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Technological advances in passive digital phenotyping present the opportunity to quantify neurological diseases using new
approaches that may complement clinical assessments. Here, we studied multiple sclerosis (MS) as a model neurological disease for
investigating physiometric and environmental signals. The objective of this study was to assess the feasibility and correlation of
wearable biosensors with traditional clinical measures of disability both in clinic and in free-living in MS patients. This is a single site
observational cohort study conducted at an academic neurological center specializing in MS. A cohort of 25 MS patients with
varying disability scores were recruited. Patients were monitored in clinic while wearing biosensors at nine body locations at three
separate visits. Biosensor-derived features including aspects of gait (stance time, turn angle, mean turn velocity) and balance were
collected, along with standardized disability scores assessed by a neurologist. Participants also wore up to three sensors on the
wrist, ankle, and sternum for 8 weeks as they went about their daily lives. The primary outcomes were feasibility, adherence, as well
as correlation of biosensor-derived metrics with traditional neurologist-assessed clinical measures of disability. We used machine-
learning algorithms to extract multiple features of motion and dexterity and correlated these measures with more traditional
measures of neurological disability, including the expanded disability status scale (EDSS) and the MS functional composite-4 (MSFC-
4). In free-living, sleep measures were additionally collected. Twenty-three subjects completed the first two of three in-clinic study
visits and the 8-week free-living biosensor period. Several biosensor-derived features significantly correlated with EDSS and MSFC-4
scores derived at visit two, including mobility stance time with MSFC-4 z-score (Spearman correlation —0.546; p = 0.0070), several
aspects of turning including turn angle (0.437; p = 0.0372), and maximum angular velocity (0.653; p = 0.0007). Similar correlations
were observed at subsequent clinic visits, and in the free-living setting. We also found other passively collected signals, including
measures of sleep, that correlated with disease severity. These findings demonstrate the feasibility of applying passive biosensor
measurement techniques to monitor disability in MS patients both in clinic and in the free-living setting.
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INTRODUCTION

Neurological diseases contribute to 2% of the global burden of
diseases, and are increasing in prevalence.! The accurate
monitoring of neurological dysfunction for both clinical care and
treatment trials remains a continued challenge, particularly given
the availability of qualified neurologists and the complexity of
assessment scales.

Multiple sclerosis (MS) is the most common cause of non-
traumatic disability among young adults,>* and is classified as a
demyelinating disease of the central nervous system. People with
MS (PwMS) experience visual symptoms, gait difficulty, upper-limb
weakness, spasticity, ataxia, fatigue, falls, disordered sleep, and
autonomic dysfunction that can significantly impact quality of
life. 3> Symptoms and disability measures in PwMS are typically
assessed at neurological visits every 3-12 months, with urgent
visits for relapses. However, there may be significant fluctuation of
symptoms, onset of relapses, and accrual of disability in between

clinic visits that are not well measured by this clinical visit
schedule.

Biosensors are non-invasive devices capable of measuring a
variety of physiological and kinetic parameters such as overall
activity, heart rate, body temperature, and other measures. Many
biosensors are actigraphs and incorporate inertial measurement
units (IMUs) to measure linear and angular forces.>” Such signals
allow for building models to characterize a subject’s gait and other
movement parameters. Some biosensors include optical sensors
such as the photoplethysmogram (PPG) to allow for measurement
of pulse oximetry and inference of heart rate. Wearable biosensors
are increasingly being explored as measurement tools for
disability in neurological diseases, including MS with the potential
of delivering more quantifiable, objective, and meaningful
measures of neurological function both within the clinic setting,
and in between clinic visits.®2'?

Most studies of wearable biosensors to date in PwWMS have
utilized commercially available products which focus on number
of steps walked and total energy expenditure.'® These have

'Ann Romney Center for Neurologic Diseases and Partners Multiple Sclerosis Center, Brigham and Women'’s Hospital, Department of Neurology, Harvard Medical School, Boston,
MA, USA. zVerily Life Sciences, South San Francisco, CA, USA. 3Biogen, Boston, MA, USA. *email: tchitnis@rics.owh.harvard.edu; tmsnyder@verily.com

