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Abstract: Interchannel EEG synchronization, as well as its violation, is an important diagnostic sign of
a number of diseases. In particular, during an epileptic seizure, such synchronization occurs starting
from some pairs of channels up to many pairs in a generalized seizure. Additionally, for example,
after traumatic brain injury, the destruction of interneuronal connections occurs, which leads to a
violation of interchannel synchronization when performing motor or cognitive tests. Within the
framework of a unified approach to the analysis of interchannel EEG synchronization using the ridges
of wavelet spectra, two problems were solved. First, the segmentation of the initial data of long-term
monitoring of scalp EEG with various artifacts into fragments suspicious of epileptic seizures in order
to reduce the total duration of the fragments analyzed by the doctor. Second, assessments of recovery
after rehabilitation of cognitive functions in patients with moderate traumatic brain injury. In the first
task, the initial EEG was segmented into fragments in which at least two channels were synchronized,
and by the adaptive threshold method into fragments with a high value of the EEG power spectral
density. Overlapping in time synchronized fragments with fragments of high spectral power density
was determined. As a result, the total duration of the fragments for analysis by the doctor was
reduced by more than 60 times. In the second task, the network of phase-related EEG channels
was determined during the cognitive test before and after rehabilitation. Calculation-logical and
spatial-pattern cognitive tests were used. The positive dynamics of rehabilitation was determined
during the initialization of interhemispheric connections and connections in the frontal cortex of
the brain.

Keywords: electroencephalogram; wavelet spectrum; ridge; segmentation; phase connectivity;
epilepsy; traumatic brain injury

1. Introduction

Wavelet transform (WT) is widely used in the processing and analysis of non-stationary
signals [1–5]. Since the 1990s, in various fields of biology and medicine [6], in neurophysi-
ology [7], discrete and continuous wavelet transforms have been used to extract diagnostic
information from signals and images of various types.
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Considering EEG as a simultaneously amplitude and phase modulated analytical
signal, and if the scanning wavelet width is narrower than the changes in signal phase,
then it is possible to use the property of the wavelet spectrum ridge, namely those that the
amplitude and phase of the signal are equal to the amplitude and phase of the wavelet
spectrum ridge [8–11]. Thus, defining the ridge as the absolute maximum of the wavelet
spectrum at each moment (reference point) of time, we obtain instantaneous values of the
amplitude, frequency and phase of the signal. This very useful property of WT ridges
makes it easy to find interchannel synchronized EEG fragments during epileptic seizures
(ESs) in long-term clinical monitoring data, restoring the cognitive functions of patients
after moderate traumatic brain injury using interchannel phase coupling link analysis, and
other tasks of EEG diagnostics.

WT is used for EEG decomposition into time-frequency fragments for the subsequent
detection of epileptic seizures (ESs). Currently, there are many publications on the use of
various classifiers for the detection and prediction of an epileptic seizure in EEG signals
using various classifiers [12–19]. Initial data on epilepsy monitoring should be preliminarily
processed, including removal of artifacts and filtering noise to get a clean epilepsy EEG
signal for the next step, feature extraction and classification [18,19].

In decision support systems, methods based on the analysis of EEG patterns are most
often used and one of them is the “Persyst” system by Persyst Development Corpo ation
(https://www.persyst.com, accessed on 13 August 2021). To detect ES in the time domain,
discrete-time sequences are analyzed into which the original EEG signal is divided. One of
such methods is based on tracking successive extrema in the selected time interval of the
signal and evaluating the histogram of the amplitude difference and time separation be-
tween the maximum and minimum values of the histogram [20]. The different approaches
for detecting ESs which were proposed in the time domain are the calculation of signal
energy [21]; the frequency characteristics of the signal were studied: the index of the phase
slope of multichannel EEG [22]; frequency-moment signatures [23]; entropy features [24];
Bayesian linear discriminant analyses of lacunarity and fluctuation index [25], four-level
Daubechies wavelet transform [26] and five-level wavelet decomposition method [27].
The most promising method of EEG analysis is the study of the parameters of the ridges
of wavelet spectrograms. In the EEG signals for the detection of epileptic seizures, the
dynamics of synchronization and changes in the phase ratio before, during and after the
seizures are monitored.

At present, attempts are being made to improve methods for detecting ESs in EEG.
Paper [28] describes a way to improve the support vector machine method by adding an
adaptive median feature baseline correction method. A combination of methods is also used
to search for ESs, for example, complementary ensemble empirical mode decomposition
with extreme gradient boosting [15]. A method has been proposed that combines time-
domain feature analysis and entropy calculation [16]. A similar combination was also
presented in work [14], but the study of parameters in the time domain was used to segment
the signal sections, in order to then carry out analysis using machine learning methods.
To differentiate ESs from non-seizure events, neural networks [13] and similar methods
are used, such as the method of binarization of frequency and temporal features of signal
fragments [29].

It should be noted that the estimation of the accuracy and specificity of the classi-
fication was carried out on EEG fragments previously selected and annotated by EEG
neurosciensists as ictal and interictal events. The most representative databases are the
EPILEPSIAE database [30], the Temple University Hospital EEG Data Corpus [31], Bonn
epilepsy dataset etc.

