

The etiology of epilepsy is extremely complex and includes ab-
normal neurotransmitter signaling, reactive glial cell proliferation, 
and altered synaptic structure. Minimally invasive surgery is currently 
an effective treatment for drug- refractory epilepsy, and preopera-
tive lesion localization is the key to successful surgery. However, it is 
challenging to locate the epileptic foci since a multitude of patients 
are MRI- negative. How to locate epileptic foci with available imaging 
techniques is a scientific problem of great practical value.8,9

Researchers around the world carried out research aiming to find 
effective ways to locate epilepsy. Tan10 combined MRI and PET fea-
tures to detect FCD patients by using SVM and image block- based 
classifiers, and found that the detection results of both features 
were better than MRI and PET as features alone, with a sensitivity 
of 93%, higher than the latter two 82% and 68%. 3D arterial spin 
labeling is also employed by researchers to perform the localization 
of epilepsy,11 and they reported a 69.2% accuracy. At the same time, 
they found that 1H- MRS (proton magnetic resonance spectroscopy) 
can locate epilepsy with 76.9% accuracy. Furthermore, when com-
bining the two methods, 84.6% localization accuracy was achieved.

Actually, it remains arduous for the patients who are MRI- 
negative to detect their lesion by conventional MRI since there are 
no obvious changes in the lesion. It is indispensable to detect the 
lesion with a kind of effective imaging technique. DTI (diffusion ten-
sor imaging) and DKI (diffusion kurtosis imaging)12- 14 are recently 
developed magnetic resonance imaging techniques, which use the 
anisotropy of water molecules in different tissues to reflect subtle 
structural and functional changes in tissues, and can detect early 
subtle lesions in brain tissue superior to structural images. Due to its 
ability to detect the subtle changes in brain tissue at the molecular 
level, DKI has shown their important scientific value in the study of 
the pathophysiological mechanisms of epilepsy and the lateraliza-
tion and localization of epileptogenic foci,15,16 and it has gradually 
increased in recent years in the diagnostic applications of epilepsy 
to accurately assess the presence of abnormalities in the gray and 
white matter of patients with epilepsy, quantify the microstruc-
tural abnormalities in the brain, and provide important information 
for the localization of epileptogenic foci.17,18 It was found19 that 
patients with MRI- negative temporal lobe epilepsy (MRI- TLE) had 
microstructural white matter alterations, and showed significantly 
reduced FA values in the corpus callosum, bilateral superior and in-
ferior fiber tracts, and the left corticospinal tract.

Although DKI has shown significant value in the localization and 
analysis of epileptogenic foci, however, due to the extremely large 

amount of data in functional MRI sequences, reliance on physician's 
review to analyze images cannot meet clinical requirements, which 
is not only time- consuming and laborious but also prone to missed 
diagnoses and misdiagnoses.

To solve this problem, many scholars have tried to analyze medi-
cal images automatically with machine- learning methods.20– 22 Gaizo 
et al.23 used machine- learning methods to classify epilepsy based 
on diffusion MRI, achieving accuracy of 68% (FA), 51% (MD, mean 
diffusion), and 82% (MK), and they also verified statistically that FA 
and MK are more significant than MD to diagnose epilepsy. In their 
study, the DKI images of the complete brain region were used to 
perform the classification task, but their work could only determine 
whether the epilepsy lesion is presented but cannot locate them. 
In contrast, Huang et al.24 proposed a method to locate epileptic 
foci for conventional MRI- negative epileptic patients based on DKI 
and deep learning technique. In particular, a convolutional neural 
network (CNN) is introduced to segment the hippocampus, and 
VGG16 with transfer learning is used to characterize the image. The 
extraction of vectors uses feature vectors as the input of the SVM 
classification network, and the accuracy obtained by the method is 
much better than that of Gaizo et al., which improved by 19.16% (FA), 
8.78% (MD), and 8.81% (MK).