Scripps Research Translational Institute

npj nature partner

journals


http://orcid.org/0000-0002-9897-4422
http://orcid.org/0000-0002-9897-4422
http://orcid.org/0000-0002-9897-4422
http://orcid.org/0000-0002-9897-4422
http://orcid.org/0000-0002-9897-4422
http://orcid.org/0000-0001-8601-5534
http://orcid.org/0000-0001-8601-5534
http://orcid.org/0000-0001-8601-5534
http://orcid.org/0000-0001-8601-5534
http://orcid.org/0000-0001-8601-5534
http://orcid.org/0000-0002-7486-9919
http://orcid.org/0000-0002-7486-9919
http://orcid.org/0000-0002-7486-9919
http://orcid.org/0000-0002-7486-9919
http://orcid.org/0000-0002-7486-9919
http://orcid.org/0000-0002-4895-9056
http://orcid.org/0000-0002-4895-9056
http://orcid.org/0000-0002-4895-9056
http://orcid.org/0000-0002-4895-9056
http://orcid.org/0000-0002-4895-9056
http://orcid.org/0000-0001-7743-4366
http://orcid.org/0000-0001-7743-4366
http://orcid.org/0000-0001-7743-4366
http://orcid.org/0000-0001-7743-4366
http://orcid.org/0000-0001-7743-4366
http://orcid.org/0000-0002-4561-8440
http://orcid.org/0000-0002-4561-8440
http://orcid.org/0000-0002-4561-8440
http://orcid.org/0000-0002-4561-8440
http://orcid.org/0000-0002-4561-8440
https://doi.org/10.1038/s41746-019-0197-7
mailto:tchitnis@rics.bwh.harvard.edu
mailto:tmsnyder@verily.com
www.nature.com/npjdigitalmed

T. Chitnis et al.

consistently shown that patients with MS are less ambulatory in
the community than controls. However, these sensors have
limited ability to monitor more detailed metrics. One recent study
compared several commercially available and research actigraphs,
and found that commercially available monitors provided reason-
ably accurate estimates of total energy expenditure, but a larger
error was noted for individual activities, particularly resistance
exercise.'” A comparative study of smartphone accelerometer
applications and motion sensors for capturing steps taken in
PwMS found substantial variability in the precision and accuracy
of the applications and devices."”

Here, we studied the use of research-grade biosensors in
multiple body locations to quantify specific aspects of mobility like
gait, balance, and dexterity in addition to more basic measures of
activity both in clinic and during a free-living phase in a well-
characterized cohort of PwWMS. Our goals were to assess feasibility,
adherence, as well as correlation of biosensor-derived metrics with
traditional neurologist-assessed clinical measures of disability. We
used algorithms to extract multiple features of motion and
dexterity and correlated these measures with more traditional
measures of neurological disability including the expanded
disability status scale (EDSS)'® and the MS functional composite-
4 (MSFC-4).""%° We then explored the feasibility of measuring
similar signals outside of the clinic by having subjects wear
biosensors for 8 weeks while going about their daily lives. In order
to contextualize this free-living data, we applied a deep neural
network activity classifier to label different activities including
walking segments and then used the same algorithms as in clinic
to quantify motion and dexterity outside of the clinic.

RESULTS
Cohort

The demographics and disability scores of the subjects at baseline
visit are detailed in Supplementary Table 1. 92% (N = 23) of the
cohort were females with 68% (N = 17) of the cohort being non-
Hispanic women. The average age was 47 years old, with 16 years
average disease duration at their baseline visit. The mean EDSS at
baseline is 3.4, with a range of values from 1.0 to 6.5. The average
EDSS scores were consistent across the three clinic visits. Two
subjects experienced a relapse in the preceding 6 months from
baseline visit and no relapses during the study period. There were
no disease modifying medication changes during the study
period.

In-clinic assessments

Feasibility/adherence in clinic. Twenty-five subjects completed
the initial clinic visit. 23 subjects completed the second clinic visit
4 months later as well as the 8-week free-living data collection.
Twenty-one subjects completed the third clinic visit.

Biosensor correlations with in-clinic disease severity measures. We
compared each of 23 features (detailed in the Supplementary
Information) collected from the biosensor data and structured
testing with in-clinic disease severity measures at each of the
three clinic visits. Primary results for the EDSS, MSFC-4, and MSFC-
4 composite for clinic visit 2 are shown in Table 1; additional
results for clinic visits 1 and 3 are provided in Supplementary
Tables 2 and 3.