Clinical EEG investigations of epilepsy consist in long-term (several days) monitoring
of multichannel EEG using scalp or intracrinial electrodes in the presence of various
artifacts: the electrical activity that is not recorded in the cerebral zone, such as that due
to the equipment, patient behavior or the environment; eye movement and chewing are
common events that can often be confused with a spike; signals instrument fluctuations

https://www.persyst.com
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and artifacts of vital activity [32]. It can be seen from the review that the methods for
removing artifacts described in the literature are mainly focused on removing one type of
possible artifacts or ocular and muscular ones present in the real initial data of long-term
EEG monitoring. In general, we can conclude that the problem of automated removal
of artifacts of various types from the initial data of long-term EEG monitoring has not
been fully resolved. Additionally, this article describes canonical correlation analysis as a
successful method for removing muscle artifacts.

One of the most important characteristics of ES is abnormal inter-channel synchro-
nization or so-called coherency. To assess interchannel EEG synchronization, canonical
correlation analysis [33], normalized cross-correlation and imaginary part of coherency or
phase synchronization are used [34]. The main disadvantage of estimation coherence is the
necessity to average it over time epochs and frequency ranges [35]. The study of short-term
frequency synchronization of signals in two EEG channels by comparing their WT ridges
frequencies during a previously selected by physicians is presented in ES [36].

We did not find in the literature any information on taking into account one of the
most important feature of ESs—EEG interchannel synchronization for detecting ESs. So
this article describes a new approach to the segmentation of the initial long-term clinical
multichannel EEG monitoring data of patients with epilepsy into temporal fragments
suspicious of an ES, to reduce the quantity of EEG fragments. This approach is based at
first on the EEG WT ridges segmentation of the into frequency-synchronized fragments,
and secondly with a thresholding of the ridge spectral power density.

Another part of this paper is devoted to a new approach to the diagnosis and as-
sessment of rehabilitation of patients after traumatic brain injury (TBI). TBI is an insult
to the brain from an external mechanical force, which can lead to permanent or tem-
porary impairment of cognitive, physical, and psychosocial functions. The most used
EEG methods of investigation TBI are spectral analysis, absolute and relative amplitude
and power, coherence, and symmetry between homologous pairs of electrodes (see re-
view [36]). A multivariate support system has been developed to quantify and classify by
Random Forest classifier TBI stage based on analysis of EEG power in various frequency
ranges [37]. A study [38] investigated the possibility of detecting moderate TBI according
to the Glasgow Coma Scale [39] by EEG amplitude analysis and convolutional neural
network classification. Recently, a single channel system was developed for real-time mild
TBI detection with Convolutional Neural Networks classifier of EEG power in different
frequency ranges [40]. The proposed method can be applied for screening of the moderate
TBI and for selection of the patients for further diagnostics and treatment. In [41] the analy-
sis of the EEG data applying the energy, sample entropy, approximate entropy, Lempel–Ziv
complexity features demonstrated the increase in sample entropy was related with the
functional recovery, i.e., the rehabilitation dynamics of the injured brain region. EEG-based
neurofeedback is used for cognitive rehabilitation of patients with TBI [42].

Our approach is based on the analysis of the network of phase sinchronized EEG
channels WT ridges in patients with moderate TBI. The interchannel phase difference of
the EEG is determined during cognitive tests at the points of the frequency-modulated
wavelet spectra ridges. We investigate the neurons connectivity disruption of the brain
after TBI and consider the inter-channel phase connectivity between EEG channels during
cognitive tests. It does not depend on the EEG signal amplitude. In this paper Section 2
contains the basic formulae and conditions for their application. Section 3 describes a new
approach to segmentation of long-term EEGs into temporal fragments suspicious of an ES
by interchannel WT ridges frequency sincronization and power spectral density thresh-
olding. Section 4 describes a new approach to determine the evaluation of rehabilitation
positive dynamics of patients with moderate TBI.

2. Materials and Methods

We studied long-term (from several hours to several days) initial EEG records of
preoperative patients with epilepsy, obtained in laboratory of invasive neurointerfaces
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of the Research Institute TechnoBioMed. A.I. Yevdokimov Moscow State University of
Medicine and Dentistry. The segmentation method was used for several days’ 19-channel
EEG. The records were carried out according to the 10–20 system [43] in reference montage
with a sampling rate of 256 Hz. Power supply artifacts were removed from all EEG channels
using a notch filter at frequencies multiples of 50 Hz. The use of Morlet WT in the frequency
range from 0.5 to 22 Hz, so myographic artifacts were rejected.

