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Integrative analysis identifies key genes 
related to metastasis and a robust gene‑based 
prognostic signature in uveal melanoma
Shizhen Lei1 and Yi Zhang2* 

Abstract 

Purpose:  Uveal melanoma (UM) is an aggressive intraocular malignancy, leading to systemic metastasis in half of the 
patients. However, the mechanism of the high metastatic rate remains unclear. This study aimed to identify key genes 
related to metastasis and construct a gene-based signature for better prognosis prediction of UM patients.

Methods:  Weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression of genes 
primarily associated with metastasis of UM. Univariate, Lasso-penalized and multivariate Cox regression analyses were 
performed to establish a prognostic signature for UM patients.

Results:  The tan and greenyellow modules were significantly associated with the metastasis of UM patients. Signifi-
cant genes related to the overall survival (OS) in these two modules were then identified. Additionally, an OS-predict-
ing signature was established. The UM patients were divided into a low- or high-risk group. The Kaplan–Meier curve 
indicated that high-risk patients had poorer OS than low-risk patients. The receiver operating curve (ROC) was used 
to validate the stability and accuracy of the final five-gene signature. Based on the signature and clinical traits of UM 
patients, a nomogram was established to serve in clinical practice.

Conclusions:  We identified key genes involved in the metastasis of UM. A robust five-gene‐based prognostic signa-
ture was constructed and validated. In addition, the gene signature-based nomogram was created that can optimize 
the prognosis prediction and identify possible factors causing the poor prognosis of high-risk UM patients.

Keywords:  Uveal melanoma, TCGA​, GEO, Prognosis, Weighted gene co-expression network analysis, Tumor 
microenvironment
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Introduction
Uveal melanoma (UM) is the most common primary 
intraocular malignant tumor in adults [1]. Ocular treat-
ment for UM includes radiotherapy, phototherapy, local 
resection, and enucleation. Notably, almost half of UM 
patients will develop systemic metastasis despite suc-
cessful local treatment [2]. In the United States alone, 
the morbidity of UM patients is nearly 5.1 per million [3]. 

The liver is the common site for systemic metastasis in 
UM, contributing to overall mortality within 1 year after 
confirming as metastases [1]. Moreover, effective thera-
pies to prevent the development of metastases are not yet 
available, besides the lack of powerful tools for predicting 
the prognosis of UM patients. Therefore, new biomarkers 
for predicting the prognosis are urgently warranted.

Weighted gene co-expression network analysis 
(WGCNA) is an algorithm that analyzes the expression 
patterns of multiple genes and the association between 
the genes and clinical traits [4, 5]. In our study, WGCNA 
was explored to identify the co-expression modules 
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significantly related to the survival time and metastasis 
of UM patients. Additionally, we identified the hub genes 
in the modules using the String database and Cytoscape 
software. Then we constructed a 5‐gene‐based signature 
for predicting the overall survival (OS) of UM patients 
using Cox regression analyses.

The tumor microenvironment (TME) plays a critical 
role in the progression of tumors. The TME characteris-
tics are associated with the prognosis and drug sensitivity 
in cancers patients [6, 7]. Infiltrating immune cells in the 
TME of tumors also influence the phenotype of tumor 
cells, thus deciding the fate of tumor progression [8]. 
Previous studies have identified that infiltrating T cells in 
TME was a prognosis-predicting factor for UM [9, 10]. 
ESTIMATE (Estimation of STromal and Immune cells 
in MAlignant Tumor tissues using Expression data) [11] 
and CIBERSORT (Cell-type Identification By Estimat-
ing Relative Subsets Of RNA Transcripts) [12] are algo-
rithms for evaluating and quantifying the infiltration of 
immune cells in tumor tissues. Here, we used these two 
algorithms to identify the differences in immune infiltra-
tion status between the low- and high-risk UM samples. 
The risk groups were classified by our 5‐gene‐based risk 
score formula. Furthermore, the correlation between the 
five genes in our signature and survival-related immune 
cells was investigated.

Materials and methods
Dataset collection
We extracted mRNA expression profiles and the cor-
responding clinical characteristics of UM samples from 
Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) including GSE22138 and 
GSE44295. After eliminating samples without necessary 
data, we finally obtained 63 UM samples from GSE22138 
and 57 from GSE44295. In addition, we downloaded the 
mRNA expression profiles along with the clinical traits of 
80 UM samples from The Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdc.​cancer.​gov/). We used 
GSE22138 dataset as the training set, and the GSE44295 
and TCGA-UM datasets as the testing sets.

Standardization of the expression data
The expression data of genes in the training set and test-
ing sets was standardized through the limma [13] pack-
age in R software. Furthermore, we used the sva [14] and 
limma R packages to remove the batch effect between the 
training set and the testing sets.

