
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Yu-Chan Chang,
National Yang Ming Chiao Tung
University, Taiwan

REVIEWED BY

Zhi-Ping Liu,
Shandong University, China
Chien-Hsiu Li,
Academia Sinica, Taiwan

*CORRESPONDENCE

Hyon‐Seung Yi
jmpbooks@cnu.ac.kr
Dongryeol Ryu
freefall@skku.edu

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Metabolism,
a section of the journal
Frontiers in Oncology

RECEIVED 13 May 2022
ACCEPTED 25 July 2022

PUBLISHED 17 August 2022

CITATION

Jo Y, Yeo M-K, Dao T, Kwon J, Yi H‐S
and Ryu D (2022) Machine learning-
featured Secretogranin V is a
circulating diagnostic biomarker for
pancreatic adenocarcinomas
associated with adipopenia.
Front. Oncol. 12:942774.
doi: 10.3389/fonc.2022.942774

COPYRIGHT

© 2022 Jo, Yeo, Dao, Kwon, Yi and Ryu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 17 August 2022

DOI 10.3389/fonc.2022.942774
Machine learning-featured
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diagnostic biomarker for
pancreatic adenocarcinomas
associated with adipopenia

Yunju Jo1†, Min-Kyung Yeo2†, Tam Dao1, Jeongho Kwon1,
Hyon‐Seung Yi3,4* and Dongryeol Ryu1*
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Background: Pancreatic cancer is one of the most fatal malignancies of the

gastrointestinal cancer, with a challenging early diagnosis due to lack of

distinctive symptoms and specific biomarkers. The exact etiology of

pancreatic cancer is unknown, making the development of reliable

biomarkers difficult. The accumulation of patient-derived omics data along

with technological advances in artificial intelligence is giving way to a new era in

the discovery of suitable biomarkers.

Methods: We performed machine learning (ML)-based modeling using four

independent transcriptomic datasets, including GSE16515, GSE62165,

GSE71729, and the pancreatic adenocarcinoma (PAC) dataset of the Cancer

Genome Atlas. To find candidates for circulating biomarkers, we exported

expression profiles of 1,703 genes encoding secretory proteins. Integrating

three transcriptomic datasets into either a training or test set, ML-based

modeling distinguishing PAC from normal was carried out. Another ML-

model classifying long-lived and short-lived patients with PAC was also built

to select prognosis-associated features. Finally, circulating level of SCG5 in the

plasma was determined from the independent cohort (non-tumor = 25 and

pancreatic cancer = 25). We also investigated the impact of SCG5 on adipocyte

biology using recombinant protein.

Results: Three distinctive ML-classifiers selected 29-, 64- and 18-featured

genes, recognizing the only common gene, SCG5. As per the prediction of ML-

models, the SCG5 transcripts was significantly reduced in PAC and decreased

further with the progression of the tumor, indicating its potential as a diagnostic

as well as prognostic marker for PAC. External validation of SCG5 using plasma

samples from patients with PAC confirmed that SCG5 was reduced significantly

in patients with PAC when compared to controls. Interestingly, plasma SCG5

levels were correlated with the body mass index and age of donors, implying
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pancreas-originated SCG5 could regulate energy metabolism systemically.

Additionally, analyses using publicly available Genotype-Tissue Expression

datasets, including adipose tissue histology and pancreatic SCG5 expression,

further validated the association between pancreatic SCG5 expression and the

size of subcutaneous adipocytes in humans. However, we could not observe

any definite effect of rSCG5 on the cultured adipocyte, in 2D in vitro culture.

Conclusion: Circulating SCG5, which may be associated with adipopenia, is a

promising diagnostic biomarker for PAC.
KEYWORDS

pancreatic cancer, pancreatic adenocarcinoma, biomarker, diagnosis, prognosis,
machine learning, adipopenia, cachexia
Introduction

With a nine percent five-year survival rate, pancreatic

adenocarcinoma (PAC) is the 7th deadly cancer (1, 2). Its

early detection is difficult due to the absence of distinguishing

symptoms and particular biomarkers. The development of

distinct biomarkers is hindered because the specific cause of

pancreatic cancer is unclear, but this is extremely necessary to

facilitate early-stage diagnosis and therapies.

Several serum biomarkers for PAC are widely used in clinical

practice, including carbohydrate antigen 19-9 (CA19-9), CA242,

and carcinoembryonic antigen (3). CA19-9 is an isolated version

of the sialylated Lewis antigen that is commonly used in clinical

settings to diagnose pancreatic cancer (4). However, in addition to

malignant cells, it is widely produced and shed by both normal

and benign pancreatic cells. Moreover, patients with other

gastrointestinal malignancies such as gastric, biliary, or colon

cancer can have increased CA19-9 levels (5). CA242, another

serum biomarker for the diagnosis of PAC, is also elevated in

patients with other malignant tumors, such as cervical, colon,

esophageal, and ovarian cancers as well as lymphoma (6–8).

Patients with other malignancies, such as colorectal and non-

small cell lung cancer, have also been documented to have

elevated levels of serum carcinoembryonic antigen, another

blood biomarker for PAC (7, 9). Moreover, it was also elevated
C, Cancer cachexia;
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receiver operating
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in heavy smokers (10). Thus, a serum biomarker unique to

pancreatic cancer is urgently required.

Cachexia, which includes involuntary anorexia, inflammation,

insulin resistance, hypogonadism, and anemia leading to

sarcopenia and adipopenia, is a dangerous consequence that

occurs frequently in patients with advanced chronic diseases

such as chronic kidney disease, chronic obstructive pulmonary

disease, diabetes, cancer, and congestive heart failure (11–13).