The records of 19-channel EEG were considered, therefore the quantity of pairs of
channels is 171 for the group of control volunteers (18 subjects) and for the group of
patients with moderate TBI (12 subjects), where three patients had repeated EEG records
after rehabilitation in two cognitive tests. Cognitive tests were calculation-logical (CT1)
and spatial-pattern (CT2). During the CT1 test, the doctor randomly spoke words from the
category of “clothing” or “food” to the subject. During the test, the subject counted in their
mind the number of items belonging to one of these categories. At the end of the test, the
subject announced the result of the number of items. On the CT2 test, the doctor named an
arbitrary time. The subject had to represent the position of the hands-on-dial in accordance
with the indicated time. If both clock hands were in the same half of the dial, he said “yes”,
and if they were in different halves, he kept silent. Investigations of control volunteers and
patients with moderate TBI were carried out at the National Medical Research Center for
Neurosurgery named after Academician N.N. Burdenko. All subjects were right-handed
and signed written consent to participate in the research in accordance with the provisions
of the Helsinki Agreement. The rehabilitation was performed for 1–2 months. The time of
the rehabilitation was 40–45 min two times a week. The criteria for the inclusion of patients
in the investigation were the ability to stand on their own and the ability to follow the
doctor’s instructions, and also the absence of hemiparesis and other neurological disorders.
The international 10–20 system of the position of scalp electrodes was used for EEG record.
The recording time for every test was 60 s. EEG recording was carried out both during
the tests and without them. The sampling rate of the EEG was 250 Hz in the processing
of EEG signals. The original signals were recorded with a high-pass filter with a cut-off
frequency of 0.5 Hz, a low pass filter with a cut-off frequency of 70 Hz. Then, a notch
filter at frequencies multiples of 50 Hz and a Butterworth filter were used. The signals
were filtered by a fourth-order Butterworth bandpass filter with a bandwidth from 2 to
10 Hz. The EEG records were analyzed without selecting individual fragments of the
signal. However, the removal of outliers in the EEG signals was done with the Huber’s
X84 method [44].

We considered EEG as an analytical signal with time-varying amplitude and frequency.
The analytic signal was first locally represented as a modulated oscillation, demodulated
by its own instantaneous frequency, and then Taylor-expanded at each point in time. We
represent this signal as the following function:

S(t) = AS(t) exp(iΦS(t)), (1)

where AS(t) is the amplitude and ΦS(t) is the phase of the signal. Continuous wavelet
transform of signal S(t) is represented as:

W(a, b) =
∞∫
−∞

S(t)ψ∗a,b(t) dt (2)

ψa,b(t) =
1√
|a|

ψ

(
t− b

a

)
(3)

where a, b, a 6= 0 are the real numbers defining the scale and the shift. We used the following
function (Morlet mother wavelet) that was employed in the Matlab software:

ψ(t) =
1√
π fb

exp(−t2/ fb) exp(2πi fct) (4)
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where fb is a positive and related with the variance of Gaussian function and fc is a positive
value that corresponds with central frequency. The Morlet wavelet transform can be
represented as follows:

W(a, b) = M(a, b) exp(iΦ(a, b)), (5)

where M(a, b) is the absolute value of wavelet transform and Φ(a, b) is the phase of wavelet
transform (2).

Substituting expressions (3) and (4) in formula (2), we obtain:

W(a, b) =
1√

aπ fb

∞∫
−∞

AS(t) exp
(
− (t− b)2

a2 fb

)
exp

(
i
(

ΦS(t)− 2π fc
t− b

a

))
dt, (6)

usually (in Matlab) fb = fc = 1.
Integral (6) is approximately calculated by the method of stationary phase [45]. Under

certain conditions, the main contribution to the integral is made by the imaginary part of
the exponential function, since the contributions of rapidly changing phases cancel each
other out, and the contribution is made by the values located at the point of the stationary
phase. The stationary phase method is applicable when the amplitude A(t) of the signal
exhibits relatively slow changes compared to fast changes in the total signal associated
with fast changes in phase, for example, and asymptotic properties are satisfied concerning
the window ψ(t) under the following assumptions; so that the following conditions are
satisfied [11]: ∣∣∣∣ dΦS(t)

dt

∣∣∣∣� ∣∣∣∣ 1
AS(t)

dAS(t)
dt

∣∣∣∣, ∣∣∣∣ 1
AS(t)

dAS(t)
dt

∣∣∣∣� ∣∣∣∣ 1
ψ(t)

dψ(t)
dt

∣∣∣∣ (7)

The relationship between the phase from expression (5) and the phase from expres-
sion (6) is given as follows:

Φ(t) = ΦS(t)− 2π fc

(
t− b

a

)
(8)

For the stationary phase Φ(t), we have

dΦ(t)
dt

= Φ′S(t)−
2π fc

a
= 0 (9)

Such a condition is satisfied at t = t(a). To estimate the integral from formula (6), we
expanded the phase Φ(t) in a Taylor series up to a polynomial of the second degree in the
neighborhood of point t = t(a) till the order (t− t(a))2:

Φ(t) ≈ ΦS(t(a))− 2π fc

(
t(a)− b

a

)
+

1
2

Φ′′S(t(a))(t− t(a))2 (10)

Below, we use the notation ΦS ≡ ΦS(t(a)) and Φ′′S ≡ Φ′′S(t(a)).
After substituting formula (10) into formula (6), we obtained an approximate value

for the phase and absolute value of the wavelet transform:

Φ(a, b) ≈ ΦS − 2π fc

(
t(a)− b

a

)
+

1
2

arctan
(

a2 fb
2

Φ′′S

)
+

2(t(a)− b)2Φ′′S
4 + a4 f 2

b (Φ
′′
S)

2
(11)

M(a, b) ≈ AS(t(a))

(
1 +

a4 f 2
b

4
(Φ′′S t(a))2

)− 1
4

exp

(
−
(t(a)− b)2a2 fb(Φ′′S)

2

4 + a4 f 2
b (Φ

′′
S)