Construction of the co‑expression modules
To identify more significant genes, only the top quarter of 
the most variably expressed genes among 63 UM samples 
in the training cohort are incorporated into subsequent 

construction of the co-expression modules. The weighted 
gene co-expression network analysis (WGCNA) method 
based on R software package “WGCNA” was used to 
construct the co-expression modules [5]. The developer 
of the WGCNA algorithm used an adjacency matrix 
method to construct correlation network of genes and 
further correlate the gene co-expression modules with 
clinical traits. We chose 4 as the soft-thresholding power 
when 0.9 was used as the correlation coefficient thresh-
old. The minimum number of genes in co-expression 
modules we chose was 20. We set 0.25 as the cut height 
threshold to merge possible similar modules. As for the 
selection of the modules to be taken as metastasis-related 
module, we set 0.3 as the coefficient threshold for mod-
ule-trait relationship (> 0.3 means positively related to 
metastasis and < − 0.3 means negatively associated with 
metastasis). The gene significance obtained in WGCNA 
means the correlation between a gene and a clinical trait 
and high gene significance means this gene was highly 
correlated with the clinical trait.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [15–17] enrichment analyses were 
performed by using the Metascape database (https://​
metas​cape.​org/) to obtain further insights into the func-
tions of genes in co-expression modules [18]. The Metas-
cape database is a useful online tool that could return 
the functional annotation results of genes after directly 
inputting the gene list into the webpage of Metas-
cape database. The cutoff for significance was set as P 
value < 0.05.

Table 1  The basic clinical information of 200 UM patients in 
three cohorts

Clinical traits GSE22138 (n = 63) GSE44295 (n = 57) TCGA-UM 
(n = 80)

Gender

Male 39 (61.9) 32 (56.1) 45 (56.25)

Female 24 (38.1) 25 (43.9) 35 (43.75)

Age

< 65 years 36 (57.14) – –

≥ 65 years 27 (42.86) – –

Metastasis

Yes 35 (55.56) 24 (42.1) –

No 28 (44.44) 33 (57.9) –

TMN stages

II – – 39 (48.75)

III – – 36 (45)

IV – – 4 (5)

Unknown – – 1 (1.25)

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://metascape.org/
https://metascape.org/
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Fig. 1  Construction of the co-expression modules via WGCNA in the training set. A Screening for power values. B 0.25 was chosen as the cut 
height threshold to merge possible similar modules. C Clustering dendrogram of co-expression modules. D Network heatmap plot of the modules



Page 4 of 20Lei and Zhang ﻿BMC Medical Genomics           (2022) 15:61 

Identification of hub genes in the modules
The String database is an online tool for investigating the 
interactions between genes and can return an interaction 
network of genes by directly inputting a gene list into the 
webpage. We used the String database (https://​string-​db.​
org) [19] to obtain an interaction network of the genes 
in the modules of interest. After that, we could input the 
file of the network obtained from the String database into 
the Cytoscape software [20], which is widely used for 
the investigation of genes and gene–gene interactions in 
cancer research. Moreover, there is a useful and widely 
used tool (cytohubba) inside the Cytoscape software for 
identifying the key nodes (genes) in a gene interaction 
network [21, 22] and we applied this tool to identify the 
top 50 hub genes in the two modules of interest. There 
are several methods inside the cytohubba tool and we 
chose the MCC method to identify hub genes, which 
could be achieved by simple selection on the page of the 
Cytoscape software.

Construction and verification of the prognostic signature
We evaluated the prognostic value of the hub genes 
by the univariate Cox regression analysis through the 
R package “survival” [23]. The survival-related genes 
(P < 0.05) were enrolled into the subsequent Lasso-
penalized and multivariate Cox regression analyses. The 
Lasso-penalized Cox regression analysis was performed 
in the R software by using the “glmnet” and the “sur-
vival” R package. After preparing the file containing the 
survival time and the expression profiles of genes, the 
Lasso-penalized Cox regression analysis could calculate 
the value of the partial likelihood deviance and the cor-
responding lambda value during the cross validation. The 
smaller the value of the partial likelihood deviance is, the 
better the performance of the model will be. Therefore, 
we chose the lambda value with lowest corresponding 
deviance and this algorithm will output a best model with 
minimum number of variables (genes). The multivariate 
Cox regression analysis was also performed in R software 
and applied to further optimize and construct the final 
model. Finally, a prognostic signature based on five genes 
was established. The risk scores of UM samples were cal-
culated by following formula:

Risk score = β1X1+ · · · + βiXi

where X represents the expression of a gene included in 
this prognostic model. β is the coefficient of a gene in the 
model.

After preparing the file containing the riskscores and 
survival time of patients, the survminer R package [23] 
could return an optimal cutoff value for best division 
of low- and high-risk groups who differ in their sur-
vival time. UM patients were then divided into a low- 
or a high-risk group by this optimal cutoff value of risk 
scores (1.7095) as the cutoff. To compare the survival 
rate between the low- and high-risk groups, we then per-
formed log-rank test (Kaplan–Meier curve analysis) and 
log-rank P < 0.05 was taken as statistically significant. In 
addition, we used receiver operating characteristic (ROC) 
analysis to assess the predictive value of this signature. 
Furthermore, independence analysis of the signature 
with other clinical characteristics was conducted through 
univariate and multivariate Cox regression analyses and 
P < 0.05 was taken as statistically significant. Next, the 
predictive accuracy and sensitivity of this signature was 
evaluated in the testing cohorts including the GSE44295 
and TCGA-UM datasets by ROC analysis.

Establishment of a prognostic prediction nomogram
Nomogram is a convenient device for survival prediction 
of patients with cancers and now widely used in oncology 
research [24, 25]. In the current study, we constructed a 
nomogram to evaluate the 1-year, 2-year and 3-year OS 
probability of patients with UM in the training set.