Cancer cachexia (CC) is a multifactorial syndrome defined by the

gradual wasting of muscle and fat mass that cannot be entirely

reversed by traditional dietary assistance (14). It is known that its

rate of incidence is high in pancreatic, gastric, lung, and colon

cancers (12, 13). A mixture of systemic factors, including

endocrine factors, cytokines, and metabolites, originating from

cancer cells and the tumor microenvironment can trigger of CC,

altering metabolism and causing mitochondrial dysfunction,

browning of the white adipose tissue, anabolic resistance and

catabolic subservience, and central nervous system disturbances

(15–19). In CC, extensive loss of skeletal muscle and adipose tissue

is a severe syndrome linked with significant morbidity and

mortality (20–22). Around 80% of pancreatic cancer patients

have CC at some point during their illness (23, 24). Some traits

of CC are associated with poor prognosis (13), implying that any

prognostic marker may mediate of CC or couple with it.

One of the finest methods to deduce high-potential candidates

is machine-learning-based categorization, which acts as a

researcher’s bias-free technique to discover traits that may

function as diagnostic and prognostic biomarkers, giving an

opportunity to uncover underlying pathophysiological principles

and mechanisms (25–28). Herein, we performed machine

learning-based classification to identify diagnostic and prognostic

markers for PAC. To mine a biomarker having predictive potential

for both diagnosis and prognosis of PAC, we focused on finding

the common features of machine learning-based classification

using the transcriptomes from normal human pancreas (NOP)
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and PAC of three independent cohorts as well as the PAC

transcriptomes from The Cancer Genome Atlas (TCGA). Then,

using data from an independent cohort, we confirmed that plasma

levels of the discovered common feature (Secretogranin V (SCG5))

was higher in patients with PAC than in patients without it. Finally,

investigations employing publicly accessible Genotype-Tissue

Expression (GTEx) datasets, such as adipose tissue histology and

transcriptome, confirmed the association between pancreatic SCG5

expression and white adipose tissue size in patients with PAC,

implying that SCG5 could be a humoral factor mediating CC.
Materials and methods

Human study

From January 2011 to December 2019, the Biobank of

Chungnam National University Hospital, a Korea Biobank

Network, provided 50 plasma samples from PAC and normal (no

PAC, control) patients. All patients’ pre-operative blood samples

(taken within one week before the operation) were collected,

processed to extract plasma, and kept in liquid nitrogen. PAC

patients included 13 men and 12 women, with ages between 48 to

86 years, varying range of body mass index (BMI) (16.68-26.9), and

progression of cancer between stages IIB to IV.
Data collection and processing
pancreatic transcriptomes for machine
learning modeling

From the Gene Expression Omnibus (GEO) of the National

Center for Biotechnology Information (NCBI), we used a

publicly accessible transcriptome dataset with accession

numbers GSE16515, GSE62165, and GSE71729, as well as

from TCGA PAC (also known as PAAD). Three studies

included 52, 131, and 191 donors, with 16, 13, and 46 being

healthy and 36, 118, and 145 being patients with PAC,

respectively. The TCGA PAC study included 177 subjects,

with 21 being stage I, 146 being stage II, and seven being stage

III+IV. Secretory genes were made up of 1,703 genes that could

be detected in the blood and serve as biomarkers for the

diagnosis and prognosis of PAC (29). As indicated in the

Human Protein Atlas (30), we defined the list of 1,703 genes

encoding secretory proteins (hereafter, secretory genes,

downloaded on 2020.11.11, https://www.proteinatlas.org).
Construction and evaluation of machine
learning models

Construction of models with Random Forest (RF) algorithm was

done as described previously (28). To build models capable of
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distinguishing between NOP and PAC samples as well as higher

and lower survival rates, we implemented RF algorithm-based

machine learning with optimized parameters through a 10-fold

repeated cross-validation using the R package “caret”. The model

was constructed by gradually reducing the number of variables for

discriminating between NOP and PAC samples to 29, 10, 8, 6, 4, and

2. The model that differentiates between greater and lower survival

rates was evolved by gradually lowering the number of features to

1,703, 1,024, 512, 256, 128, 64, 32, 16, 8, and 4. The GINI importance

value was used to describe the importance of features gained from

each model developed in this manner. We also applied the XGBoost

algorithm with optimized parameters through 5-fold cross-validation

to construct models that distinguish between higher and lower

survival rates. The built-in function of the R package “xgboost”

was used to determine the key features of models. We computed the

area under the receiver operating characteristics (AUROC), accuracy,

kappa, and F1-score using R package “MLmetrics” to assess the

performance of the constructed ML models.
Plasma SCG5 quantification using ELISA

In order to gauge plasma SCG5 levels, human SCG5 enzyme-

linked immunosorbent assay (ELISA) kits were used (SCG5 ELISA

Kit, MBS2883472, MyBioSource Inc., San Diego, CA, USA). All

ELISAs were conducted at the same time, as recommended by the

manufacturer. Briefly, the sandwich ELISA was carried out as

follows: A human SCG5-specific antibody was pre-coated on the

microtiter plate supplied. In duplicates, standard, blank, and

samples (100 µl each) were introduced to the wells. Plates were

sealed with a plate sealer and incubated at 37°C for two hours. Each

well’s liquid was withdrawn without being washed, and each well

received 100 µl of the working solution of Detection Reagent A

(biotin-labeled antibody) diluted at 1:100 with the assay Diluent A,

followed by an hour of incubation at 37°C. The culture dishes were

then incubated for an hour after being five times rinsed in wash

buffer at 37°C with 100 µl per well of the working solution of

Detection Reagent B (avidin–HRP, horseradish peroxidase

conjugates) diluted at 1:100 with the Assay Diluent B. After

washing five times with wash buffer, specific binding was

detected for 20 min at 37°C with 90 µl of substrate solution

(TMB, HRP Substrate). After stopping the reactions with 50 µl of

the stop solution, the plates were read immediately at 450 nm using

an automated microplate reader (SpectraMax 190, Molecular

Devices LLC, San Jose, CA, USA). SoftMax Pro 4.8 software was

used to calculate SCG5 concentrations by taking the mean OD of

each standard and sample.
Assessment of the cross-sectional area
of human adipose tissue