Several biosensor-derived features, including gait (stance time,
turn angle, mean turn velocity) and balance, were significantly
correlated with EDSS and MSFC-4 scores. Spearman correlation of
mobility stance time with MSFC-4 z-score was —0.546 (p = 0.0070)
at visit two. Significant correlations were observed for several
aspects of turning, including turn angle (r = 0.437; p = 0.0372) and
maximum angular velocity (r=0.653; p=0.0007) at visit two.
Similar correlations were observed at other clinic visits. Figure 13,
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b shows representative traces measured from the chest during the
TUG test for two subjects with differing disability. Figure 1c shows
the correlation across the cohort; slower turns are observed as
MSFC-4 score decreases (more severe disability).

Balance also stood out as a significant feature in our analyses.
Figure 1d shows body displacement for three severity groups
based on MSFC walk score. Spearman correlations for both sway
distance left-right (r= —0.532; p = 0.0090) and anterior-posterior
(r=—0.489; p = 0.0179) to overall MSFC-4 z-score were significant.
The overall magnitude of these changes is on the order of
millimeters, making this a feature that may be difficult to observe
by eye; thus use of a quantitative metric from a biosensor can
complement clinical observation.

The Psychomotor Vigilance Task (PVT) also showed some
correlations to the overall MSFC-4 score as well as several of the
subscores. Overall, the in-clinic biosensor and structured activity
features revealed multiple features across several domains of
activity that merited further investigation outside of the clinic.

Free-living assessments

Feasibility. Between clinic visits 2 and 3, 23 subjects wore a set of
sensors while going about their daily lives. Roughly 50,000 h of
data were collected across all the sensors during this period, with
reasonable compliance (see Supplementary Fig. 1) throughout the
8 weeks with only a few exceptions, including participants
traveling. Site coordinators did contact participants when data
were not observed to help troubleshoot possible issues, which
likely contributed to the favorable compliance observed in
this study.

Associations of free-living measures with in-clinic disease severity
measures. Given the unstructured nature of free-living data, use
of an activity classifier was paramount to segment these data to
identify walking and other activities; physiometric signals were
then algorithmically extracted, as previously described. In addition
to the clinically derived measures, measures related to activity,
pulse rate and pulse rate variability, and sleep were added into the
analysis at this stage. In total, 23 features were compared with the
clinical scores captured at visit 2 before the start of this
longitudinal data collection.

Before completing the clinical comparisons, we analyzed the
median values for these extracted data for each day of the study
to understand the overall variability observed in a measure like
stance time (Fig. 2a). Higher variability in the signal would be
expected given the greater technical variability of data captured in
this setting. In clinic, subjects are instructed to walk as fast as they
can and to turn exactly 180° during a TUG test. In the real world,
subjects may walk with variable stride rates and may turn in many
different angles based on their walking paths. In our analysis, we
found that aggregation over multiple days was necessary to
remove the technical noise in the data. Comparing median stance
time for a variable number of times to the overall median across
8 weeks of observation (Fig. 2b) shows that once one or more
weeks are aggregated the mean errors of this measure drop to
below 0.02 (compared to the overall study median for this
measure). Figure 2c shows how the aggregated data over a 2-
month window reveals statistically significant correlations to
MSFC-4 measures captured in clinic.

For this initial feasibility study of free-living measures, we used
the median values from all 2 months of free-living measurement
to look for associations with clinically derived measures. Table 2
shows the seven most strongly correlated signals from this outside
of clinic observation period.

Several of the mobility features observed in clinic to be
significant, including stance time and turn angle (measured at the
chest), replicated in this free-living setting without any structured
activities to capture these features of motion. Consistent with
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Table 1. Spearman correlations of 23 in-clinic biosensor and structured testing measures with EDSS, MSFC-4, and MSFC-4 composite z-scores as

observed at the second clinic visit (the first and third visits are summarized in the supplementary information).