Gene Set Enrichment Analysis (GSEA)
The KEGG pathways enriched in the high-risk groups 
were identified by the GSEA method (https://​pypi.​org/​
proje​ct/​gseapy/) and the gene lists involved in the path-
ways were also downloaded from the GSEA website [26].

Tumor microenvironment (TME) analyses of low‑ 
and high‑risk groups
ESTIMATE is a method for assessing the infiltration 
of stromal and immune cells in tumor tissues based on 
gene expression data [11]. We performed the ESTIMATE 
analysis by using the “estimate” R package, the gene 
expression matrix of UM patients and the reference files 
obtained from the developer of this algorithm, and finally 
got the stromal and immune score for each UM sam-
ple. CIBERSORT is an algorithm that can determine the 

Fig. 2  Co-expression modules mostly related to survival time and metastasis of UM. A Heatmap plot of the correlation between co-expression 
modules and clinic characteristics of UM. B The gene significance for survival time in the greenyellow module (left) and tan module (right). C 
The gene significance for metastasis in the greenyellow module (left) and tan module (right). D GO and KEGG enrichment analyses of genes in 
greenyellow module. E GO enrichment analysis of genes in tan module

(See figure on next page.)

https://string-db.org
https://string-db.org
https://pypi.org/project/gseapy/
https://pypi.org/project/gseapy/
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Fig. 2  (See legend on previous page.)
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relative proportions of 22 immune cell types within the 
leukocyte compartment in single tumor sample through 
using a set of 22 immune cell reference profiles (LM22) 
[12]. We assessed the infiltration levels of different 
immune cells in UM samples by using the “CIBERSORT” 
R program, the reference file obtained from the developer 
of this algorithm and the gene expression matrix of UM 
patients. 100 times was set for permutation test to ensure 
the accuracy of the results. The TIMER (Tumor IMmune 
Estimation Resource) is a tool for investigating different 
cancer and/or immune cells by using gene expression 
profiles [27]. We used the TIMER website (http://​timer.​
cistr​ome.​org/) to investigate the correlation between 
gene expression and infiltration of immune cells.

Analysis of the somatic mutations in low‑ and high‑risk 
groups
The visualization of somatic mutation landscape in 
low- and high-risk patients in TCGA-UVM cohort was 
performed and differentially mutated genes (DMGs) 
between these two groups were identified using maftools 
R package [28]. P < 0.05 was taken as statistically 
significant.

Statistical analysis
All statistical P value were two-side and P < 0.05 was 
taken as statistically significant. Wilcoxon test was used 
to compare the differences between two groups. All anal-
yses of data were conducted in R 4.0.1 software.

Results
Construction of the co‑expression modules
The basic clinical information of the patients in the three 
cohorts was presented in Table  1. The co-expression 
modules were constructed through the WGCNA method 
by using 3,322 genes generated from 63 UM samples in 
the training set GSE22138 (Fig. 1). Figure 1A–C showed 
the quality control process. Network heatmap plot of the 
modules was shown in Fig. 1D.

Correlation between co‑expression modules and clinical 
characteristics
The correlation between modules and clinical charac-
teristics in the training set GSE22138 was presented in 
Fig.  2A. The greenyellow and tan modules were mostly 
related to futime (the full survival time of UM patients) 

and metastasis of UM patients (Fig.  2A–C). There were 
421 genes in greenyellow module and 36 in tan mod-
ule (Additional file 1: Table S1). The GO terms and KEGG 
pathways of genes in greenyellow and tan modules were 
shown in Fig. 2D, E, respectively. Genes in the greenyel-
low module were significantly enriched in the blood ves-
sel morphogenesis, regulation of secretion, extracellular 
structure organization GO terms and signaling by recep-
tor tyrosine kinases KEGG pathway. Genes in the tan 
module were gathered in the response to estrogen, actin 
filament organization, epithelial tube morphogenesis, 
positive regulation of protein kinase B signaling and glyc-
erophospholipid metabolic process GO terms.

Establishment of gene‑based prognostic signature
We further constructed a gene interaction network 
of the combination of the greenyellow and tan mod-
ules and identified top 50 hub genes in this network via 
MCC method in cytohubba app in Cytoscape software 
(Fig.  3A). Moreover, we identified genes related with 
overall survival (OS) of these 50 hub genes in the train-
ing set through univariate Cox regression test (P < 0.05) 
(Fig.  3B). Low expression of GSTM3, ADRB2, KCNS3, 
RPL24, ALDH1A3, COMMD6, FBXO17, GSTO2, EEF-
SEC, COL11A1, RPL32, PPARG, RPL35A, COMMD2, 
GSTA3 and CTNNB1 was correlated with poor survival, 
while for ASB9, NQO1, KIT, MC1R, ADAMTS2, ADCY1 
and EEF1A2, high expression was correlated with poor 
survival in UM patients. We then aimed to use these 23 
survival-related genes to construct a signature for OS 
predicting via Lasso-penalized and multivariate Cox 
regression analyses (Fig. 3C, D). Here, a prognostic signa-
ture consisting of 5 genes (EEFSEC, EEF1A2, ALDH1A3, 
CTNNB1 and COMMD2) was established (Fig. 3D). Risk 
scores of UM patients were then calculated according to 
the formula mentioned above in the Material and Meth-
ods part. The genes and their coefficients were set in 
Table 2.