In studies on localization of epileptogenic foci based on DKI, 
most of the literature utilized the parameters such as FA, MK and 
MD, which are derived from the kurtosis tensor of DKI to analyze 
the medical images.25,26 The effectiveness of these parameters in 
locating epileptogenic foci has also been demonstrated in the pub-
lished literature and in our experiments. However, it can be inferred 
that the kurtosis tensor itself contains more complete information 
than MK, MD, and FA parameters since the latter is derived from the 
former, and it is theoretically feasible to obtain higher accuracy for 
locating epileptogenic foci with kurtosis tensor. Based on this, this 
article proposes an automatic identification method with kurtosis 
tensor for epileptogenic foci localization based on machine- learning 
technology, which is expected to improve the accuracy of localization 
of epileptogenic foci by using the kurtosis tensor as a comprehensive 
biomarker for classification under a machine- learning framework.

2  |  MATERIAL S AND METHODS

2.1  |  Subjects

The data used in this article, DKI and T1- weighted images, were col-
lected by the Affiliated Hospital of Zunyi Medical University, which 
include 59 patients (32 males and 27 females) with epilepsy lesions in 
the hippocampus; all patients were diagnosed according to the 2010 
version diagnostic criteria of the ILAE by intermediate- grade pedia-
tricians or higher. All patients are conventional MRI- negative, and in 
the next section, DKI in the hippocampal region will be studied by 
statistical methods to obtain the conclusion of abnormal microstruc-
ture. In addition, 70 healthy volunteers (37 males and 33 females) 
with matching gender, age, and education level were recruited as 
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the normal control group. The subjects were all right- handed, and 
we performed a statistical analysis of years onset, VIQ (Verbal 
Intelligence Quotient), PIQ (Performance Intelligence Quotient), and 
FIQ (Full- scale Intelligence Quotient) in all patients with hippocam-
pal epilepsy. The statistics of normal control and epilepsy patients by 
age are listed in Table 1.

2.2  |  Image acquisition

All participants underwent MRI examinations (3.0 T HDxt, GE 
Healthcare). Before starting the examination, remove the metal 
substance carried by the subject, wear earplugs to reduce noise, fix 
the subject's head to reduce head movement, and straighten the 
head. Participants were asked to close their eyes, lie down, and stay 
awake. The scanning range is the entire head.

Scanning parameters:

1. 3D T1BRAVO: repetition time = 7.8 ms, echo time = 3.0 ms, 
inversion time = 450 ms, flip angle = 15°, the field of 
view = 256 × 256 mm, spatial resolution: 1 × 1 × 1mm, slice 
thickness = 1 mm, slices = 256, scan time = 208 s.

2. DKI: b value (0, 1000, 2000 s/mm2), the diffusion- sensitive gradi-
ent field is applied in 50 directions, b value is 0 scan 2 times, field 
of view (FOV): 240 × 240 mm, spatial resolution: 1 × 1 × 4 mm; 
echo time (TE):100 ms; repetition time (TR): 10 000 ms; layer 
thickness: 4 mm, layer spacing: 0 mm; flip angle (FA) 90°, scan 
time: 8′50″, scan layer number: 35 layers, a total of 1820 images 
were collected in the whole brain.

The studies involving human participants were reviewed and 
approved by the Zunyi Medical University Ethics Committee, Zunyi 
Medical University. Written informed consent to participate in this 
study was provided by the participants’ legal guardian/next of kin. 
Written informed consent was obtained from the individual(s), and 
minor(s)’ legal guardian/next of kin, for the publication of any poten-
tially identifiable images or data included in this article.

2.3  |  Data preprocessing

All data have been preprocessed by a series of standard preproc-
essing procedures. dcm2niigui software was used to convert all the 
image formats from Dicom to 3D nifty. Then, the data differences 
between different sampling time points are compared and corrected 
according to the 6 displacement directions (Yaw, Pitch, Roll, DS, DL, 
and DP) so that the brain images of the same subject at each time 
point are unified to the same direction. The phase errors caused 
by eddy currents in the acquired images by eddy current correc-
tion were removed to reduce the effect of this error on the subse-
quent analysis. In order to achieve spatial normalization, the cranial 
and scalp parts of the non- brain tissue were removed in the data 
preprocessing stage to eliminate interfering information. Finally, a 
child's brain image in our dataset is selected as a template, and SPM8 
toolbox (statistical parametric mapping 8) in the MATLAB R2017a 
platform is utilized to register all the data.