2

)
(12)

Expression (12) shows that the maximum of wavelet transform absolute value was



Sensors 2021, 21, 5989 6 of 22

reached at b = t(a). The instantaneous frequency at the ridge point fr at time moment
t = t(a) was calculated using expression (9):

fr(t(a)) = 2π
fc

a
(13)

In this case, the maximal value of the wavelet transform (ridge) of the signal is given by

max
a
|W(a, b)| ≈ AS(t(a))

(
1 +

a4 f 2
b

4
(Φ′′S t(a))2

)− 1
4

(14)

and the phase is approximated of a ridge point as

Φ(a, b) ≈ ΦS +
1
2

arctan
(

a2 fb
2

Φ′′S

)
(15)

As in [46], the relationship between the frequency of Fourier spectrum of the wavelet
transform and the scales a of the wavelet transform (2) is given as follows:

f =
f0

2a
+

√
2 + 4(π f0)2

4πa
∼=

f0

a
=

1
a

(16)

where f0 is a wavelet central frequency and it is considered that 4(π f0)
2 � 2. So, for the

ridge points ( fr, t) we have:

Wr(t) = max
f
|W( f , t)|, fr(t) = argmax

f
|W( f , t)|,

ΦS(t) ∼= Φr( f , t) = arctan
(

Im(W(t, fr))

Re(W(t, fr))

)
,

(17)

when the condition
Φ′′S
2 f 2

r
=

f ′r
2 f 2

r
� 1, (18)

is satisfied.
Summarizing, it should be noted that, in contrast to other works, the obtained simple

method for determining the ridge points as the maximum of the modulus of the wavelet
spectrum at each time point was undoubtedly easy to calculate.

3. EEG Segmentation

This chapter describes an EEG segmentation method based on the study of Morlet
wavelet transform ridges, which allows finding time intervals of interest in ES detec-
tion, which is used to analyze continuous long-term EEG monitoring data during post-
processing. The long-term EEG segmentation method consists of the following stages, as
shown in Figure 1: 1. signal filtration at frequencies multiples 50 Hz, 2. wavelet Morlet
transform of signals, 3. determination of wavelet spectrogram ridges, 4. marking time
intervals with interchannel synchronization, 5. marking time intervals with power spectral
density (PSD) values above the threshold, 6. intersections of time intervals, 7. visualization
of a segmented signal with marked time intervals.
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Thresholding
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 time intervals

Figure 1. Block diagram of a long-term EEG segmentation.

Let us show how segmentation was carried out using the example of an EEG recording
fragment containing an ES. For each EEG channel, we calculated the wavelet spectrogram
(2) and the ridges of the wavelet spectrogram (17) in frequency range [0.5; 22] Hz.

Generalized ESs were characterized by changes in power in several EEG channels
and the synchronization of different channels pairs. In order to estimate the inter-channel
synchronization, the modulus of the frequency difference at the points of the ridges was
calculated for each pair of channels. If the modulus of the difference was less than ε, then
there was synchronization Synci,j, otherwise, it was not:

Synci,j(k) =
{

1, | fri(k)− frj(k)| ≤ ε

0, | fri(k)− frj(k)| > ε
(19)
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where fri, frj are the frequencies of the ridges of the wavelet spectrograms on the i and j
EEG channels, k is the point of the ridge.

Figure 2 shows the projection of the wavelet spectrogram onto the PSD-frequency
plane of the sinusoidal signals with a frequency of 2 and 2.5 Hz. At ε = 0.5 the peaks were
distinguishable. On smaller epsilons, the peaks could merge.

Figure 2. PSD-Frequency projection of wavelet spectrums of two sinusoidal signals: blue is 2 Hz,
orange is 2.5 Hz.

Nearby points at which condition (19) was satisfied were combined into fragments.
Fragments between which the time interval was less than 10 s were combined into one. For
each fragment, the beginning and end times of synchronization in pairs of channels were
calculated. Table 1 shows a histogram of the number of synchronized fragments depending
on the duration in 19 pairs of EEG channels. For neurophysiological considerations, this
work considered fragments with a duration of 10 s or more.

Table 1. Histogram of the number of synchronized fragments depending on the duration in 19 pairs
of EEG derivations.

Pairs of Channels
Fragment Duration, s

>2 >5 >10 >15
>30≤5 ≤10 ≤15 ≤30

FP1-F7 3040 621 131 44 4
F7-T3 3683 430 84 29 9
T3-T5 4265 336 68 27 6
T5-O1 4210 375 77 40 4
FP1-F3 3413 534 90 20 1
F3-C3 3784 350 43 17 2
C3-P3 4140 397 41 15 1
P3-O1 4047 401 63 31 1
FZ-CZ 4250 362 35 18 1
CZ-PZ 4223 409 54 24 2
FZ-Pz 4044 329 31 16 0
FP2-F4 3352 535 99 46 7
F4-C4 3310 405 78 25 3
C4-P4 3869 421 75 15 1
P4-O2 4028 426 76 32 6
FP2-F8 3024 678 130 48 3
F8-T4 3385 518 88 46 5
T4-T6 3946 454 67 28 3
T6-O2 4190 470 76 28 3
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Figure 3 shows an example of ES fragment from observed EEG recording with visual-
ization of the presence of synchronization in channels pairs.