Assessment of prognostic value of the 5‑gene signature
After construction of the 5-gene-based OS-predicting 
signature, UM patients in the training set GSE22138 were 
divided into low- and high-risk groups by using the risk 
scores calculated by the formula and the optimal cutoff 
value identified by survminer R package. The clinical 
characteristics of patients in training cohort in the two 

(See figure on next page.)
Fig. 3  The establishment of gene-based prognostic signature for patients with UM in the training set. A The visualization of the top 50 hub 
genes in the greenyellow and tan modules. B OS-related genes among the hub genes identified by univariate Cox regression analysis (P < 0.05). 
C Cross-validation of parameter selection in Lasso-penalized Cox regression analysis. D The forest plot showed the Hazard ratio of enrolled 
survival-related genes

http://timer.cistrome.org/
http://timer.cistrome.org/
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risk groups were presented in Table 3. The metastatic rate 
was higher in high-risk group (100%), which indicated 
that our gene signature could nicely predict the progres-
sion and aggressiveness of UM. Kaplan–Meier curve 
indicated that high-risk patients had significantly poorer 
OS than low-risk ones (log-rank P < 0.001) (Fig. 4A). We 
then performed univariate and multivariate Cox regres-
sion analysis to demonstrate the prognostic value of the 
riskscore calculated by the formula mentioned above. 
The results suggested that the riskscore was a prognostic 
factor for UM (Table 4).

We performed ROC analysis to evaluate the prognos-
tic value of the five-gene-based signature. The area under 
curve (AUC) of ROC was 0.833 (Fig. 4B). The survival sta-
tus was plotted for each patient ranked by the risk scores 
which showed that the mortality of high-risk patients was 
much higher than low-risk ones (Fig. 4C). Moreover, we 

compared the expression of the five genes in the two risk 
groups and found that they all showed significant differ-
ence between these two risk groups (P < 0.05) (Fig.  4D). 
The expression of EEF1A2 was higher and the expression 
of EEFSEC, ALDH1A3, CTNNB1 and COMMD2 was 
lower in high-risk group compared with low-risk group, 
which is consistent with the previous survival analysis of 
these five genes (Figs. 3B, 4D). We further compared the 
gene signature in the current study with other previously 
reported gene signatures (Table 5).

Validation of the 5‑gene‑based signature in the testing 
sets
We then tried to validate the prognostic value of our sig-
nature in external datasets. Firstly, risk scores of patients 
with UM in the testing sets including GSE44295 and 
TCGA-UM datasets were calculated by the formula 
derived from the 5-gene signature. The patients in the 
testing sets were subsequently divided into low- and 
high-risk groups by using the optimal cutoff value of risk 
scores obtained from the training set GSE22138. The 
clinical characteristics of patients in the two risk groups 
in the testing cohorts including GSE44295 and TCGA-
UM were presented in Tables  6 and 7, separately. The 
metastatic rate was higher in high-risk group and the 
patients in high-risk group were found to be with higher 
TMN stage, which indicated that our gene signature 
could nicely predict the progression and aggressiveness 
of UM.

Kaplan–Meier curves indicated that high-risk patients 
had significantly poorer OS than low-risk ones in 
GSE44295 set (log-rank P < 0.05) and TCGA-UM set (log-
rank P < 0.001) (Fig.  5A). Furthermore, we performed 
univariate Cox regression analysis and multivariate Cox 
regression and found that the riskscore was a prognos-
tic factor for UM patients in GSE44295 and TCGA-UM 
cohorts (Tables 8, 9). The AUC of the 5-gene-based sig-
nature in GSE44295 and TCGA-UM cohorts was 0.695 
and 0.808, respectively (Fig. 5B). The risk scores and sur-
vival status ranked by the risk scores of UM patients were 
then plotted for the testing sets (Fig.  5C). We further 
compared the expression of the five genes in the two risk 
groups and found that they all showed significant differ-
ence between these two risk groups (P < 0.05) (Fig.  5D). 
The expression of EEF1A2 was higher and the expression 

Table 2  The genes and their coefficients in the prognostic 
model

Gene symbol Coefficient HR HR.95L HR.95H

EEFSEC − 0.422 0.656 0.453 0.950

EEF1A2 0.355 1.427 1.192 1.708

ALDH1A3 − 0.349 0.705 0.477 1.043

CTNNB1 − 0.274 0.760 0.541 1.067

COMMD2 − 0.432 0.649 0.446 0.944

Table 3  The clinical characteristics of patients in the two risk 
groups in GSE22138 cohort (n = 63)

Clinical characteristics Low-risk group (n = 42) High-risk 
group 
(n = 21)

Gender

Male 27 (64.3) 12 (57.1)

Female 15 (35.7) 9 (42.9)

Age

< 65 years 23 (54.8) 13 (61.9)

≥ 65 years 19 (45.2) 8 (38.1)

Metastasis

Yes 14 (33.3) 21 (100)

No 28 (66.7) 0

Fig. 4  Assessment of prognostic value of the 5-gene signature in the training set. A Kaplan–Meier curve of patients with UM in the low- and 
high-risk groups of the training set GSE22138. B ROC curve for predicting accuracy of the 5-gene signature. C The risk scores and survival status of 
UM patients (one dot represents one UM patient, and the colors of the dots represent the survival status of patients; red color: dead, green color: 
alive). D The comparison of the expression of the five genes in low- and high-risk groups in the training cohort by Wilcoxon test. ROC, receiver 
operating characteristic

(See figure on next page.)
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of EEFSEC, ALDH1A3, CTNNB1 and COMMD2 was 
lower in high-risk group compared with low-risk group, 
which is consistent with the previous survival analysis of 
these five genes (Figs. 5D, 3B).