Category Feature N EDSS MSFC-4 25 foot walk  9-hole peg test Symbol-digit LCVA test

z-score z-score z-score modality test z-score
z-score

Mobility (gait) Stance time 23 0.677** —0.546** —0.618%* —0.440*% —0.316 —0.447
Swing time 23 0.469* —0.425* —0.484* —0.380 —0.282 —0.451
Mobility activity time 23 0.814** —0.859** —0.893** —0.702%* —0.740%* —0.575

Mobility (turn) Turn angle—chest 23 —0.444* 0.437*% 0.442*% 0.528* 0.400 0.230
Turn duration—chest 23 0.021 0.125 0.150 0.286 0.148 0.026
Turn velocity (max)—chest 23 —0.583* 0.653** 0.552* 0.597** 0.642%* 0.456
Turn velocity (mean)—chest 23 —0.563* 0.473* 0.382 0.436* 0.393 0.292
Turn velocity (std)—chest 23 —0.588* 0.579%* 0.476* 0.546%* 0.618** 0.433
Turn angle—ankle 23 —-0.352 0.256 0.276 0.295 0.444* —0.083
Turn duration—ankle 23 0004 —0.189 —0.140 —0.059 —0.028 —0.535
Turn velocity (max)—ankle 23 —0.481* 0.594** 0.527* 0.628** 0.579** 0.463
Turn velocity (mean)—ankle 23 —0.226 0.325 0.274 0.415*% 0.371 0.236
Turn velocity (std)—ankle 23 —0.520* 0.490* 0.533* 0.498* 0.501* 0.377

Mobility (balance) Sway distance left-right 23 0.568* —0.532%* —0.478* —0.610%* —0.599%* —0.271
Sway distance 23  0.503* —0.489* —0.457* —0.587** —0.550** —0.237
anterior-posterior
Sway displacement 23 0.513* —-0.518* —0.378 —0.514* —0.440* —0.376
left-right
Sway displacement 23 0.184 —0.120 —0.021 —0.257 —0.110 —0.021
anterior—posterior

Overall activity Heart rate variability 16 —0.519*% 0.488* 0.434 0.391 0.677** 0.241

Fatigue Mean PVT delay—Total 23 0.242 —0.486* —0.510* —0.422% —0.542*%* —0.429
Mean PVT delay—1 23 0.360 —0.362 —0.347 —0.335 —0.291 —0.310
challenge
Mean PVT delay—3 23 0.291 —0.456* —0.489* —0.432% —0.360 —0.418
challenges
Mean PVT delay—5 23 0.348 —0.508* —0.542% —0.489* —0.431* —0.469
challenges
Mean PVT delay—7 23 0304 —0.498* —0.525% —0.410 —0.508* —0.412
challenges

EDSS expanded disability status scale, MSFC-4 multiple sclerosis functional composite-4, LCVA low contrast visual acuity test

*p- and g-values 0.05, **p- and g-values 0.01

earlier publications, overall activity levels were also correlated with
disease status. Finally, several sleep and fatigue measures
captured passively (REM percent/movement rate of legs) or
actively (PVT testing) were significantly associated with MSFC-4
scores, with the best correlation with the SDMT measure of
processing speed (Table 2). In contrast, patient-reported fatigue
scores via daily questionnaire were not significantly associated
with MSFC-4 scores.

Adherence to study protocol. During the free-living monitoring
phase, we assessed compliance qualitatively based on both the
number of hours that the wrist devices were worn per week
compared to the protocol-defined target, and the consistency in
the number of hours that devices were worn week to week across
the 8 weeks of observation. We classified compliance to device-
wearing into three behavioral groups. Two to three subjects were
in a low compliance group with consistently low (<20% target) or
no data return, particularly after the first couple weeks of the
study. Three to four subjects were in a declining compliance group
with initially high compliance but some decline week to week as
the study went on; within this group, there was still data returned
each week but by the end of the study it was at or below 40-60%
of the study target in terms of number of hours. Eighteen subjects
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were in a high compliance group with consistently high data
return, above 80% of the protocol-specific targets even if a couple
weeks were at lower values. During the free-living monitoring
phase, 83% of the hours of data were successfully received, while
17% of the hours of data expected was not received due either to
non-adherence issues such as not wearing the biosensors or to
technical issues.

Participant feedback. We solicited participant feedback at the
conclusion of the study and 15/23 participants completed a
survey. In response to the question: “How likely are you to
recommend that a friend/colleague with MS participate in a
similar study?” 87% responded with a score of 8 or greater on a
scale with maximum of 10. In response to the question: “Any
aspects of the study that have been difficult for you?”: 40%
reported issues with either charging or synchronizing the device;
27% reported issues related to “ease of use”; 13% reported
technical issues with the device; 7% reported no issues.