Hematoxylin and eosin-stained histology images of

subcutaneous adipose tissue (SAT) for cross sectional area
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(CSA) estimation were accessed by sample ID at the GTEx portal

(https://gtexportal.org/). The measurement of the CSA of

adipocytes was carried out with the open-source image

analysis software Fiji, also known as ImageJ (https://imagej.

net/software/fiji/downloads). The plugin of the Cross-Sectional

Analyzer was downloaded and set up for image analysis

according to manual instructions (https://imagej.net/plugins/

cross-sectional-analyzer). Image preprocessing includes

converting images from SVS format to TIFF files at 10x

magnification of random tissue locations, then importing the

images into Fiji. The monochromatic images were created from

TIFF files and put to a green channel for subsequent processes.

CSA was automatically calculated by the Cross-Sectional

Analyzer after manual adjustment for any misrecognition of

the cell membrane. Finally, using the aforesaid analysis results,

we compared the CSA of the two sample groups (the high- and

low-expressed SCG5). The student’s t-test was performed as a

statistical test to deduce the difference in mean between the two

groups. The frequency of each CSA interval is calculated by

dividing the percentage of cells with a CSA in that range by the

total number of cells in each sample.
Gene set enrichment analysis

GSEA was carried out as previously reported (31). The

GSEA Java desktop program (GSEA v. 4.1.0 for Windows) was

downloaded from the website of Broad Institute (https://www.

gsea-msigdb.org).
Adipocyte culture, treatment of
recombinant SCG5 protein,
oil-red-o-staining and real-time
quantitative reverse transcription
polymerase chain reaction

The base medium, Dulbecco’s modified Eagle’s media with

25 mM glucose, 10% fetal bovine serum, 100 µg/ml

streptomycin, and 100 U/ml penicillin, was used to grow

3T3L-1 cells under the guidance of the American Type

Culture Collection (www.atcc.org). This was done at 37°C in a

humid environment with 5% CO2. To differentiate adipocytes,

3T3L-1 cells were maintained for an additional two days with

100% confluence (day 0), then replaced and maintained for two

days with differentiation medium (1.0 µg/ml insulin, 1 µM

dexamethasone, and 0.5 mM 1-methyl-3-isobutylxanthine),

and then kept in basal medium supplemented with 1.0 µg/ml

insulin alone. The cells were fed with baseline media

supplemented with or without recombinant SCG5 protein

diluted in PBS on the 4th day of differentiation. Recombinant

SCG5 protein was treated at concentrations of 50, 100, or
Frontiers in Oncology 04
200 ng/ml, which is determined by the plasma concentration

of SCG5 in human donors. The medium was replaced every

second day. Then the lipid accumulation was evaluated.

As previously mentioned, neutral lipids were stained with

Oil-Red-O (32). In brief, to quantify intracellular lipid

accumulation, 3T3-L1 preadipocytes were differentiated into

adipocytes in 12-well plates and treated with or without

recombinant SCG5 on day 4 of differentiation for 4 days (day

8). The procedure for staining cells included washing them twice

with PBS, fixing them in 4% formaldehyde for 15 minutes,

staining them for 20 minutes at room temperature with 0.5%

Oil-Red-O in 60% isopropanol, and then washing them five

times with distilled water. Oil-Red-O-stained lipid droplets were

photographed and photographed under a light microscope

before being extracted with 100% isopropanol for absorbance

(490 nm wavelength) measurement with a SpectraMax Plus 384

microplate spectrophotometer (Molecular Device, CA, USA).

Semi-quantitative real-time polymerase chain reaction (qRT-

PCR) was carried out as previously reported (31). Using the

RNeasy Mini Kit (Qiagen, Netherlands) to extract total RNA

from the cells treated with or without rSCG5, cDNA was

produced using the PrimeScript™ RT reagent kit (TAKARA,

Japan) from total RNA (1 µg) in accordance with the

manufacturer’s instructions. SYBR Green I was used to conduct

qRT-PCR with diluted cDNA in an end volume of 10 µl reaction

mixtures (QuantStudio 6 Flex Real Time System, Applied

Biosystems, MA, USA). The relative differences in mRNA

expression levels were determined according to the comparative

Ct methods that were normalized to Mrpl32 mRNA. Primer

sequences are summarized in Supplementary Table 1.
Statistical analysis and visualization

The Shapiro–Wilk test was utilized to determine the

normality of data distribution. To examine the difference in

mean values between two or more groups, the student’s t-test,

Wilcoxon rank-sum test, one-way analysis of variance, Kruskal-

Wallis test, and Tukey’s Honest Significant Difference test were

used, depending on the distribution. The threshold for statistical

significance was a p value of 0.05 or lower. For survival analysis

evaluating prognosis, we first divided the samples into two

groups (SCG5 high and low) by constructing ROC curves with

the R packagemultipleROC, which determined optimal grouping

with respect to the SCG5 expression level. Then, probability of

survival was evaluated with Kaplan–Meier curves. R Studio (ver.