Establishment of the nomogram
To meet clinical needs, we constructed a nomogram by 
using the multivariate Cox regression analysis results 
mentioned above in the training set (Fig. 6).

GSEA of high‑risk groups
After the construction of the gene signature, UM patients 
could be divided into low- or high-risk group. To iden-
tify important pathways involved in the development of 
UM, we performed GSEA analysis and found that the top 
3 KEGG pathways enriched in the high-risk group were 
ABC_TRANSPORTERS, DILATED_CARDIOMYOPA-
THY and GLYCEROPHOSPHOLIPID_METABOLISM 
with nominal P value  < 0.05 (Fig.  7A). We then down-
loaded the gene lists of these three pathways from the 
GSEA website and evaluated the interactions between 
the five genes in the gene signature and genes in the three 
identified KEGG pathways. The results from the String 

Table 4  The results of univariate and multivariate Cox regression 
analysis for riskscore in GSE22138

Traits HR HR. 95L HR. 95H P value

Univariate Cox regression analysis

Age 1.020803 0.994487 1.047816 0.122314

Gender 1.423855 0.71407 2.839167 0.315599

riskScore 1.170212 1.10997 1.233723 5.57E−09

Multivariate Cox regression analysis

Age 1.00895 0.981786 1.036864 0.52226

Gender 2.108647 0.976914 4.551464 0.057372

riskScore 1.190268 1.119143 1.265913 3.01E−08

Table 5  The comparisons between our gene signature and 
other previously reported gene signatures

Function of genes Number of 
genes

AUC of the 
signature

Origin

Metastasis-related 5 0.833 This study

Prognosis-related 18 0.803 Xue et al. [29]

Autophagy-related 9 0.907 Zhang et al. [30]

Immune-related 3 0.869 Gu et al. [31]

Ferroptosis-Associated 7 0.766 Luo et al. [32]

Immune-related 2 0.82 Li et al. [33]

Table 6  The clinical characteristics of patients in the two risk 
groups in GSE44295 cohort (n = 57)

Clinical characteristics Low-risk group (n = 35) High-risk 
group 
(n = 22)

Gender

Male 18 (51.4) 14 (63.6)

Female 17 (48.6) 8 (36.4)

Metastasis

Yes 11 (31.4) 13 (59.1)

No 24 (68.6) 9 (40.9)

Table 7  The clinical characteristics of patients in the two risk 
groups in TCGA-UM cohort (n = 80)

Clinical characteristics Low-risk group 
(n = 31)

High-risk 
group 
(n = 49)

Gender

Male 18 (51.4) 27 (55.1)

Female 13 (48.6) 22 (44.9)

T staging

T2 8 (25.8) 6 (12.3)

T3 14 (45.2) 18 (36.7)

T4 9 (29.0) 25 (51.0)

M staging

M0 21 (67.7) 30 (61.2)

M1 - 4 (8.2)

Unknown 10 (32.3) 15 (30.6)

N staging

N0 21 (67.7) 31 (63.3)

Unknown 10 (32.3) 18 (36.7)

TMN stages

II 20 (64.5) 19 (38.8)

III 11 (35.5) 25 (51.0)

IV - 4 (8.2)

Unknown - 1 (2.0)

(See figure on next page.)
Fig. 5  Validation of the 5-gene-based signature in the testing sets including GSE44295 and TCGA-UM datasets. A Kaplan–Meier curves of patients 
with UM in the low- and high-risk groups of the testing sets. B ROC curves for predicting accuracy of the 5-gene signature. C The risk scores and 
survival status of UM patients in the testing sets. D The comparison of the expression of the five genes in low- and high-risk groups in the two 
testing cohorts by Wilcoxon test
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database showed that CTNNB1 is interacted with genes 
in all three KEGG pathways (Fig.  7B), which indicated 
that this gene might play an important role in the high-
risk behavior of UM.