Figure 3. Fragment of daily EEG signal with ES illustrating the frequency of the wavelet spectrogram
ridge synchronization in different pairs of EEG channels. Black shows the presence of synchronization.
The ordinate shows the labels of channel pairs.

As can be seen, EEG synchronization could be observed in not all channels simultane-
ously (Figure 3). In this example, synchronization was observed in most channel pairs from
about 5970 s to 6000 s, but synchronization began to appear earlier in a smaller number
of pairs.

The time intervals in which the inter-channel synchronization in the frequency of the
ridges was recorded could correspond to both ES and artifacts of chewing, sleep, and random
physical influences on the electrodes, which generated artifacts of a non-epileptic nature.

A characteristic feature of the ES was a sharp change in the amplitude over a short
period of time. Therefore, in addition to searching for time intervals in which there was
synchronization on several pairs of EEG derivations, the detection of areas with high
values of the power spectral density (PSD) was carried out. In order to understand the
idea of the method, let us consider the histogram of the ridge points of the wavelet
spectrogram, calculated for one of the leads. The peak of the histogram contained about
1.2× 106 points, the maximum PSD value at which the number of ridge points tended
to 0, about 2.8× 107µ V2/Hz. Such a histogram gave a large peak in the region of low
PSD values and did not allow us to estimate the distribution of the ridge points, therefore,
Figure 4 shows the “window” of the PSD histogram. As can be seen from the figure, the
number of ridge points with low PSD values was large and could be interpreted as noise.
It was necessary to separate the informative points of the ridge from the noise.

In order to separate the points of the ridge of the wavelet spectrogram related to
high-amplitude electrical activity from noise, it was required to find the threshold value of
PSD Tr. The ridge PSDr values of the wavelet spectrogram were determined as follows:

PSDr(t) =
{

PSDr(t), PSDr(t) ≥ Tr
0, PSDr(t) < Tr

(20)

The points of the ridge PSDr(t) lying between the nearest points PSDr(t) = 0 was
called the ridge segment. Figure 5 shows a histogram of the number of ridge segments
from the PSD threshold Tr to Tr = 5× 105µ V2/Hz. At large values of PSDr, the number
of segments tended to be 0. The PSDr values could differ greatly not only from patient to
patient but also by channels; therefore, it was required to determine the threshold value
adaptively. Figure 5 shows a sharp decrease in the number of fragments with an increase
in the threshold value. To identify the threshold value, the second derivative of segments
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quantity from the threshold changes was analyzed. After reaching a local maximum (circle
mark in Figure 5), it became negligible. This means that the segments quantity linearly
decreased with growing threshold. In Figure 5 threshold PSD value Tr = 1.5× 105µ V2/Hz.
With this choice of the threshold, most ESs detected by the expert and a small number
of artifacts like ES were observed. Figure 6 shows an example of a segmented ridge of a
wavelet spectrum containing an ES.

1 2 3 4 5 6 7 8 9

PSD, V
2
/Hz 10

5

0

2

4

6

8

10

12

14

R
id

g
e

 p
o

in
ts

10
3

Figure 4. The window of the histogram of the PSD of the wavelet spectrogram ridge of the long-term
EEG signal.

Figure 5. Histogram of the number of ridge segments from the threshold PSD Tr. The circle marks
the local maxima at threshold value Tr = 1.27× 105µ V2/Hz.

Figure 7 shows a fragment of a daily EEG signal showing an ES. Marks of the expert
neurophysiologist are green vertical lines; the blue line, repeating the waveform, marks the
fragment on which the synchronization was recorded on several pairs of EEG derivations;
the dotted rectangles mark the areas found by the threshold method. Thus, the method of
application for the search for ES is shown.

For the 5-hour EEG 2017 the overall synchronized fragments duty more than 10 were
found (see Table 1), 112 segments were detected by thresholding, and finally we obtained
nine intersected segments. with total duration total duration about 4 min. Earlier [47],
we showed that by processing synchronous video of these nine fragments four fragments
were recognized as moving artefacts. As a result, there were five segments left with a total
duration of 4 min.
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Figure 6. The segmented wavelet spectrogram ridge of the EEG signal fragment typical for ES. The
upper figure shows a segmented ridge PSDr, the bottom one shows fr.

Figure 7. Fragment of an EEG with ES. Green vertical lines are expert marks. The blue line repeating
the signal waveform is a mark obtained by searching for synchronized channel pairs. Dotted squares
are marks obtained by the threshold method for detecting ES.

The detection of ES on EEG is complicated by the presence of many non-epileptic artifacts
in signals received from scalp electrodes: electromyographic, motor, instrumental human
actions, etc. An overview of various types of artifacts is given in [48]. Therefore, there is a
need to develop methods to differentiate ES from artifacts of a non-epileptic nature.

To solve this problem, an algorithm was proposed, which consisted of studying
the broadband peaks of the wavelet spectrograms, which were characteristic of an ES
and a chewing artifact. Let us make a comparison using the example of wavelet spectra
of an epileptic seizure (Figure 8) and chewing (Figure 9). We analyzed slices of wavelet
spectrograms frequency fcur(t) higher ridge frequency fr(t), for example, at Figures 8 and 9
fcur(t) = 4 Hz (green line).