2021.09.1 Build 372, https://www.rstudio.com/), R (ver. 4.1.2,

https://www.r-project.org/), and the R packages “ggpubr”,

“dplyr”, “stringr”, “DescTools”, “multipleROC”, “reshape2”,

“survminer”, “survival”, “RColorBrewer”, “pROC”, “igraph”,

“ggraph”, “corrr”, “corrplot”, “ggplot2”, and “ggarrange” were

used for statistical analysis and visualization.
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Results

Machine learning modeling to identify
diagnostic and prognostic markers for
pancreatic adenocarcinoma

To find blood-circulating diagnostic markers that can

distinguish between NOP and PAC, we downloaded three

transcriptome datasets, GSE16515, GSE62165, and GSE71729,

from the Gene Expression Omnibus of the National Center for

Biotechnology (Figure 1A) (33–35). From this, we filtered 1,703

secretory genes as stated in the ‘materials and methods’ section

(30), after which we obtained 2,785 probes for GSE16515, 3,498

probes for GSE62165, and 1,449 probes for GSE71729, including

duplicates. To further narrow down the candidates for blood

diagnostic markers, differential gene expression analysis was

conducted with the following cut-off criteria: only those genes

whose absolute log2 fold-change was altered more than one-fold

with statistical significance were selected between the two groups

(NOP vs PAC). As a result, 417, 930, and 144 probes were

obtained from each data set, respectively. Since the goal of the
Frontiers in Oncology 05
experiment was to identify prospective candidates for blood

biomarkers that can be used in clinical practice, we employed

additional cut-off criteria based on gene expression signal. Only

genes corresponding to the top 15% of normal tissue expression

signals (i.e., > 7.410688) were chosen. Each transcriptome data

set qualified 157, 304, and 37 secretory genes from each

respective data set for the next round. We selected the probe

with the strongest signal if there were more than two probes for a

gene. Finally, 29 common genes were identified from three

independent pancreatic transcriptomes and applied to the RF

algorithm-based supervised machine learning modeling.

We also built another RF algorithm-based model for

detecting prognostic markers in blood, categorizing short- and

long-lived candidates (Figure 1B). First, we downloaded data

from TCGA which included data on survival days as well as

transcriptomic data. Similar to finding diagnostic markers, we

filtered for secretory genes and found 1,703 genes. The survival

days in the data were ambiguous when the sample’s vital status

was indicated as alive because it may have contained missing

data recognized as alive. Thus, the data was classified as either

short or long based on the following two criteria: first, we labeled
BA

FIGURE 1

Schematic workflow to identify diagnostic and prognostic markers for pancreatic adenocarcinoma. (A) Workflow to identify prospective
diagnostic markers from three independent transcriptomes. (B) Workflow to predict a putative prognostic marker from the transcriptome of
pancreatic adenocarcinoma (PAC) at The Cancer Genome Atlas (TCGA).
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survival days as “short” or “long” when the samples were dead,

and only “long” when they were alive. Second, the term “short”

was used if the survival days were less than 365, and the term

“long” was used if they were greater than 1000. As a result, 64

samples were selected from a total of 177 samples. Then it was

applied to the supervised RF- and XGBoost-algorithms, which

were optimized by sequentially reducing the number of features

as summarized in Figure 1B.
ML-modeling using RF and XGBoost
proposed SCG5 as a diagnostic and
prognostic marker for pancreatic
adenocarcinoma

The AUROC in the train set and accuracy, F1 score, and

kappa value in the test set were calculated to evaluate the

performance of each developed RF model to predict diagnostic

markers (Figures 2A–D). In the order of features f29, f10, f8, f6,

f4, and f2, each AUROC is 0.870, 0.981, 0.915, 0.911, 0.914, or

0.842, respectively. Each accuracy is 0.919, 0.865, 0.865, 0.838, or

0.784, each F1 score is 0.950, 0.919, 0.919, 0.902, or 0.871, and

each kappa value is 0.741, 0.517, 0.517, 0.431, or 0.212,

respectively. The model with 29 features (f29) had the highest

accuracy, F1 score, and kappa values, but had a low AUROC.

While it has a smaller number of features compared with f29, the

model with 10 features (f10) had a high AUROC, and its

accuracy and F1 score were comparable to those with 29 (f29).

Therefore, we chose f10 as the optimal model. Evaluation of the

prognostic markers by RF-algorithm was carried out in the same

manner as the diagnostic markers (Figures 2E–H). AUROC is

0.582, 0.665, 0.775, 0.803, 0.841, 0.862, 0.856, 0.899, 0.839, and

0.814, and accuracy is 0.722, 0.778, 0.778, 0.722, 0.778, 0.778,

0.667, 0.667, 0.667, and 0.500, while the F1 score is 0.815, 0.857,

0.846, 0.815, 0.846, 0.846, 0.750, 0.750, 0.750, and 0.571, and

kappa value is 0.286, 0.400, 0.455, 0.286, 0.455, 0.455, 0.250,

0.250, 0.250, and 0.00 for the respective features. We chose a

model with 64 features (f64) to find the best model for classifying

survival days into short and long. Evaluation of the prognostic

markers by XGBoost-algorithm was also carried out in the same

manner as previously described (Figure 2I). The AUROC is

0.824, the accuracy is 0.75 (95% CI: 0.5329, 0.9023), the F1 score

is 0.75, and the kappa value is 0.5. The XGBoost-selected

important features are GDF11, C3, INHBC, RLN1, SCG5,

IL15RA, C1QL1, RBP3, TNFRSF25, OLFM3, TNF, OTOR,

CA11, COL17A1, CHI3L2, F3, LTBP3, and ZP2. (Figure 2J).