Tumor microenvironment (TME) analyses of the low‑ 
and high‑risk groups
The TME of 120 UM samples in the GSE22138 and 
GSE44295 datasets were assessed via ESTIMATE algo-
rithm. The immune-score and stromal-score of the high-
risk UM samples were significantly higher than that of 
the low-risk ones (Fig.  8A). We then used the CIBER-
SORT algorithm to determine the infiltration levels of 
immune cells in the TME of UM samples (Fig.  8B) and 
compared the results of the high-risk samples and low-
risk ones. The results indicated that the infiltrating levels 
of T cells CD8 and T cells gamma delta were significantly 
higher in high-risk UM group compare with low-risk 
group (P < 0.05) (Fig.  8C). Furthermore, high infiltration 
of T cells CD8 and T cells gamma delta were found to 
be associated with worse OS of UM patients (P < 0.05) 
by using the TIMER website (Fig.  8D). High-risk UMs 
were with worse prognosis and higher infiltrating levels 

of T cells CD8 and T cells gamma delta, indicating that 
the bad prognosis was might be partly caused by the high 
infiltration of these two types of immune cells, which 
was consistent with previous studies [34, 35]. Notably, 
EEF1A2 was slightly positively correlated with T cells 
gamma delta and T cells CD8, whereas CTNNB1 was 
slightly negatively correlated with T cells CD8 and T cells 
gamma delta (P < 0.05) (Additional file 2: Figure S1). EEF-
SEC only showed a slightly negative correlation with T 
cells gamma delta (Additional file 2: Figure S1B).

The somatic mutation landscape in low‑ and high‑risk 
groups
We then evaluated the differences in the somatic muta-
tion landscape between low- and high-risk groups in 
TCGA-UVM cohort. These two groups showed different 
somatic mutation landscapes (Fig.  9) and the high-risk 
group was found to be with higher mutation frequency of 
BAP1 (Fig. 9c).

Discussion
UM is the most common intraocular malignant tumor in 
adults where almost half of the patients with UM develop 
systemic metastasis despite successful local control. The 
systemic metastasis of UM commonly involves the liver. 
Patients with metastatic disease have a poor prognosis, 
which is generally fatal within 1 year after confirming as 
metastases. Prognosis prediction of UM patients affects 
the choices of further treatment options. Therefore, iden-
tifying the underlying mechanisms of its metastasis and 
biomarkers with prognostic value would help clinicians 
and patients to make better treatment decisions. Michael 
D. Onken et al. assessed the prognostic prediction value 
of the gene-expression data for UM patients by through 
a series of studies [36, 37]. Their results indicated that 
gene-based OS-predicting signature was a promising and 
reliable tool for UM patients and clinicians.

Several studies have focused on prognosis prediction 
based on the gene expression profiles of UM. A prognos-
tic 15-gene expression profile (15-GEP) test has been in 
clinical use for several years to predict metastatic risk [37, 
38]. Aaberg TM et al. [39, 40] reported that the 15-GEP 
helps predict the metastatic risk of UM and guides the 
management of these patients. Binkley EM et  al. inves-
tigated the effect of tumor size and thickness on the 
prognosis of UM patients [41]. Their study revealed that 
tumor size combined with the 15-GEP could predict the 
prognosis of UM patients. Afshar AR et  al. [42] used 
the UCSF500 assay to detect genetic alterations includ-
ing gene mutations and chromosomal copy number 
changes in UM and investigated the correlation between 
UCSF500 results and metastasis. Their results indicated 
that the chromosomal copy number changes and gene 

Table 8  The results of univariate and multivariate Cox regression 
analysis for riskscore in GSE44295 dataset

Traits HR HR. 95L HR. 95H P value

Univariate Cox regression analysis

Age 0.998542561 0.968789443 1.029209447 0.924711066

Gender 1.711235909 0.73195866 4.000674487 0.215037537

riskScore 1.118781808 1.03738176 1.206569058 0.003589176

Multivariate Cox regression analysis

Age 1.002774881 0.970596584 1.036019989 0.867747283

Gender 2.120960263 0.863152719 5.211676148 0.101185084

riskScore 1.143034477 1.05144219 1.242605469 0.0017064

Table 9  The results of univariate and multivariate Cox regression 
analysis for riskscore in TCGA-UM dataset

Traits HR HR. 95L HR. 95H P value

Univariate Cox regression analysis

Gender 1.541871093 0.650966553 3.652056247 0.325023777

Stage 2.250353114 1.070583443 4.730214321 0.032362254

T stage 1.738860513 0.893333221 3.384667462 0.103518145

riskScore 1.040502389 1.017062328 1.064482669 0.000637195

Multivariate Cox regression analysis

Gender 1.436613038 0.5955889 3.465237552 0.419984413

Stage 1.654894219 0.64058205 4.275291316 0.298228898

T stage 1.129647256 0.492554011 2.590787804 0.773462992

riskScore 1.036907481 1.01310206 1.061272273 0.002224966
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mutations detected by UCSF500 were strongly corre-
lated with metastasis predictors, including the 15-GEP. 
Many other studies investigated the utility of the 15-GEP 
alone or in combination with other clinical or pathologi-
cal factors in predicting the metastatic risk and prognosis 
[43–51]. Collectively, these studies have suggested that 
this 15-GEP could predict the prognosis and metastatic 
risk of UM patients. However, we found that the accuracy 
and potency of the 15-GEP alone in predicting prognosis 
were not high and can be improved further by combining 
it with other clinical or pathological characteristics. We 
identified metastasis-related genes and focused on con-
structing a gene signature based on these genes for better 
prognosis prediction. It is difficult to claim superiority for 
our gene signature relative to the 15-GEP. However, our 
results might provide an alternative to serving the clinical 
practice.