2.4  |  Mask production

Then, we tried to make hippocampus mask. Segmenting the hip-
pocampus region for each subject's T1 image was first performed, 
which were used to mask the hippocampus region of kurtosis tensor. 
Deep segmented CNN was employed to perform the segmentation, 
which was trained by Ataloglou et al.27 Then, since it contains T1 
and segmented hippocampus images, the EADC- ADNI HarP dataset 
(http://adni.loni.usc.edu/) was used to fine- tune the network and seg-
ment the hippocampus region of T1 image for each subject. In order 
to fully cover the hippocampus area for all subjects, union operation 
was used to produce the hippocampus mask. Since it was found that 
there was little difference between the 3 age groups in the shape and 
size of the hippocampus, the hippocampus regions segmented by all 
subjects are used to calculate the hippocampus mask regardless of 
the age group. Figure 1 shows the produced mask of hippocampus.

2.5  |  Localization of epileptic foci with 
kurtosis tensor

2.5.1  |  Framework

The flowchart of the proposed location method of epileptogenic foci 
is shown in Figure 2.

In the flowchart, the T1 and DKI images for each subject are 
preprocessed firstly. Then, we segment the hippocampal regions of 
the preprocessed T1 images of the brain and make the hippocampal 
masks based on the segmented hippocampal regions, which are sub-
sequently utilized to extract the hippocampus for each subject's DKI 
images at B0, B1000, and B2000, and then, the kurtosis tensor of 
the hippocampus is estimated using DKE software. Since the feature 
extraction of the data is extremely critical to the performance of the 
algorithm, in order to balance data sparsity and algorithm stability, a 

TA B L E  1  Statistical information of subjects

Item Patients (n = 59) Normal (n = 70)

Gender(M/F) 32/27 37/33

Age(years) 11.13 ± 2.89 
(range 7– 18)

12.82 ± 3.13 
(range 7– 18)

Handedness 59R 70R

Duration(years) 4.22 ± 3.15 
(range 1– 13)

— 

VIQ 93.90 ± 18.99 
(range 46– 122)

— 

PIQ 90.87 ± 18.99 
(range 43– 129)

— 

FIQ 91.93 ± 19.36 
(range 39– 125)

— 

http://adni.loni.usc.edu/
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combination of L1 and L2 regularization is finally used to normalize 
the model and extract effective features, which were fed into the 
SVM to identify epileptic patients from normal controls.

2.5.2  |  The extraction of ROI and estimation of 
kurtosis tensor

In this article, we propose a new method to locate epilepsy by divid-
ing brain tissue into several regions of interest, and then determin-
ing the presence or absence of lesions in each region of interest by 
classifying epileptic patients from normal controls. For the sake of 
simplicity and the data we collected, only the hippocampus was seg-
mented as a local brain region in this article. Although only a single 
brain region was considered in this article, it should be noted that 
it is convenient to generalize the proposed approach to other brain 
regions and perform the localization of epileptic foci.

To extract the region of interest, we converted the data format 
of the T1 image from Dicom to 3D image with dcm2niigui soft-
ware. Then, the affine transformation and interpolation of the 
3D images of each subject under the parameters of B0, B1000, 
and B2000 were performed using the affine matrix, which is the 
transformation of each subject's image at B0 to its aligned T1 
image. Subsequently, the kurtosis tensor of the extracted ROI is 
estimated.