We found common genes from three independent ML-models

that could differentiate between NOP and PAC as diagnostic

markers and distinguish survival days based on medical history

as prognostic markers. Finally, SCG5 was obtained as a potential

biomarker for PAC (Figure 2K).
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SCG5 expression patterns and
clinicopathological characteristics in
NOP and PAC

From each data set used in RF modeling, we investigated the

expression patterns of SCG5, the RF-proposed potential

biomarker. First, the normality of three data sets was

estimated and taken as 0.1172 for GSE16515, 0.09327 for

GSE62165, and 0.581 for GSE71729, following which the

statistical significance was determined. As a result, SCG5

expression levels in PAC were significantly lower (p = 0.014,

0.001, and 0.0092, respectively) than NOP, showcasing the

potential of SCG5 as a diagnostic marker (Figures 3A–C). We

also investigated the correlation between SCG5 expression and

clinicopathological characteristics of PAC (i.e., TNM

Classification of Malignant Tumors). The statistical

significance among stages I, II, and III+IV of TCGA PAC data

was also examined after the assessment of normality (p-value

with Shapiro–Wilk test, 0.002716) (Figure 3D). It was observed

that the expression level of SCG5 at PAC stage I is substantially

greater than in other stages, according to Tukey’s Honest

Significant Difference test (a post-hoc test). In addition, we

have compared pancreatic SCG5 expression with individual

the American Joint Committee on Cancer (AJCC) staging

indices (Supplementary Figure 1). In the case of T stage, which

is classified by the size of the tumor, the expression level of SCG5

decreased significantly in T3 compared to T2. However, the

comparisons between other stages failed due to the limitation of

cohort size. For N stage, which is classified by the degree of

spread to nearby lymph nodes, SCG5 expression was statistically

significantly lower in N1 compared to N0 but not in others,

which is likely due to the N1b size limitation. In the case of the M

stage, which is classified by the degree of metastasis, the number

of samples in the M1 stage has a small N-power (n = 4), making

it impossible to compare by stage. Although the results have the

limitation of making a clear conclusion, this result, at least in

part, confirms machine learning predictions and reveals that the

expression level of SCG5 reduces as the severity of the tumor

grows, such as tumor size or lymph node metastasis.

To determine whether SCG5 expression is correlated with

prognosis of PAC, the survival probability was computed

(Figures 3E–H). By first generating ROC curves as described

in the “materials and methods” section, we were able to

determine the optimal SCG5 expression values for each data

set. According to the calculated optimal SCG5 expression level,

groups of patients with high and low SCG5 expression levels

were classified (high = 113 and low = 64). Overall, patients with

high SCG5 gene expression in PAC had a poor prognosis with

low probability of survival. As a result, for 177 patients, higher

SCG5 expression signified higher survival rate, while lower SCG5

expression signified lower survival rate, with a p-value of 0.013.
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FIGURE 2

Performance of constructed random-forest (RF) models. (A–D) Plots summarizing the area under receiver operating characteristic curve
(AUROC) (A), accuracy (B), F1 score (C), and kappa value (D) of RF models that classifies normal pancreas and pancreatic adenocarcinoma.
(E, F) Plots highlighting the AUROC (E), accuracy (F), F1 score (G), and kappa value (H) of RF models that characterize the prognosis of PAC.
(I, J) Tables summarizing the performance (I) and selected features (J) of XGBoost modeling, (K) Venn diagram showing SCG5 as the only
common feature in two distinct ML models.
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In 97 male patients, the p-value was 0.013. Similarly, in 80

female patients, the p-value was 0.062. In line with the survival

probability, the hazard ratio indicates that lower expression of

pancreatic SCG5 is associated with a poor prognosis of PAC

(Figures 3H). Taken together, SCG5 expression was lower in

PAC compared with NOP (Figures 3A–C), lower in the early

stages of PAC compared with the late stages (Figure 3D), and

inversely associated with the overall survival rate (Figure 3E).
Plasma SCG5 levels were lower in
patients with PAC and associated with
BMI and age

Previously, we analyzed the correlation of SCG5 expression

with NOP and PAC in publicly available data as well as the
Frontiers in Oncology 08
relationship between SCG5 expression and survival probability

(or survival rate). Thereafter, using ELISA, we investigated SCG5

level in plasma samples collected from patients with and without

PAC (w/o PAC). The samples’ normality was confirmed using

the Shapiro-Wilk normality test, which yielded a p-value of

0.5949. Consequently, we computed the student’s t-test to

ascertain the significance of plasma SCG5 level changes on

sample status. Patients with PAC had significantly lower

plasma SCG5 levels than those without PAC (w/o PAC mean

= 128.7 ± 45.8; PAC mean = 69.7 ± 33.4; p = 4.9e-06). Similarly,

plasma SCG5 levels in male (w/o PACmean = 129.9 ± 38.1; PAC

mean = 85.6 ± 30.5; p = 0.00269) and females (w/o PAC mean =

127.4 ± 54.7; PAC mean = 45.8 ± 22.0; p = 0.000268) were lower

in patients with PAC compared with those w/o PAC

(Figures 4A–C). To determine the optimal diagnostic

threshold of SCG5 level in plasma that can distinguish
B C D

E F G

H

A

FIGURE 3

The expression profiles and clinicopathological signatures of Secretogranin V (SCG5). (A–C) Box plots presenting the levels of SCG5 transcript in
NOP and PAC. (D) Box plot showing SCG5 expression at each stage of PAC. The boxplots (A–D) present the 25% quartile, the median, and 75%
quartile. Student’s t- test (A–C) and one-way ANOVA (D) determined the statistical significance. ***p < 0.001; **p < 0.01; *p < 0.05.
(E–G) Kaplan–Meier curves for overall survival of patients with PAC from TCGA cohort. (H) The forest plot showing the hazard ratio and 95%
confidence intervals associated with the SCG5 level.
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between patients with and w/o PAC, an ROC curve was