In the past five years, several studies tried to identify 
essential genes involved in the development of UM [29, 
31, 32, 34, 35, 52–54]. These studies identified different 
aspects of UM such as clinical and pathological status 
along with the TME. However, they vary in the selec-
tion of bioinformatic tools and essential genes. These 
studies used bioinformatics tools including WGCNA, 
immune analysis methods such as ESTIMATE and CIB-
ERSORT, and unsupervised clustering. As these studies 

utilized different tools to identify essential genes and 
enrolled different genes into the gene signatures, pre-
dictable and obvious differences exist in their outcomes. 
Moreover, these study results might be complementary 
to each other. Metastasis, a very important event in the 
development of uveal melanoma, significantly affects 
the survival of patients. Of note, to date, no studies have 
used WGCNA, which is a widely used and helpful tool 
in cancer research, to identify metastasis-related genes 
and use these genes to construct a gene signature in uveal 
melanoma.

In the current study, eleven modules consisting of more 
than 20 co-expression genes were constructed from 63 
UM samples in the GSE22138 dataset. The tan and gree-
nyellow modules were significantly associated with the 
survival time and metastasis in UM. Among these iden-
tified metastasis-related genes, BAP1 and PRAME were 
found in the greenyellow module. Moreover, BAP1 and 
PRAME are strongly implicated in the progression and 
aggressiveness of UM [55–57], which strengthens their 
role in the advancement of UM. Notably, the mutations 
in BAP1 are associated with the higher metastatic rate of 
UM [58]. Additionally, the results in this study showed 
that the mutation frequency of BAP1 was higher in the 
high-risk group (Fig. 9C), which partly explains the worse 
prognosis of patients in this group. SF3B1 has been 

Fig. 6  The nomogram for better prognosis prediction for UM patients based on the Cox regression analyses results from the training set. The total 
number of scores project on the bottom scale represents the 1, 2 and 3-year OS probability. OS, overall survival
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Fig. 7  GSEA analysis of the high-risk groups. A Top 3 KEGG [15–17] pathways ranked by the NES values enriched in the high-risk group. B The 
interaction networks of the five genes in the gene signature and genes in the three identified pathways, obtained from String database
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shown to be associated with prognosis of UM patients 
[59] and the mutations in SF3B1 are related to late onset 
of metastasis in UM [60]. However, SF3B1 was not iden-
tified as a metastasis-related gene in this study, and the 
mutation frequency was not different between the low- 
and high-risk groups. Nonetheless, despite these find-
ings, the contribution of SF3B1 in the metastasis of UM 
cannot be overlooked. Moreover, the results might have 
been due to the limitation of the algorithms used in this 
study. EIF1AX has also been discussed in UM and muta-
tions in this gene were associated with low-inflammation 
phenotype and low metastatic potential [1]. Of note, the 
mutation frequency of EIF1AX was lower in high-risk 
group identified by our gene signature. The results in 
our study showed that the high-risk group had a high-
immune-infiltration phenotype and a poor prognosis 
with a higher metastatic rate. Therefore, the results in the 
current study were interestingly consistent with previ-
ous studies and highlighted the involvement of EIF1AX 
in UM.

Furthermore, we identified the top 50 hub genes of 
these two modules by Cytoscape software and enrolled 
them into the subsequent Cox regression analyses. The 
univariate Cox regression test result revealed that the 
GSTM3, ASB9, ADRB2, KCNS3, RPL24, ALDH1A3, 
NQO1, COMMD6, FBXO17, KIT, GSTO2, EEFSEC, 
COL11A1, RPL32, PPARG, MC1R, RPL35A, ADAMTS2, 
COMMD2, ADCY1, GSTA3, EEF1A2 and CTNNB1 were 
significantly associated with the OS of UM patients. We 
then constructed an OS-predicting signature via Lasso-
penalized and multivariate Cox regression analysis by 
using expression profiles of these 23 genes. Finally, a 
prognostic signature consisting of 5 genes (EEFSEC, 
EEF1A2, ALDH1A3, CTNNB1 and COMMD2) was 
established. The Cox regression analyses results revealed 
that EEF1A2 was a high-risk factor in UM, while the 
overexpression of EEFSEC, ALDH1A3, CTNNB1, 
COMMD2 were associated with a longer OS. In addition, 
Cox regression analyses results indicated that the 5-gene 
signature was an independent prognostic factor for UM 
patients. Notably, the survival curves and ROC analysis 
results of the training and testing sets showed the robust-
ness and reliability of the signature for prognosis predic-
tion of UM patients. The AUC of the ROC curves in the 
three cohorts were 0.833, 0.695 and 0.808, respectively. 

Other studies have reported variable gene signatures for 
predicting the OS of UM patients. The AUC of the ROC 
of the gene signature constructed by Xue et  al. was 0.8 
[29], Zheng et al. was 0.9 [30], Gu et al. was 0.869 [31], 
Luo et al. were 0.766 and 0.732 [32], and Li et al. was 0.82 
[33]. Although the AUC value of the ROC curves identi-
fied in our study was not the highest among them, was 
not even the lowest, which indicated that our gene sig-
nature was potentially significant. Moreover, patients 
in the high-risk group identified by our gene signature 
had a higher metastatic rate (Tables  3, 6, 7). This find-
ing suggested that our gene signature might identify UM 
patients with high metastatic risk. Furthermore, a nomo-
gram was established to predict the 1, 2 and 3-year OS 
probability of UM patients.