DISCUSSION

Our study found that research-grade wearable biosensors that
capture accelerometry and gyroscopic motions provided metrics

npj Digital Medicine (2019) 123
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In-clinic measures correlated with disease severity at the second clinic visit. Gyroscopic measurements at chest during turns, measuring

angular velocity, differs with disease severity. a, b Representative traces for turns from less (@) and more (b) disabled subjects for angular
velocity during turns during the timed-up and go test. ¢ Spearman correlation across the entire cohort for the mean max angular velocity of
observed turns (95% confidence interval shown for trend line). Postural sway also shows increased deviation in both left-right (x) and
anterior—posterior (y) directions as disability scores increase; individual traces (unique color by subject) for 30-s balance portions are shown for
three cohort subgroups based on MSFC walk score for (d) low disability, (e) medium disability, and (f) high disability.

with good correlations to complex MS scales traditionally assessed
by a neurologist. The biosensor measures most closely correlated
with traditional neurological scales included those captured
during passive walking, such as mobility stance, turn angle
velocity, and postural sway. These measures could be reliably
captured both in-clinic and during free-living activity, which opens
the opportunity to use biosensors to measure and monitor
neurological disability in between clinic visits. Additionally, the
PVT activity correlated with MS disability scores including upper-
limb subscores. Percent REM sleep, based on pulse rate variability
captured by the device, correlated with disability scores. This
study demonstrates the potential for biosensor-derived, passively
collected measures for use in routine clinical monitoring of MS
patients in the free-living setting, as well as for use in clinical trials
to measure disability and relapses.

MS is an example of a complex neurological disease, which can
affect a variety of neurological measures including gait, mobility,
motor strength, vision, sensation and coordination of both upper
and lower limbs. Though in-clinic measures continue to be useful
for assessing disease progression, these only provide snapshots of
an individual’s disease and may miss out on important variations
that occur in between clinic visits.

Biosensors are emerging as important new means to capture
neurological disability data, both in clinic and at home. Past
studies in MS using wearable biosensors have relied on counting
o116 which requires active participation by the subject, and
may be influenced by a number of factors that enhance or
preclude walking on a daily basis such as weather, workload, daily
schedule and other non-biological factors. Passive measures,
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which do not require active participation, may thus enhance the
ability to capture mobility and disability measures on a more
routine basis, and may better reflect daily neurological function
independent of volition.

Our findings identified several measures captured by 2-3
biosensors worn on a daily basis that provided good approxima-
tion to clinician-evaluated metrics. These included several walking
measures captured by chest or ankle worn devices, deriving more
specific aspects of gait including stance time and turn angle than
previous studies focused on step counts. Future iterations of
biosensor data will need to balance the wearability and
convenience of devices with sensitivity to relevant signals. Studies
such as this one will help to inform relevance.

MS patients also experience a variety of sleep disorders that can
impact daily function.?' Disturbed sleep and abnormal sleep
cycles are correlated with fatigue in MS patients.** Sleep
disturbances can be due to insomnia, as well as secondary sleep
issues related to neurogenic bladder, pain or spasticity. Although
several studies have investigated the use of actigraphy in patients
with primary sleep disorders, Parkinson’s disease, psychiatric and
other neurological disorders, few studies have examined the
application to the study of sleep in MS. One study found sleep
efficiency measured by actigraphy correlated with daily sleep
ratings.”> In this study, we found that measurement of REM
percent as well as movement of legs during sleep correlated with
disability scores, indicating potential links between sleep quality
and neurological dysfunction, which require further study to
investigate cause versus effect relationships. In this study, REM% is
estimated based on a heart rate variability model from the PPG
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Fig. 2 Properties of free-living mobility measures extracted during classified walking periods. a Box and whiskers plots representing the
distribution of daily stance time measures for that subject across each of the 56 days of measurement during the study; subjects are sorted by
MSFC-4 clinic visit 2 scores. b Variability of the Stance time median value by number of days of observation within subjects. A variable number
of days (from 1 up to all 56 + days) was compared to the overall study time median, demonstrating how averaging different ranges of data
can help control for the overall variability. With 1 week’s worth of data, the standard error for stance time is within 0.02 s compared to 0.08 s
with just 1 day’s worth of data. ¢ Spearman correlation for median stance time, calculated across the entire 8-week free-living period; there is a
correlation (—0.56, g-value = 0.0052) between this free-living measure and the MSFC-4 composite score at visit 2.

signal, not gold-standard polysomnography. Further research is
needed to confirm this result.

