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Abstract
Genome-scale orthology assignments are usually based on reciprocal best matches.
In the absence of horizontal gene transfer (HGT), every pair of orthologs forms a
reciprocal best match. Incorrect orthology assignments therefore are always false pos-
itives in the reciprocal best match graph. We consider duplication/loss scenarios and
characterize unambiguous false-positive (u-fp) orthology assignments, that is, edges
in the best match graphs (BMGs) that cannot correspond to orthologs for any gene tree
that explains the BMG.Moreover, we provide a polynomial-time algorithm to identify
all u-fp orthology assignments in a BMG. Simulations show that at least 75% of all
incorrect orthology assignments can be detected in this manner. All results rely only
on the structure of the BMGs and not on any a priori knowledge about underlying
gene or species trees.

Keywords Orthology detection · Best matches · Unambiguous orthologs · Colored
graphs · Cograph · Tree reconciliation · Polynomial-time algorithm

Mathematics Subject Classification 92-08 · 92D15 · 68R01

1 Introduction

Orthology is one of the key concepts in evolutionary biology: Two genes are orthologs
if their last common ancestor was a speciation event Fitch (1970). Distinguishing
orthologs from paralogs (originating from gene duplications) or xenologs (i.e., genes
that have undergone horizontal gene transfer) is of considerable practical importance
for functional genome annotation and thus for a wide array of methods in bioinfor-
matics and computational biology that rely on gene annotation data. In particular,
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according to the “ortholog conjecture”, orthologous genes in different species are
expected to have essentially the same biological and molecular functions, whereas
paralogs and xenologs tend to have similar, but distinct functions. Albeit controver-
sial Nehrt et al. (2011), Stamboulian et al. (2020), this assumption is widely made
in the computational prediction of gene functions Nehrt et al. (2011), Gabaldón and
Koonin (2013), Soria et al. (2014), Zallot et al. (2016). Moreover, the distinction of
orthologs and paralogs is crucial in phylogenomics Delsuc et al. (2005). Most of the
commonly used tools for large-scale orthology identification compute reciprocal best
hits as a first step followed by some filtering and refinement steps to improve the results
Tatusov et al. (2000), Roth et al. (2008), Lechner et al. (2011), Linard et al. (2011),
Sonnhammer and Östlund (2015), Train et al. (2017), Huerta-Cepas et al. (2018), see
also Nichio et al. (2017), Setubal and Stadler (2018), Galperin et al. (2019) for reviews
and Altenhoff et al. (2016) for benchmarking results.

Orthology identification has also received increasing attention from amathematical
perspective starting from the concept of an evolutionary scenario comprising a gene
tree T and a species tree S together with a reconciliation map μ from T to S. The map
μ identifies the locations in the species tree at which evolutionary events, represented
by the vertices of the gene tree, took place. In this contribution, we consider exclusively
duplication/loss scenarios, i.e., we explicitly exclude horizontal gene transfer.Charac-
terizations of reconciliation maps are given e.g. in Górecki and Tiuryn (2006), Vernot
et al. (2008), Doyon et al. (2011), Rusin et al. (2014). While every gene tree can be
reconciled with any species tree Guigó et al. (1996), Page and Charleston (1997), this
is no longer true if event-labels are prescribed in the gene tree T Hernandez-Rosales
et al. (2012), Lafond and El-Mabrouk (2014), Hellmuth (2017).

The orthology relation itself has been characterized as a cograph (i.e., graphs that do
not contain induced paths P4 on four vertices) byHellmuth et al. (2013) based on earlier
work by Böcker and Dress (1998). This line of research has led to the idea of editing
reciprocal best hit data to conform to the required cograph structure Hellmuth et al.
(2015). There are, however, two distinct sources of errors in an orthology assignment
pipeline based on best matches:

(i) inaccuracies in the assignment of best matches from sequence similarity data
Stadler et al. (2020), and

(ii) limits in the reconstruction of the “true” orthology relation from best match graphs
Geiß et al. (2020b).

We consider best matches as an evolutionary concept: A gene y in species s is a best
match of a gene x from species r �= s if s contains no gene y′ that is more closely
related to x . That is, best matches capture the idea of phylogenetically most closely
related genes. Maybe surprisingly, the combinatorial structure of best matches has
become a focus only very recently Geiß et al. (2019). Best match graphs (BMGs) have
several appealing properties: They have several alternative characterizations providing
polynomial-time recognition algorithms Geiß et al. (2020a), Schaller et al. (2020)
and they are “explained” by a unique least resolved tree Geiß et al. (2019). These
properties will be introduced formally in the next section and play an important role
in our discussion. The reciprocal best match graphs (RBMGs) are the symmetric parts
of BMGs and conceptually correspond to the reciprocal best hits used in orthology
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Fig. 1 An evolutionary scenario (left) consists of a gene tree (T , σ ) (whose observable part is shown in the
second panel) together with an embedding into a species tree S. The coloring σ of the leaves of T represents
the species in which the genes reside. Speciation vertices (�) of the gene tree coincide with the vertices of
the species tree, whereas gene duplications (�) are mapped to the edges of S. The reciprocal best match
graph (RBMG) (G, σ ) on the right corresponds to the undirected graph underlying the symmetric part of
the best match graph (BMG) ( �G, σ ) (third panel)