EEFSEC has been identified as a modulator of arse-
nic trioxide (AsIII) toxicity in the treatment of chronic 
myeloid leukemia (CML) [61]. However, the role of EEF-
SEC in tumorigenesis and progression has not been well 
investigated. In our study, based on the univariate Cox 
regression analysis, EEFSEC was considered as a pro-
tective factor for the prognosis of UM. The overexpres-
sion of EEF1A2 was found in prostate cancer and could 
be used as a biomarker for its risk-stratification [62]. 
EEF1A2 was also identified as a biomarker with a signifi-
cant prognostic value for UM in our study. Dysregulation 
and mutations of CTNNB1 participate in the occurrence 
and progression of multiple tumors [63, 64]. Moreover, in 
the current study, these two genes were related to a better 
prognosis of UM patients. High expression of ALDH1A3 
has been associated with the worse OS in various tumors, 
including glioma and pancreatic cancer [65, 66]. In con-
trast, for metastatic BRAF-mutant melanoma, ALDH1A3 
expression was correlated with the better OS [67]. Inter-
estingly, in the present study, the Cox regression analysis 
revealed that ALDH1A3 was related to a better prognosis 
of UM patients (Hazard ratio = 0.735, P < 0.05).

After the risk scores calculation of UM samples, they 
were divided into the high- and low-risk groups by using 
the optimal cutoff value of risk scores identified by the 
survminer R package. Finally, we evaluated the TME of 
UM samples by using ESTIMATE and CIBERSORT 
algorithms to investigate further the factors influenc-
ing the prognosis of patients with UM. We found that 
the stromal and immune-scores of high-risk patients in 

Fig. 8  TME analyses of the 120 UM samples in the GSE22138 and GSE44295 datasets and comparison between the low- and high-risk UM samples. 
A The immunescore and stromalscore of high-risk UM samples were significantly higher than that of the low-risk ones (P < 0.05). B The visualization 
of infiltration levels of immune cells in the TME of 120 UM samples. C The comparison of infiltration levels of different immune cells between the 
low- (blue bar) and high-risk (red bar) UM samples. D The correlation between infiltrating immune cells and OS in UM identified by using the TIMER 
website. T cells CD8 and T cells gamma delta are significantly associated with OS of UM patients (P < 0.05). TME, tumor microenvironment. TIMER, 
Tumor IMmune Estimation Resource

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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Fig. 9  The analysis of somatic mutations in low- and high-risk groups. A The summary of somatic mutation landscape in low-risk group. B The 
summary of somatic mutation landscape in high-risk group. C The differentially mutated genes between low- and high-risk groups
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the GSE22138 and GSE44295 datasets were significantly 
higher than those of low-risk patients. Moreover, T cells 
CD8 and T cells gamma delta infiltration levels were sig-
nificantly higher in high-risk UM samples than low-risk 
ones (P < 0.05). Consistent with previous reports [34, 35], 
T cells gamma delta and T cells CD8 were identified to 
be related to poor prognosis in UM patients. The results 
indicated that the poor prognosis of high-risk patients 
might be partly caused by the high infiltration levels of 
T cells gamma delta and T cells CD8. Furthermore, the 
correlation between these two immune cells and the 5 
genes in our prognostic signature were studied to prove 
the importance of these 5 genes. Notably, EEF1A2 was 
slightly positively correlated with T cells gamma delta 
and T cells CD8, whereas CTNNB1 was slightly nega-
tively correlated with the T cells gamma delta and T cells 
CD8 (P < 0.05). On the other hand, EEFSEC only slightly 
negatively correlated with T cells gamma delta. These 
results suggested that the overexpression of EEF1A2 
might be partially responsible for the elevated infiltra-
tion levels of T cells gamma delta and T cells CD8, which 
makes it a high-risk factor in UM. While for EEFSEC and 
CTNNB1, the overexpression was slightly related to the 
decreased infiltration levels of T cells CD8 and T cells 
gamma delta. The data suggested their protective role in 
the prognosis of UM patients.

In conclusion, through WGCNA, we identified two 
co-expression modules including the tan and greenyel-
low modules significantly related to the survival time 
and metastasis of UM patients. Moreover, our five-gene-
based prognostic signature is a stable and reliable tool for 
the OS-prediction of UM patients. The EEF1A2, EEF-
SEC and CTNNB1 may influence the prognosis of UM 
patients through their effect on the infiltration levels of T 
cells gamma delta and T cells CD8.

Conclusions
Our integrative analysis identified 23 key genes, which 
were significantly related to the metastasis and the prog-
nosis of UM. Additionally, a prognostic signature was 
established based on the expression of these genes. These 
23 genes might be important targets for investigating the 
mechanism underlying the metastasis of UM and the pre-
vention of UM metastasis. Furthermore, our five-gene-
based prognostic signature is a stable and reliable tool 
for OS-prediction of UM patients. The EEF1A2, EEFSEC 
and CTNNB1 in our gene signature might influence the 
prognosis of UM patients through their influence on the 
infiltration levels of T cells gamma delta and T cells CD8.
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