For each slice, we calculated Fourier spectra. Figure 10 Fourier spectra of ES and
chewing artifact at fcur = 4 Hz. The frequency of the main peak and full width at half
maximum (FWHM) of the Fourier spectrum were calculated.



Sensors 2021, 21, 5989 12 of 22

t,sec

6

1

2

3

4

5

5880 5885 5890 5895 5900 5905 5910 5915 5920

Figure 8. Wavelet spectrogram of an EEG with ES. Green line corresponds to slice of the wavelet
spectrogram at the frequency fcur = 4 Hz.
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Figure 9. Wavelet spectrogram of an EEG with chewing artifact. Green line corresponds to slice of
the wavelet spectrogram at the frequency fcur = 4 Hz.
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Figure 10. Fourier spectra of wavelet spectrograms slices fcur = 4 Hz. The red line is the Fourier
Spectrum of the ES slice; the blue line is the Fourier spectrum of the chewing artifact slice.
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Figure 10 shows differences between ES and chewing artifacts. The main peak fre-
quency of the Fourier spectrum was at 0.71 Hz for the chewing artifact, and at 1.86 Hz
for the ES. Two peaks could be observed in ES slice spectrum, this can be interpreted as
the presence of spike-wave activity. There was a difference in FWHM of the peaks of the
Fourier spectrum of the slices: for a chewing artifact, it was almost 2 times more than for
an epileptic seizure. This may mean that the seizure period was more stable than chewing.

4. The Estimation of Inter-Channel EEG Phase Connectivity in Patients with TBI

Various methods of EEG phase coherence are used to estimate the connectivity of
brain regions. Usually, the phase coherency of signals is used for the estimation of the inter-
channel connectivity of EEG [33,49,50]. Coherency Cohxy( f ) is defined by the normalized
complex cross-correlation Cxy of signals x(t) and y(t):

Cohxy( f ) = | < Cxy > |, Cxy =
Sxy( f )(

|Sxx( f )||Syy( f )|
)1/2 , (21)

and a phase coherency is defined as | < exp(i∆Φ) > |, where | < • > | is an averaging [33].
In coherency analysis of non-stationary EEG, it is necessary to average exp(i∆Φ) over

different time intervals (epochs), and it is the first problem. The presence of the peak
in the histogram of the phase difference in different epochs determines the presence or
the absence of the phase synchronization in the absence of a peak. In addition to this,
Cohxy( f ) is averaged in preliminary selected frequency bands that are specified using
neurophysiological data. Usually, these bands correspond to the delta (2–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz) EEG, and other rhythms, and this is the second
problem. These disadvantages of the coherency analysis that leads to instability in the
definition of the inter-channel EEG connectivity. The validity of the coherent analysis of
non-stationary EEG signals is questioned [34].

Another method for the estimation of the phase connectivity is to determinate the
analytical signal x∗(t) = x(t) + iH(x(t)), where H(x(t)) is the Hilbert transform [51].
Then, the phase of signal x∗(t) is calculated as the arccosine (arcsine) of the ratio of the real
(imaginary) part x∗(t) to its modulus [52]. The phase synchronization of two signals takes
place when:

|∆Φx,y(t)| ≤ const, (22)

where ∆Φx,y(t) = nΦx(t)− mΦy(t), Φ is a phase of the signal; n, m are integers. Then,
the angular frequency of the signal can be found by the phase differentiating with respect
to time. Numerical differentiation in the presence of phase fluctuations is an unstable
procedure. Additionally, the disadvantage of the approach associated with the calculation
of analytical signals is that it is well applicable for narrowband signals and not good
enough for broadband signals [53].

The paper describes the methods and results of determining the phase-connected
pairs of EEG channels of patients with moderate TBI before and after rehabilitation, which
can be used to estimate the dynamics of treatment and rehabilitation of patients. The
method of the estimation of the inter-channel EEG phase synchronization at the points of
the ridges fr(ti) of their wavelet-spectrograms (6) is considered as an inverse task for the
task of modeling ridges:

fr(ti) = arg

{
max

f (ti)∈[1:25 Hz]
(|W(ti, f (ti))|)

}
, (23)

on the condition (18). Φx(t) ∼= Φr( f , t) = arctan
(

Im(W(t, fr))
Re(W(t, fr))

)
according to (17), when the

condition (18) is satisfied.
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However, the ridge Wr(t) can be considered as the frequency-modulated signal. It is
necessary to take an unmodulated oscillation [54]:

x = A0 sin(ω0t + Φ0), (24)

and enter a variable frequency ω = ω0 + ∆ωξ(t) = ω(t), where ξ(t) is some unknown
function, and ω(t) is known.

Then if Φ0 = 0:

x = A0 sin

ω0t + ∆ω

t∫
0

ξ(t) d t

 = A0 sin(ω(t)t), (25)

Then it is possible to estimate the phase of the ridge as [55]:

Φ(t, fr) = 2π fr(t)t, (26)

Figure 11 represents two ridge frequencies of the Morlet wavelet transform for two
EEG channels. Ridge points are points of the maximum power spectral density. Fp1 EEG
channel is indicated by the blue line. Fp2 EEG channel is indicated by the red line. The
abscissa is the time in seconds; the ordinate is the frequency in Hz.