constructed. The optimal SCG5 value was 106.27 ng/ml

(Figure 4D). Based on this value, the ability to distinguish

between patients with and w/o PAC was 0.859 of AUROC,

74.2% of positive predictive value, 89.5% of negative predictive

value, 92.0% of sensitivity, and 68.0% of specificity. To expand

our understanding of the pathophysiology of SCG5, the

correlation between its plasma level and clinical phenotypes
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(e.g., age, BMI, etc.) was then investigated. Interestingly, SCG5

levels in plasma were positively correlated with BMI (Pearson’s

R = 0.44, p = 0.0016; Spearman’s Rho = 0.39, p = 0.0059) while

negatively associated with age (Pearson’s R = -0.41, p = 0.0028;

Spearman’s Rho = -0.4, p = 0.004) (Figures 4E–H). A mild

negative association between plasma SCG5 level and age in both

w/o PAC (Pearson’s R = -0.34, p =0.1; Spearman’s Rho = -0.33,

p = 0.11) and PAC (Pearson’s R = -0.29, p =0.16; Spearman’s
B C D
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FIGURE 4

Plasma level of SCG5 distinguishes patients with PAC from those without PAC. (A) Plasma level of SCG5 in patients with PAC and those without
PAC. (B, C) Plasma level in (B) male and (C) female participants. The boxplots (A–C) present the 25% quartile, the median, and 75% quartile.
Student’s t- test computed the statistical significance. ****p < 0.0001, ***p < 0.001; **p < 0.01. (D) Receiver operating characteristic curve
proposing optimal cut-off value (106.27 ng/ml) distinguishing patients with PAC from those without PAC. (E–H) Scatter plots estimating
correlations between plasma SCG5 and BMI (E) or age (F–H). (I–O) Scatter plots showing correlations between plasma SCG5 and BMI (E) or age
in females (I–L) and males (M–P).
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Rho = -0.31, p = 0.13) was observed although without any

statistical significance. We also examined whether the

correlations were gender independent (Figure 4I–P). Overall

trends in females and males were generally consistent with the

entire data set. However, probably due to the limitation of

available sample size (number of patients), pancreatic SCG5

expression was statistically associated with only BMI in either

females or males. Together, in patients with PAC, plasma SCG5

levels were considerably lower than in those w/o PAC,

demonstrating its diagnostic potential. Furthermore, we

revealed that SCG5 levels in the plasma are associated with

BMI and age.
The area of subcutaneous adipocytes is
positively correlated with SCG5
expression in human pancreatic tissues

The aforementioned results imply that SCG5 has high

potential as a marker for pancreatic cancer diagnosis and

prognosis. Interestingly, we found that there is a correlation

between SCG5 expression levels and BMI. The incidence of CC is

known to be high in pancreatic, stomach, lung, and colon

cancers (12, 13). It affects around 80% of pancreatic cancer

patients at some point in their illness (23, 24), implying that our

findings may be associated with cachexia in pancreatic cancer,

which is characterized by muscle and adipose atrophy in

patients. Thus, we investigated how pancreatic SCG5 is linked

to adiposity. We hypothesized that if pancreatic SCG5 is a

systemic humoral factor that influences adiposity (BMI), there

would be a difference in adipocyte size between donors with high

and low pancreatic SCG5 expression. We conducted an

integrative analysis of two omics data sets to evaluate this

hypothesis (i.e., the pancreatic transcriptome and the histology

of subcutaneous adipose tissue as a phenome) from the same

donors in the GTEx database. We analyzed the pancreatic

transcriptome of male (aged 30–40) samples to minimize age

and gender biases because a negative correlation between SCG5

expression and age was observed previously (Figures 4F–H).

Pancreatic GTEx data samples were ordered according to SCG5

expression levels and 12 were chosen from the top (n = 6) and

bottom (n = 6), accounting for roughly one-third of all samples

(Figure 5A). We downloaded hematoxylin and eosin-stained

histological images of SAT for the selected samples and

measured the cell size. Assessment of the CSA of human SAT

determined that higher level of pancreatic SCG5 is associated

with larger cell size in human SAT (Figure 5B). The

quantification of CSA and frequency of cell size in SAT

further validated the hypothesis (Figure 5C, D). This result

indicates that pancreatic SCG5 expression is positively

associated with the size of subcutaneous adipocytes in

humans. Aligning with the result showing positive correlation
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between plasma SCG5 and BMI (adiposity, Figure 4E), this

implies that SCG5 may be a systemic regulator of adipose

tissue homeostasis and may contribute to cachexia in patients

with PAC.
Unbiased transcriptome analysis
connected pancreatic SCG5 expression
to the adipopenia phenotype

Our findings imply that pancreatic SCG5 could be a

systemic humoral factor that contributes to adiposity or

adipopenia. This prompted us to explore further in order to

find any concealed the downstream mechanism of SCG5 in

human SAT. Thus, we attempted to comprehend the

phenomena of positive correlation between pancreatic SCG5

expression and adipocyte size or adiposity (BMI) at the

molecular level by performing an unbiased gene set

enrichment analysis, a gold standard for investigating an

associated gene set, signaling pathway, or genes associated to

diseases in humans (29, 36).