Our results therefore demonstrate the potential both in-clinic
and outside of the clinic to assess a subject’s disease status.
Limitations of this study included the fact that 21/25 subjects
completed all study visits, and 15/23 completed the final survey.
18/25 subjects were classified as high compliance for the at-home
portion of the study, which could be further optimized. Further
analysis is underway to assess the day-to-day variability of

Scripps Research Translational Institute

biosensor metrics. Additional work is needed to understand
exactly which features, measured in which body locations, are
most reliably captured. Longitudinal data collection over many
months or years may then allow for detection of changes in an
individual’s disease status; the observation window in this study
was too short to expect any such changes, and no clinically-
determined relapses were measured during the study.

With further refinement these longitudinal data could be
summarized for MS clinicians during the (semi-)annual neurologic
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Table 2. Associations of free-living features with MSFC span.
Category Feature Correlation p-value, g-value
Mobility (gait) Stance time —0.56 0.0055, 0.0052
Mobility (turn) Turn angle—chest 0.44 0.0377, 0.0154
Mobility (gait) Swing time —-0.39 0.0648, 0.0215
Fatigue/sleep ~ Mean PVT Delay —0.55 0.0060, 0.0055
Sleep Movement rate of legs —0.45 0.0398, 0.0154
during sleep

Sleep REM percent 0.42 0.0584, 0.0202
Overall activity Idle minutes —0.52 0.0110, 0.0074

exams to better contextualize the results of an EDSS/MSFC-4
assessment given (once or) twice a year. Further studies may also
evaluate these measures in terms of treatment response, in
particular for remyelinating and neuroprotective therapies, in
which subtle disability changes may be challenging to detect
during periodic clinic visits and with current disability measures.

These findings could be extrapolated to other neurological
diseases, including Parkinson’s**?> Alzheimer's disease®® and
stroke,?” in which free-living monitoring of disability accrual and
response to treatment may be critical to tailoring care. Indeed, the
first biosensor device to detect the occurrence of seizure was
recently approved by the FDA, demonstrating the clinical utility of
biosensor devices in neurological diseases.

The combination of wearable biosensors and machine-learning
algorithms to annotate daily activities may advance the care of
neurological diseases including MS by enabling the monitoring of
patients in the free-living environment.

METHODS

Subjects

Twenty-five MS patients followed at the Partners MS Center, Brigham and
Women'’s Hospital, were selected to comprise three severity cohorts based
on EDSS scores in the prior 6 months (0-2.5, >2.5 to 4.0, and >4.0-6.5).
Eight to ten subjects per EDSS grouping were enrolled. Subjects were
selected from the ongoing prospective longitudinal study (CLIMB) at the
center, in which detailed neurological examinations, EDSS scores,
medication, and relapse history are collected in a relational database.
Written informed consent was obtained from all subjects, and the study
was performed in compliance with relevant guidelines and regulations
Study subjects signed a written informed consent form and received study
remuneration in the form of a gift card, as well as parking for the study
visits. This study was approved by the Partners Healthcare Research
Committee Institutional Review Board (IRB) and participants provided
written informed consent to take part in the study.

Biosensors

The study used the Cardiac and Activity Monitor (CAM), an investigational
research device developed by Verily Life Sciences. The CAM device
measured acceleration and motion with an on-board IMU, as well as heart
rate by a PPG sensor or on-demand electrocardiogram (ECG) measure-
ment. Additional sensors allowed measurement of skin impedance, body
temperature, and environmental factors such as light exposure and air
pressure. The CAM allowed for event tagging, patient-reported data
collection, and other assessments by interaction with the screen. Although
typically worn in a wrist form factor like a watch, we developed methods to
reliably attach CAM to multiple body locations using different clips and
straps (Fig. 3a—c).