To characterize anisotropic, non- Gaussian diffusion dynamics, 
it is assumed in DKI that the diffusion- weighted signal can be well 
described by the fourth- order cumulant expansion of the diffusion 
signal, provided that the b value(the strength of diffusion weighting) 
is not too large. The natural logarithm of the diffusion signal is thus 
given by28:

(1)lnS(b, n̂) = lnS0 − b
∑

ij

ninjDij +
b2D

2

6

∑

ijkl

ninjnknlWijkl

F I G U R E  1  Produced mask of hippocampus. (A) The segmented hippocampus in T1 and (B) the produced mask of hippocampus

(A) (B)

F I G U R E  2  Flowchart for identifying epileptogenic foci
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where b is the b value, n̂ is a normalized direction vector with the 
‘hat’ symbol indicating a unit vector, S0 is the signal with no diffusion 
weighting, D is the diffusion tensor, D is the mean diffusivity, W is the 
kurtosis tensor, the subscripts label Cartesian components, and sums 
on the indices are carried out from 1 to 3.

Directional diffusivity and diffusional kurtosis estimates for an 
arbitrary direction are given by:

The diffusion tensor D is a 2- dimensional tensor with size 
3 × 3, and the diffusion kurtosis tensor W is a 4- dimensional ten-
sor with size 3 × 3 × 3 × 3. Due to the symmetry of the tensor, 
there are actually only six independent components in the diffu-
sion tensor D and 15 independent tensors in the kurtosis tensor 
W. Consequently, the diffuse signal contains only 21 independent 
components.

2.5.3  |  Feature extraction

In order to obtain the diffusion tensor (DT) and kurtosis tensor 
(KT) of the subjects, we segment the DKI images at B0, B1000, and 
B2000 to obtain the corresponding hippocampus for each subject, 
respectively. The segmented hippocampus for each subject contains 
741 576 voxels; since DT for each voxel contains six independent 
components and KT contains 15 independent components, we 
shape the DT and KT of the hippocampus for each subject into the 
matrixes of order 6 × 741 576 and 15 × 741 576, respectively. Since 
the obtained matrix is highly sparse, we remove the all- zero rows 
and all- zero columns to obtain new matrices of order 6 × 16 000 and 
15 × 16 000, respectively.

Although the aforementioned method reduces the amount of 
data significantly, however, the data remain sparse and most of the 
features are negligible in the classification task. To extract the most 
discriminative features that contribute to the classification task, a 
combination of L1 and L2 sparse regularization methods is devel-
oped in this article.

Suppose there are N samples and X = (X1,X2,…,XN), 
Y = (y1, y2,…, yN) are the labels of the N sample, feature selection 
can be represented as the following optimization model.

where � = (�1, �2,…, �P) is the vector of regression coefficients 
under the sparse assumption. To constrain the model, we intro-
duce regular terms that combine L1 and L2, which is shown as 
follows.

where ��‖�‖1 is the penalty term of LASSO method, and � is a non- 
negative parameter, which is a linear model that estimates sparse 
coefficients. It is useful due to its tendency to prefer solution with 
fewer nonzero coefficients, effectively reducing the number of fea-
tures upon which the given solution is dependent. At the same time, 
L2 norm, � 1− �

2
‖�‖2

2
, is introduced to normalize the model in this article, 

which constrains the size of the model to avoid over- fitting and make 
the model generalized to new classification task.

2.5.4  |  Classification with SVM

Support vector machine (SVM) is the most popular classifier to 
deal with high- dimensional small dataset, which seeks a maximum 
margin hyper- plane to separate epileptic patients and normal con-
trols. Given a training set (xk , yk )Nk=1 with input data xk ∈ RP and cor-
responding binary class labels yk ∈ { − 1, + 1}, the output of primal 
SVM is presented as follows.

where �(x) is a non- linear function to map the input data space to 
higher dimensional feature space, which could separate the input data 
linearly by the hyper- plane. b is a bias term, and the optimization objec-
tive function can be defined as follows.

�k is a slack variable, which indicates the tolerance of misclas-
sification, w is the weight applied for input data x, and c is a tuning 
parameter and is a positive real constant.

3  |  E XPERIMENTAL RESULTS

To evaluate the classification performance of the proposed method 
in this article, the accuracy (ACC), precision (PRE), sensitivity (SEN), 
specificity (SPE), and area under the receiver operating characteris-
tic curve (AUC) were used as metrics in the experiment, which are 
defined as follows.