SAT transcriptomic data were prepared in the same way as

done for adipocyte size analysis (Figure 5) for GSEA. GSEA was

performed by dividing the data into two groups (i.e., SCG5-high,

and SCG5-low) according to SCG5 expression level in the

pancreas. To analyze the associated biological processes and

phenotypes in SAT, we used two complete gene sets: Gene

Ontology Biological Process (GOBP) and Human Phenotype

Ontology (HP). GSEA revealed seven top-correlated gene sets

that may be associated with cachexia, adipopenia, or adiposity

(Figure 6A). Interestingly, GSEA also revealed two gene sets of HP

cachexia (HP:0004326) and HP lipodystrophy (HP:0009125) that

were significantly associated to pancreatic SCG5 expression in

SAT. Moreover, gene sets of GOBP brown fat cell differentiation

(GO:0050873) , GOBP mitochondrion organizat ion

(GO:0007005), GOBP regulation of mitochondrial gene

expression (GO:0062125), GOBP mitochondrial respiratory

chain complex assembly (GO:0033108), and GOBP

mitochondrial gene expression (GO:0140053) were also

associated with pancreatic SCG5 expression. It is reported that

brown fat cell activity, browning of adipose tissue, and

mitochondria function may be associated with cachexia (37–39).

Since each gene set contains numerous genes, we performed

gene network analysis (31) to analyze how genes in each gene set

are associated with pancreatic SCG5 expression. Gene networks

were constructed using ten top- and bottom-ranked genes in the

respective gene sets. In HP lipodystrophy, the pancreatic SCG5-

low donors had stronger and more correlations among

lipodystrophy genes than pancreatic SCG5-high donors, and

positive correlation between GRM7 and SYNBE1 was stronger in

pancreatic SCG5-high donors than SCG5-low donors

(Figure 6C). In HP cachexia, the number or degree of the
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overall correlation between SCG5-low and SCG5-high donors

did not differ significantly. However, some of the negative

correlations dispersed, reappeared, and became stronger, such

as CENPJ-SIGMAR1, CENPJ-JAK2, and SLC9A6-TRPV4 in

SCG5-high donors, while some positive correlations became

stronger, such as ERCC2-SIGMAR1, TYMP-FOXP3, and

TYMP-GALC (Figure 6D). In GOBP mitochondrial respiratory

chain complex assembly, SCG5-high donors had stronger and

more correlations than SCG5-low donors. Negative correlation,

such as DMAC2-NUBPL, was stronger in SCG5-high donors

than in SCG5-low donors, although negative correlation such as

COX20-NDUFA8 was attenuated (Figure 6E). In GOBP brown

fat cell differentiation, SCG5-low donors demonstrated stronger

and many more correlations than SCG5-high donors. The

weaker correlation between LRG1 and TRPV4 in SCG5-low

donors was found to be strong in SCG5-high donors

(Figure 6F). Altogether, GSEA analysis revealed that genes and

gene sets involved in adipose tissue wasting and mitochondrial

activity were tightly associated with pancreatic SCG5 expression

level. This signifies that SCG5 may be a systemic humoral factor
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and may contribute to cachexia in pancreatic cancer, which

should be verified further.
The effect of recombinant SCG5 protein
on adipocyte biology

Our findings indicate that SCG5 expression in PAC tissue and

SCG5 level in blood are associated with adiposity (e.g., BMI) and

can be a good biomarker for recognizing patients with PAC and

predicting their prognosis. To determine whether SCG5 protein

alone can directly affect adipocyte biology (e.g., differentiation or

lipid accumulation), three different concentrations of rSCG5 were

treated during and after differentiation of 3T3L-1 adipocytes. First,

we selected three different concentrations (50, 100, and 200 ng/ml)

based on the plasma concentration that we measured from the

human donors (Figure 4). The effect of rSCG5 was determined

with Oil-Red-O, which stains neutral triglycerides and lipids (40).

The accumulation of neutral lipid did not change significantly

across all three concentrations of rSCG5 (Supplementary
B

C D

A

FIGURE 5

SCG5 expression in human pancreatic tissues is positively associated with the size of subcutaneous adipocytes. (A) Bar plot showing pancreatic
expression of SCG5 in the human Genotype-Tissue Expression (GTEx) portal. (B) Hematoxylin and eosin-stained images of human
subcutaneous adipose tissues from the GTEx portal, (C, D) Plots displaying the (C) size and (D) distribution of the cross-sectional area of
adipocytes from H&E-stained histological images. The boxplots (C) present the 25% quartile, the median, and 75% quartile. Student’s t- test (C)
assessed the statistical significance. ****p < 0.0001.
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Figures 2A–D). Consistently, the patterns of gene expression

involved in adipocyte biology, including Srebf1, Pparg, Adipoq,

Fasn, Scd1, Acc1, Slc2a4/Glut4, Cpt1a, Acadm, Acadvl, and Ascsl1,

were not changed significantly in all tested conditions

(Supplementary Figures 2E, F), implying rSCG5 may not work

as a signaling ligand on adipocytes.
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Discussion