In addition to the CAM devices, each subject received a laptop to
perform additional testing as described below. Technical support was
provided throughout the study through a call-in service which ensured
high compliance by the subjects.
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In-clinic assessments

Subjects completed three clinical visits separated by approximately
16 weeks and 8 weeks, respectively. At each clinic visit subjects completed
MSFC-4 (SDMT, T25FW, 9HPT, LCVA), and other testing while wearing
biosensors at nine body locations. The calculation for the MSFC-4 and
composite z-scores can be found in Supplementary Table 3. An EDSS
assessment was performed by one neurologist at each clinic visit.
Additional structured assessments were performed including:

Standing still for 30 s to measure postural sway;

Three 25 foot timed up and go tests (TUGs) and a 2 minute walk test to
measure walking and turning;

PVT test performed on the CAM to measure reaction time and assess
fatigue.®%°

Free-living assessments

In between the 2nd and 3rd clinic visits, subjects were given a set of
biosensors for their wrist, ankle, and sternum which they wore for eight
weeks while going about their daily lives. Measurements were captured
throughout the study by daily syncing and upload of data when charging
the devices. Most of these data were from unstructured, passive data
collection. Subjects also were asked every day to complete a fatigue survey
and to perform a PVT test. Subjects were requested to wear three
biosensors (wrist, ankle and chest) during the day, and two biosensors at
night (wrist and ankle only).

Biosensor feature extraction for in-clinic data (a full listing of
features are given in the Supplementary Information)

Algorithms were developed by Verily using videographic and biosensor-
derived data from healthy controls to extract characteristics of walking
(including steps taken, stance time and swing time of each limb), turning
(angle, duration, and angular velocity of turns from chest or ankle body
locations), and balance (sway distance and displacement in both left-right
and anterior-posterior directions). These algorithms were applied to the
structured in-clinic assessments with data segmentation (Fig. 3d, e). From
the PVT tests, mean delay for the entire 3-minute test was calculated as
well as the mean delay for the first 1, 3, 5, and 7 challenges during the
PVT test.

Biosensor feature extraction for free-living data (a full listing of
features are given in the Supplementary Information)

Outside of the clinic, an additional step of activity classification was
required to interpret the data signals (Fig. 3f). A deep neural network was
trained on tagged activity data from healthy adults to classify walking,
running, typing/hand movement, and other activities. Walking minutes
identified by this activity classifier were analyzed by the same algorithms
as in-clinic data to extract motion features. In addition to signals of
mobility and gait assessed in clinic, the free-living setting allowed for
additional assessment of sleep and fatigue, which were performed in
multiple ways. The PVT test was performed daily and allowed for specific
measurement of reaction times.

Sleep assessments

Participants also tagged when they were sleeping each night; during these
periods, data were analyzed for heart rate variability as well as body
movement, particularly lower leg motion, which should generally be
absent during sleep. Trained models correlating heart rate variability with
rapid-eye movement (REM) sleep stages were used to calculate the total %
of REM sleep during patient tagged sleep segments.

Statistical analysis

All continuous variables were presented using the mean and standard
deviation, while categorical variables were presented as number of
individuals and percentages. Feasibility was assessed by (1) patient visit
completion, (2) free-living adherence, and (3) percent assessments
completed. To assess the potential correlation between disability measures
(EDSS, MSFC-4) and the in-clinic device features, Spearman’s rank
correlation coefficients were calculated between each pair of features.
Storey’s g-values®® were used to correct for multiple testing with the g-
value library in R. All remaining statistical analyses were completed in
SAS 9.4.
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Fig.3 Experimental design and data segmentation. a-c Biosensor diagram, including (a) nine sensor locations used in clinic, (b) the free-living
kit of biosensors for wrists, ankles, and chest given to participants and (c) locations for daily wear. d Example segmentation and featurization
of data from the in clinic assessments, where an example trace from the left ankle accelerometer is shown during structured activities that
included standing, maintain balance for 305, sitting, and then performing a 25-foot timed-up and go test with a 180 degree turn in the
middle. e Example featurization (based on multiple angular velocity signals) for detecting stance and swing phase of a step when walking, as
well as turns. f Workflow for classifying activity from unstructured free-living data, where an activity classifier takes raw accelerometer input
from the wrist-worn biosensor to identify idle, walking, running, and other activity periods in the data. Segmented data for walking undergo
gait analysis using same algorithms as used for in clinic data featurization and shown in (e). Idle minutes are used to assess pulse rate

variability, particularly at night to estimate stages of sleep.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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