(2)D(n̂) = ±
∑

ij

ninjDij

(3)K(n̂) =
D
2

D(n̂)2

∑

ijkl

ninjnknlWijkl

(4)
argmin�∈RP

1

N

���Y−X�T
���
2

2

s. t. ‖�‖1≤ t

(5)argmin�∈RP
1

N

���Y−X�T
���
2

2
+��‖�‖1+�

1−�

2
‖�‖2

2

s. t. ‖�‖1≤ t

(6)y(x) = sign[wT�(x) + b]

(7)
min J(w, �)=

1

2
wTw+c

∑N

k=1
�k

s. t. yk [w
T�(xk )+b]�k , k=1, . . . ,N, �k ≥0

(8)accuracy = (TP + TN)∕(TP + TN + FP + FN)

(9)precision = TP∕(TP + FP)

(10)sensitivity = TP∕(TP + FN)

(11)specificity = TN∕(TN + FP)
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where TP and TN denote the number of positive cases predicted to be 
positive and negative cases predicted to be negative, respectively, and 
FP and FN denote the number of negative cases predicted to be posi-
tive and positive cases predicted to be negative, respectively.

We used the proposed method to identify the patients from nor-
mal controls and obtained the following results listed in Table 2.

It can be seen from Table 2 that favorable results could be ob-
tained whether DT or KT was used as the biomarker to classify 
epileptic patients and normal controls, which indicates that it is dis-
criminative to identify epileptic patients from normal controls with 
DT or KT. In addition, the fact that KT is superior to DT on most of 
the indictors suggests that KT is more distinguishable than DT while 
applying to the recognition task on epilepsy.

4  |  DISCUSSION

4.1  |  Evaluation on the discrimination of tensor

Diffusion tensor and kurtosis tensor are two measures of micro-
structural changes in the brain. The study of epilepsy or other cen-
tral nervous system diseases based on DTI or DKI generally utilizes 
parameters derived from DT or KT, such as FA, MD, or MK, while this 
article proposes to classify the epileptic patients from normal con-
trols with the tensor directly. Consequently, we evaluated DT and 
KT for significant identification of epilepsy. Independent- samples t 
test can be used to deduce the probability of the occurrence of dif-
ferences, so as to compare whether the differences between two 
groups of data are significant. Specifically, firstly, we calculate the 
maximum, minimum, and average values of DT and KT tensors after 
feature extraction. Then, we collate and analyze all the above data 
for the independent- samples t test; the results show that all data 
meet the requirement of normal distribution. Finally, independent- 
samples t test was performed on the patient group and the normal 
control group, and the results are shown in Table 3.

It can be seen from Table 3 that the p- values for DT and KT max-
ima, minima, and means were all ≤0.001, indicating that there were 
highly significant differences in DT and KT between patients and 
normal controls, and the differences in maxima, minima, and means 
were significant, indicating that DT and KT were better differenti-
ated between the patients and normal controls.

Additionally, ANOVA is used to test the significance of differences 
in the mean of two or more samples. To further indicate that there were 
significant differences in DT and KT between normal subjects and 
patients, ANOVA was performed on all subjects, and the maximum, 
minimum, and average values of DT and KT in patients and normal 
controls were obtained, respectively. The data results of ANOVA are 

shown in Figure 3, and the results show that all p- values were ≤0.05, 
indicating that there were indeed significant differences in DT and 
KT between normal people and patients. In addition, Figure 3 shows 
a violin diagram of grouped data, where the scatter point represents 
the distribution of the maximum, minimum, and average values of DT 
and KT tensors after feature extraction for each subject.

4.2  |  Evaluation of feature extraction

Feature extraction technique is critical to the performance of clas-
sification, and we developed a feature extraction method combining 
L1 and L2 norms. In this section, we evaluate the effectiveness of 
the proposed method. In the experiment, firstly, LASSO and PCA 
were employed to extract features from DT and KT, respectively; 
then, the extracted features were fed into SVM to perform the clas-
sification task. Table 4 shows the results of classification.