In this study, using supervised machine learning models, we

discovered that SCG5 gene can distinguish between NOP and

PAC as well as short-lived and long-lived patients with PAC. We

validated the difference in plasma SCG5 levels between w/o PAC
B

C D
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A

FIGURE 6

Unbiased transcriptomic analysis shows that pancreatic SCG5 expression is associated with the adipopenia phenotype. (A) Bubble plot
summarizing the results of gene set enrichment analysis (GSEA) dissecting adipose transcriptomic profiles from donors of pancreatic SCG5-high
or -low groups. (B) Representative enrichment plots of cachexia and adipopenia-related gene sets. (C–F) Gene networks comparing
correlations among top genes of each indicated gene set, human phenotype ontology (HP) Lipodystrophy (C), HP Cachexia (D), Gene Ontology
biological process (GOBP) Mitochondrial respiratory chain complex assembly (E), and GOBP Brown fat cell differentiation (F).
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and PAC using ELISA and proposed the diagnostic threshold

(106.27 ng/ml) in our cohort (Figures 4A–D), which needs to be

further tested in an independent large cohort to overcome our

race and geological biases. In addition, we were unable to

validate the potential of SCG5 as a prognostic marker in

plasma samples due to limited cohort size and lack of

information, such as data regarding survival days. The power

of SCG5 as a prognostic marker should be examined together

with the evaluation of any correlation between plasma SCG5

levels and clinicopathological characteristics (TNM stage,

survival rate, etc.) in an independent cohort with PAC. Our

results show that the calculated survival rate indicates that SCG5

expression can be a prognostic marker for male patients but not

for females (Figures 3E–G). However, plasma SCG5 level was

much strongly reduced in female patients compared with male

patients (Figures 4B, C), implying that plasma SCG5 levels show

gender bias. It is hard to explain why the trends of pancreatic

SCG5 mRNA and plasma SCG5 protein are inconsistent.

(Figures 3F, G, 4B, C). There are many possibilities. The

gender bias could be originated by (1) the cohort size

limitation; (2) the genetic background limitation (ELISA was

performed only on the Korean population, but TCGA data was

primarily composed of Caucasians (n = 162), with other races

limited to Asians (n = 11), African Americans (n = 7), and

unreported (n = 5), and so on); (3) the mismatch between

transcription rate (mRNA) and translation (protein) rat; and (4)

so on. This gender significance of SCG5 level in PAC should be

investigated further in an independent larger cohort to confirm a

potential gender effect.

The analysis showing the degree of association between

SCG5 plasma protein and BMI also demonstrates that this

association exists not only in cancer patients but also in

donors without cancer, implying that plasma SCG5 has a role

in both physiology and pathology (Figure 4E). This relationship

is consistent in both genders (Figures 4I, M). In addition, the

level of SCG5 expression was lower in pancreatic cancer patients

with low BMI (Figure 5E), although it is unclear whether SCG5

induces cachexia or adipopenia. In order to verify the association

of plasma SCG5 with pathology (e.g., cachexia, adipopenia,

lipodystrophy, obesity, etc.) and physiology (e.g., body weight,

BMI, gender, race, etc.), it will be valuable to explore the

association of SCG5 with pathophysiological factors in a large

population to overcome any bias linked to genetic and

geological backgrounds.

Furthermore, to discover the mechanism-of-action and

biological function of SCG5, GSEA was performed on gene

expression data from subcutaneous adipose tissue samples with

high and low pancreatic SCG5 expression. We found association

in gene sets related to adipose tissue wasting phenotype such as

cachexia, lipodystrophy, mitochondrial function, and brown fat

cell differentiation (Figure 6), which is consistent with the CSA

analysis of SAT (Figure 5). Although a few studies have reported

no correlation between cachexia and brown adipose tissue (41),
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many studies have found a link2 between cachexia and the

activity of brown adipose tissue and the browning of white fat

(37–39). Mitochondrial function and homeostasis are an

essential tissue for brown adipose tissue, and its function is

fully dependent on mitochondrial function (42–44). Several

studies have proposed that cancer-originating humoral factors

drive dysregulation of mitochondria, including their

hyperactivation (18, 45–48). The genes included in

lipodystrophy are directly associated with adipose tissue

development, homeostasis, lipogenesis, and lipolysis. This

implies that alteration in genes that can directly affect

adipocyte size is systematically related to alteration in

pancreatic SCG5.

Although SCG5 has obvious promise as a diagnostic and

prognostic biomarker for PAC, we found no significant effect

of rSCG5 on adipocyte biology (Supplementary Figure 2),

demonstrating that SCG5 cannot directly govern adipose

tissue. The molecular function of SCG5, also known as

P7B2, is known to prevent the aggregation of other secreted

proteins as a secreted chaperone protein (49), indicating that

SCG5 might not work as a ligand but rather it may facilitate

other protein ligands in the blood. Interestingly, genetic

analysis using expression quantitative trait loci (a.k.a. eQTL)

of SCG5 also reported that pituitary levels of SCG5 were

correlated inversely with body weight in mice (50),

consistently supporting our observation of inverse

correlations between plasma SCG5 and human BMI and

adiposity. The function of blood SCG5 in adipocyte biology

should be investigated in vivo rather than in vitro, first. Then,

both proteins should be evaluated on cultured adipocytes after

the deconvolution of a plasma partner protein, facilitated by

SCG5, a blood chaperone protein. Taken together, our

findings demonstrate that RF- and XGBoost-featured SCG5

is a circulating diagnostic indicator of PAC that may be a

pathophysiological and systemic regulator for adiposity and

can be a novel therapeutic target for both adipose tissue-

wasting (e.g., cachexia, adipopenia, lipodystrophy, etc.) and

accumulating diseases (e.g., obesity).
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