Figure 11. Ridge frequencies of the Morlet wavelet transform for two EEG channels. Fp1 EEG
channel is indicated by the blue line. Fp2 EEG channel is indicated by the red line.

The EEG frequencies coincided in some time fragments. The phase of the ridge could
be estimated with the formula (26) if the ridge frequency was known.

The phases of the EEG signals were calculated and compared at the points of the
ridges (ti, fr) of their wavelet spectrograms in EEG records both with cognitive tests and
without tests. Then, the phase difference of two signals x(t) and y(t) in two EEG channels
was calculated. Next, the normalized histogram of portions ρx,y = nx,y/N in different pairs
of EEG channels was calculated, where nx,y is the quantity of reference points of ridges
with |∆Φx,y(t)| < 0.01π, N is a total quantity of EEG signal reference points in the test.

Figure 12 represents the normalized histograms of portions of the phase difference
at the ridge points of the wavelet spectrograms of two EEG channels for the case of a
phase coupled pair of EEG channels Fp1-Fp2, which were obtained by two methods.
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Figure 12a demonstrates the first way based on the calculation of the phase according to
the formula (26). Figure 12b demonstrates the second way based on the calculation of the
phase according to the formula (17).

x
,y

(a)

x
,y

(b)

Figure 12. Histograms of portions ρx,y for the phase difference at ridge points for two EEG channels.
This example shows a phase-connected pair of Fp1-Fp2 EEG channels. (a) The histogram is obtained
from the phase calculation by (26). (b) The histogram is obtained from the phase calculation by (17).

Figure 12a demonstrates that the histogram of portions of the phase difference at the
points of the ridge of the wavelet spectrograms calculated by the first way (26) had a higher
and sharper peak versus the second way (17) (Figure 12b). Below, we will calculate the
phase by formula (26).

Let A = max(ρx,y) be the maximum values of the histogram in the cognitive test and
let B = max(ρx,y) are the maximum values of the histogram in the EEG record without a
test. It is convenient to consider the difference D = A− B, which was sorted in order to
increase max(ρx,y). Figure 13 demonstrates the dependence of D sorted in increasing order
versus the numbers of a pair of EEG channels and its derivative for a healthy subject in the
CT1 test.

EEG channels pair number

1 D-

1

2

- derivative ( )2 D

Figure 13. The dependence of D sorted in increasing order (line1) versus the numbers of a pair of
EEG channels and its derivative (line 2) for a control subject in the CT1 test.

Figure 13 shows that the curve of the graph appears at some point D. It is advisable
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to consider pairs of channels with numbers greater than at point sharp of increasing of
derivative D (black point) as phase-connected pairs. Thus, phase-connected pairs of EEG
channels were identified before and after rehabilitation of patients with moderate TBI.

Figure 14 shows a block diagram of the developed algorithm for the determination
of phase-connected EEG channels. The developed algorithm for the determination of
phase-connected EEG channels consisted of the following stages, as shown in Figure 14:
1. Preprocessing of signals. It was outlier removing; notch filter at frequencies multiples of
50 Hz; filtering of signals with a Butterworth filter; 2. Calculation of wavelet spectra and
ridges; 3. Calculation of the ridges phase at each point of the wavelet spectra ridges. Calcu-
lation histograms of the phase difference portions (ρx,y) in two channels for 171 channels
pairs. The determination max(ρx,y) for each channel pairs; 4. Calculation of the difference
between max(ρx,y) with cognitive test and without a test (D), sorting in in-creasing order
of D. Calculation derivative (D); 5. The determination of phase connected EEG channels.
If the derivative (D) sharply increased with the growing pair, the pairs with numbers
greater than at the sharp point of the increasing derivative (D) were considered as a phase
connected pairs. If the derivative (D) did not sharply increase, it was impossible to identify
phase connected pairs.

Raw EEG data

Preprocessing signals:of

1. outlier removing;

2. notch filter at fre uencies multiples of 50 Hz;q

3. filtering signals with a Butterworth filterof

Calculation wavelet spectra and ridgesof

Calculation of the ridge phase at each point of the wavelet spectra ridge.

Histograms plotting of portions of the phase difference ( ) in two EEG channelsρx,y

for 171 EEG channels pairs. The determination max( )ρx,y

Calculation of the difference between max( ) with cognitive test and without a test ( ),ρx,y D

sorting in increasing order of . Calculation derivative ( )D D

Derivative ( ) sharply increasesD

Pairs of channels with numbers greater

than at point sharp of increasing of derivative ( )D

are phase-connected pairs

It is impossible to identify

phase-connected pairs

Yes No

Figure 14. The block diagram of the developed algorithm for the determination of phase-connected
EEG channels.

Figure 15 demonstrates the phase-coupled pairs of EEG channels for seven healthy
subjects during the EEG recording in the CT1 test.
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Figure 15. Phase-connected pairs of EEG channels of control subjects during the EEG recording in
the CT1 test.

Figure 15 represents that the frontal regions and interhemispheric connections are
activated in cognitive tests (CT1). Interhemispheric connections and connections in the
frontal cortex in control subjects are activated during CT1 test in accordance with pub-
lished work [56]. However, each control subject and patient with TBI are characterized by
different phase-connected pairs due to the individuality of each person during the CT1 test.
Therefore, we considered phase-connected pairs individually for each subject.