As can be seen from the results in Table 4, the accuracy of feature 
extraction with L1 penalty term, the combination of L1 and L2 pen-
alty term, or PCA is 0.9375, which is the same as that without feature 
extraction. It is probably because that DT tensor has a low dimension, 
and dimension reduction has little effect on the improvement of ac-
curacy. For KT, the accuracy of feature extraction using L1 penalty 
term and PCA was 0.9375, which was 6.25% higher than that without 
feature extraction. The method combining L1 and L2 penalty item 
achieves the highest accuracy of 95.24%, which is 7.74% higher than 
that without feature extraction, indicating that the combination of 
L1 and L2 penalty item has a better effect on KT feature extraction.

The ROC of DT and KT is depicted in Figure 4. We can see that 
the area under the ROC of DT was 0.84, while the area under ROC of 
KT could reach 0.98, indicating that the diagnostic effect of KT was 
much better than that of DT, and further proving the superiority of 

Train ACC Test ACC PRE SEN SPE AUC

DT 0.9654 0.9375 0.9167 0.9821 0.8000 0.9600

KT 0.9824 0.9524 0.9774 0.9821 0.9789 0.9900

Boldface indicates the best results or important conclusion.

TA B L E  2  Results of classification 
patients and NC with the proposed 
method

TA B L E  3  Results of independent- samples t test results

Normal 
(×10−3mm2/s)

Patient 
(×10−3mm2/s) p

DT

Max 3.8670 ± 0.7876 4.4452 ± 0.7972 9.8e−10

Min −0.5096 ± 0.1718 −0.6767 ± 0.1244 <2.2e−16

Avg 0.5116 ± 0.1563 0.7025 ± 0.1048 <2.2e−16

KT

Max 3.0766 ± 0.8837 2.4051 ± 0.6850 1.3e−14

Min −0.9149 ± 0.2591 −0.7021 ± 0.5436 7.5e−05

Avg 0.2402 ± 0.0441 0.1743 ± 0.0089 <2.2e−16

Boldface indicates the best results or important conclusion.
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DKI kurtosis tensor for the localization of conventional MRI- negative 
epileptic focus. It should be noted that it is normal for the ROC curve 
in this section to take the shape of step, because the experiment in 
this section is implemented on individuals, and the data set is rela-
tively small, which leads to the phenomenon of unsmoothness.

4.3  |  Comparison with other studies

Most of studies previously use parameters, such as FA, MK and MD, 
derived from DT or KT to analyze the central nervous system disease, 

while this article proposes a new approach to perform the data 
analysis with KT, which is different from the conventional methods. 
Consequently, we test the performance of FA, MK, MD, DT, and KT 
on the recognition of epilepsy, and the results are shown in Table 5.

It can be seen from Table 5 that the accuracy of classification with 
KT in the test set was higher than the highest value of 0.9392 with 
parameter MK, and the other indicators, precision, sensitivity, spec-
ificity, and AUC with KT were also outstanding. The accuracy with 
DT reached 0.9375, slightly lower than that with parameter MK, but 
sensitivity reached 98.21%. As we all know, sensitivity is much more 
important than specificity when making a diagnosis. It is prefer to 

F I G U R E  3  (A) Two- violin diagram of the maxima values of DT and KT in patients and NC; (B) two- violin diagram of the minimum values of 
DT and KT in patients and NC; (C) two- violin diagram of the mean values of DT and KT in patients and NC
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diagnose a healthy person as a patient than to diagnose a patient as 
a healthy one, which may delay the treatment and lead to the deteri-
oration of the condition. We also depicted the ROC of the proposed 
method and other method based on DKI, as shown in Figure 5.

On the whole, distinguishing epileptic patients from NC with DT 
or KT is superior to those methods with the parameters derived from 
DT and KT, which demonstrates it is feasible to analyze the brain 
microstructural changes of epilepsy with DT or KT directly, instead 
of calculating the parameters from these tensors.

In addition, the classification performance of the proposed 
method in this study was compared with studies based on other mo-
dalities, and the results are shown in Table 6.