Fig. 2 Two scenarios (1st and 2nd panel to the left) for the evolution of a gene family embedded into a
species tree (shown in gray), where� represents speciation and� duplication events. The second scenario is
the simplest example for a complementary gene loss that is not witnessed by any other species. In particular,
the two different true histories result in the same topology ˜T of the true (loss-free) gene tree, and thus explain
the same BMG ( �G, σ ). However, only for the leftmost scenario the edge xy in ( �G, σ ) describes correct
orthologs

detection. In contrast to BMGs, RBMGs are much more difficult to handle and are
not associated with unique trees Geiß et al. (2020c). An example for an evolutionary
scenario with corresponding BMG and RBMG is given Fig. 1.

In this contribution, we are only concerned with the second source of errors, i.e.,
with the limits in the reconstruction of the true orthology relation from best matches.
We therefore assume throughout that a “correct” BMG (cf. Def. 2) is given.We do not
assume, however, that we have any a priori knowledge about the underlying gene or
species tree. The problem we aim to solve is to determine the orthology relation that
is best supported by the given BMG.

Of course, the true orthology relation is not known. Nevertheless, we start our
mathematical analysis with the following definition: A pair of genes x and y that
are not true orthologs but reciprocal best matches are false-positive orthologs. If they
are orthologs but not reciprocal best matches, they are false-negative orthologs. Geiß
et al. (2020b) showed that, for evolutionary scenarios that involve only speciations,
gene duplications, and gene losses, there are no false-negative orthology assignments
(see also Thm. 2 below). Our task therefore reduces to understanding the false-positive
orthology assignments. Being a false positive is a property of the edge xy in an RBMG,
and equivalently of the symmetric pair (x, y) and (y, x) in the BMG. Here, we aim to
identify false-positive edges from the structure of the BMG itself.
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We first note that false positives cannot be avoided altogether, i.e., not all false
positives can be identified from a BMG alone. The simplest example, Fig. 2 (second
scenario), comprises a gene duplication and a subsequent speciation and complemen-
tary gene losses in the descendant lineages such that each paralog survives only in one
of them. In this situation, xy is a reciprocal best match. If there are no other descen-
dants that harbor genes witnessing the duplication event, then the framework of best
matches provides no information to recognize xy as a false-positive assignment.

On the other hand, RBMGs and thus BMGs contain at least some information
on false positives. Since the orthology relation forms a cograph but RBMGs are not
cographs in general Geiß et al. (2020c), incorrect orthology assignments are associ-
ated with induced P4s, the forbidden subgraphs that characterize cographs. P4s arise
for instance as a consequence of the complete loss of different paralogous groups
in disjoint lineages. Dessimoz et al. (2006) noted that such false-positive orthology
assignments canbe identifiedunder certain circumstances, in particular, if there is some
species in which both paralogs have survived. The corresponding motif in BMGs, the
“good quartets”, was investigated in some detail by Geiß et al. (2020c). The removal of
such false-positive orthologs already leads to a substantial improvement of the orthol-
ogy assignments in simulated data Geiß et al. (2020b). Here, we extend the results of
Geiß et al. (2020b) to a complete characterization of false-positive orthology assign-
ments for a given BMG.

Good quartets cannot be defined onRBMGs because information on non-reciprocal
best matches is also needed explicitly. This suggests to consider BMGs rather than
RBMGs as the first step in graph-based orthology detection methods. In practice, best
matches are approximated by sequence similarity and thus are subject to noise and
biases Stadler et al. (2020). The empirically determined best match relation thus will
usually need to be corrected to conform to the formal definition (cf. Def. 2 below) of
BMGs. This naturally leads to a graph editing problem that was recently shown to be
NP-complete Schaller et al. (2020), Hellmuth et al. (2020b).

Sec. 2 establishes the notation and summarizes properties of BMGs that are needed
throughout this contribution. Sec. 3 formalizes the notion of unambiguous false-
positive (u-fp) edges, i.e., reciprocal best matches that cannot be orthologs w.r.t. to any
gene tree explaining the BMG. Sec. 4 contains the main mathematical contributions
of this work:

1. We provide a full characterization of unambiguous false-positive orthology assign-
ments in BMGs.

2. We provide a polynomial-time algorithm to determine all unambiguous false-
positive orthology assignments in BMGs.

In Sec. 5, we complement the mathematical results with a computational analysis of
simulated scenarios and observe that at least three quarters of all false positives fall into
this class. The remaining cases are not recognizable from best matches alone and cor-
respond to complementary losses without surviving witnesses, i.e., cases that cannot
be corrected without additional knowledge on the gene tree and/or the species tree.