Figure 16 demonstrates the phase-connected pairs of EEG channels for the seven
control subjects during the EEG recording in the CT2 test.

Figure 16. Phase-connected pairs of EEG channels of the control subjects during the EEG recording
in the CT2 test.

Figure 16 represents that the frontal regions and interhemispheric connections were
activated in cognitive tests (CT2). Interhemispheric connections and connections in the
frontal cortex in control subjects were activated during CT2 test in accordance with pub-
lished work [56]. However, each control subject and patient with TBI were characterized
by different phase-connected pairs due to the individuality of each person during the CT2
test. Therefore, we considered phase-connected pairs individually for each subject.

Figure 17 demonstrates phase-connected pairs of EEG channels for three patients with
TBI during the EEG recording in CT1 and CT2 tests.
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СТ1

СТ2

Figure 17. Phase-connected pairs of EEG channels of patients with TBI during the EEG recording in
CT1 and CT2 tests.

Figure 17 shows that phase-connected pairs appeared more in the parietal and occipital
regions, than in the interhemispheric and frontal cortex in patients with TBI during CT1
and CT2 tests.

Additionally, the dynamics of inter-channel EEG synchronization of three patients
with TBI before and after the rehabilitation was also investigated. The phase-connected EEG
pairs in patients before and after rehabilitation were compared with the phase-connected
pairs of the control group for each test. If interhemispheric connections or connections in
the frontal cortex were activated in patients, as in control subjects in cognitive tests (CT1
and CT2), it could be concluded that the cognitive function had positive dynamics.

Figure 18 demonstrates that the positive dynamics could be seen of the rehabilitation
of a patient with TBI in the CT1 test. If interhemispheric connections or connections in the
frontal cortex in the CT1 test appeared after rehabilitation, as in the control subjects, the
positive dynamics of rehabilitation could be concluded.

(a) (b)

Figure 18. Phase-connected pairs of EEG channels of patients with TBI before (dotted lines) and after
the rehabilitation (solid lines) in the CT1 test. (a) Patient 1. (b) Patient 2.

Figure 19 demonstrates that the positive dynamics could be seen of the rehabilitation
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of patients with TBI in the CT2 test.

( )a (b)

Figure 19. Phase-connected pairs of EEG channels of a patients with TBI before (dotted lines) and
after the rehabilitation (solid lines) in the CT2 test. (a) Patient 1. (b) Patient 2.

Figure 19 demonstrates that the positive dynamics could be seen of the rehabilitation
of a patient with TBI in the CT2 test because interhemispheric connections or connections
in the frontal cortex were activated in patients, as in control subjects. If interhemispheric
connections or connections in the frontal cortex in the CT2 test appeared after rehabilitation,
as in the control subjects, it the positive dynamics of rehabilitation could be concluded.

Let us consider an example of the lack of progress of the rehabilitation of a patient
with TBI. Figure 20 demonstrates the dependence of D sorted in increasing order versus
the numbers of pairs of EEG channels and its derivative for a patient with TBI.

EEG channels pair number

1

2

1 - D

2 Dderivative ( )-

(a)
EEG channels pair number

1

2

1 - D

2 Dderivative ( )-

(b)

Figure 20. The dependence of D sorted in increasing order (line 1) versus the numbers of a pair
of EEG channels and its derivative (line 2) for a patient with TBI in the CT1 test. (a) before the
rehabilitation; (b) after the rehabilitation.

Figure 20b shows that there was no sharp increase in the D derivative after the
rehabilitation during the cognitive calculate-logical test, in contrast to Figure 20a. Thus, it
was impossible to clearly determine the quantitative signs and identify phase-connected
pairs by the suggested method. It could be concluded that there was no progress in
rehabilitation during the cognitive calculation-logical test.

5. Conclusions

The paper presents an approach for segmenting long-term 19-channel EEG monitoring
data. For the signals, the ridges of Morlet wavelet transform were calculated. Interchannel
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synchronization was used as a new feature of epileptic seizure. We also used the adaptive
thresholding of the wavelet spectrogram ridges for signal segmentation. The intersection
of the synchronized and the power spectral density intervals were obtained. As a result,
the total duration of the fragments for analysis by the doctor was reduced by more than
60 times. It was shown that the frequency of the peak of the Fourier spectrum of the
cutoff of the wavelet spectrogram at a frequency higher than the frequency of the ridge
during an epileptic discharge was 2.5 times higher than the frequency of the Fourier peak
corresponding to chewing. The Fourier peak full width at half maximum of the chewing
artifact was 2 times larger than that of ES.

A comparison of the phases of EEG at the points of the Morlet wavelet spectrogram
ridges were used for evaluation the EEG interchannel phase synchronization during cog-
nitive tests in control subjects and patients with moderate TBI. Calculation-logical and
spatial-pattern cognitive tests were used. Interhemispheric connections and connections in
the frontal cortex in control subjects are initiated during the cognitive tests. The possibility
of determining the positive dynamics of rehabilitation during the initialization of inter-
hemispheric connections and connections in the frontal cortex of the brain or the absence
of progress in rehabilitation has been shown.
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