The results listed in Table 6 were obtained with single mo-
dality approaches, such an EEG, DTI and fMRI, and CNN or 
SVM was employed to classify the epileptic patients and NC. 

Regardless of the modality and techniques employed in these 
methods, the proposed method achieves better classification 
accuracy compared with the other modality- based recognition 
algorithms.

5  |  CONCLUSION

Epilepsy is a serious hazard to human health, and it is critical to iden-
tify the epileptic foci for the subsequent treatment. For the recogni-
tion of epileptic foci of MRI- negative patients, this article presents 
a method based on diffusion kurtosis tensor, which could identify 
epileptic patients from normal controls in a single brain region, espe-
cially the hippocampus as an example. Although only a brain region 
is considered in this article, it should be noted that this method could 
be generalized to other suspected brain regions and then locate the 
lesion accordingly.

Most of other studies based on DKI employ the parameters, such 
as FA, MK, and MD, derived from the diffusion tensor or kurtosis 
tensor as the biomarker to analyze epilepsy; however, as we all know, 
diffusion tensor and kurtosis tensor themselves should contain 
more complete information about the microstructure of the brain. 
Accordingly, we propose to identify epileptic patients from normal 
controls with the kurtosis tensor directly instead of these derived 
parameters. In addition, machine- learning technique is introduced to 
perform the classification task in this article and to extract features 
more exactly, especially the combination of L1 and L2 regularization 
is developed to normalize the model. Several experiments were set 
up to verify the effectiveness of classifying epileptic patients from 
normal controls with kurtosis tensor and the proposed learning 
method (Supplementary Material).29- 34 From the results, it can be 
seen that the performance of classification with kurtosis tensor is 
indeed superior to other methods, and even if compared with other 
imaging modality, the proposed method also produced favorable 
results. All these illustrate that both diffusion kurtosis tensor and 
the classification method based on machine learning are promising 
in the identification of epileptic foci.

Although the method proposed in this article yields better re-
sults in classifying epilepsy and normal controls, it should be noted 
that, in contrast to the state- of- the- art methods, it allows indirect 
localization of epileptogenic foci, since we can locate epileptic foci F I G U R E  4  ROC of DT and KT

Item
Train 
ACC Test ACC PRE SEN SPE AUC

FA 0.9519 0.8873 0.8899 0.8661 0.9059 0.9600

MD 0.8166 0.5887 0.5763 0.4554 0.7059 0.6200

MK 0.9679 0.9392 0.9257 0.9242 0.9436 0.9800

FA + MK 0.9727 0.9268 0.9116 0.9235 0.9295 0.9700

DT 0.9654 0.9375 0.9167 0.9821 0.8000 0.9600

KT 0.9824 0.9524 0.9774 0.9821 0.9789 0.9900

Boldface indicates the best results or important conclusion.

TA B L E  5  Comparison between 
parameters and tensor for distinguishing 
patients from NC

TA B L E  4  Evaluation on feature extraction

Method DT KT

× 0.9375 0.8750

L1 0.9375 0.9375

PCA 0.9375 0.9375

Ours 0.9375 0.9524

Boldface indicates the best results or important conclusion.
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by analyzing other suspected brain regions with the same method 
and then locate the lesion according to the classification results. As 
an example, if we are not sure where the lesion is, we can input the 
patient's kurtosis tensor into the segmentation convolutional neural 
network or other segmentation software, divide the kurtosis ten-
sor into multiple brain regions, and then input the images of each 
brain region into the feature extraction and classification module 
to make predictions and judgments; the location of the lesion may 
provide imaging reference for the study of the pathophysiological 
mechanism of epilepsy, and subsequently, the epileptic foci could be 
located based on the proposed method.

Overall, the most crucial contribution of this article is to verify 
that the kurtosis tensor in DKI is more discriminative for epilepsy 
recognition than FA, MK, and MD parameters, which will be a prom-
ising conclusion in the computer- aided diagnosis of epilepsy based 
on diffusion imaging.
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