Since the material is extensive and very technical, we subdivide our presentation
into a main narrative part (Secs. 1–6) and a technical part (Secs. A–D) that contains
all proofs and additional material in full detail. Together with the definitions and
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preliminaries in Sec. 2, the technical part is self-contained. Definitions and results
appearing in the narrative part are therefore restated. The order of the material in the
two parts is slightly different.

2 Preliminaries

2.1 Graphs and trees

Weconsider finite, directed graphs �G = (V , E), for brevity just called graphs through-
out, with arc set E ⊆ V × V \{(v, v) | v ∈ V }. We say that xy is an edge in �G if
and only if both (x, y) ∈ E( �G) and (y, x) ∈ E( �G). If all arcs of �G in a graph form
edges, we call �G undirected. A graph H = (W , F) is a subgraph of G = (V , E),
in symbols H ⊆ G, if W ⊆ V and F ⊆ E . The underlying symmetric part of a
directed graph �G = (V , E) is the subgraph G = (V , F) that contains all edges of
�G. A subgraph H = (W , F) (of �G) is called induced, denoted by �G[W ], if for all
u, v ∈ W it holds that (u, v) ∈ E implies (u, v) ∈ F . In addition, we consider vertex-
colored graphs ( �G, σ ) with vertex-coloring σ : V → M into some set M of colors. A
vertex-coloring is called proper if σ(x) �= σ(y) for every arc (x, y) in �G. We write
σ(W ) = {σ(w) | w ∈ W } for subsets W ⊆ V and σ|W to denote the restriction of the
map σ to W ⊆ V . In particular, ( �G[W ], σ|W ) is an induced vertex-colored subgraph
of ( �G, σ ).

A path (of length �) in a directed graph �G or an undirected graph G is a sub-
graph induced by a nonempty sequence of pairwise distinct vertices P(x0, x�) :=
(x0, x1, . . . , x�) such that (xi , xi+1) ∈ E( �G) or xi xi+1 ∈ E(G), resp., for 0 ≤ i ≤
�−1.We use the notation P(x0, x�) both for the sequence of vertices and the subgraph
they induce.

All trees T = (V , E) considered here are undirected, planted and phyloge-
netic, that is, they satisfy (i) the root 0T has degree 1 and (ii) all inner vertices
have degree degT (u) ≥ 3. We write L(T ) for the leaves (not including 0T ) and
V 0 = V (T )\(L(T ) ∪ {0T }) for the inner vertices (also not including 0T ). To avoid
trivial cases, we will always assume |L(T )| ≥ 2. An edge uv in T is an inner edge if
u, v ∈ V 0(T ) are inner vertices. The conventional root ρT of T is the unique neigh-
bor of 0T . The main reason for using planted phylogenetic trees instead of modeling
phylogenetic trees simply as rooted trees, which is the much more common practice
in the field, is that we will often need to refer to the time before the first branching
event, i.e., the edge 0T ρT .

We define the ancestor order on a given tree T as follows: if y is a vertex of the
unique path connecting x with the root 0T , we write x �T y, in which case y is called
an ancestor of x and x is called a descendant of y. We use x ≺T y for x �T y and
x �= y. If x �T y or y �T x the vertices x and y are comparable and, otherwise,
incomparable. If xy is an edge in T , such that y ≺T x , then x is the parent of y
and y the child of x . We denote by childT (x) the set of all children of x . It will be
convenient for the discussion below to extend the ancestor relation �T to the union
of the edge and vertex sets of T . More precisely, for a vertex x ∈ V (T ) and an edge
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e = uv ∈ E(T ) with v ≺T u we write x ≺T e if and only if x �T v and e ≺T x if
and only if u �T x . For edges e = uv with v ≺T u and f = ab with b ≺T a in T we
put e �T f if and only if v �T b.

For a non-empty subset A ⊆ V ∪ E , we define lcaT (A), the last common ancestor
of A, to be the unique �T -minimal vertex of T that is an ancestor of every vertex
or edge in A. For simplicity we drop the brackets and write lcaT (x1, . . . , xk) :=
lcaT ({x1, . . . , xk}) whenever we specify a set of vertices or edges explicitly.

Avertex v ∈ V (T ) isbinary if degT (v) = 3, i.e., if v has exactly two children.A tree
is binary, if all vertices v ∈ V 0 are binary. For v ∈ V (T )wedenote by T (v) the subtree
of T rooted in v. The set of clusters of a tree T is C(T ) = {L(T (v)) | v ∈ V (T )}. It is
well-known that C(T ) uniquely determines T Semple and Steel (2003). We say that
a tree T is a refinement of some tree T ′ if C(T ′) ⊆ C(T ). A tree T ′ is displayed by a
tree T , in symbols T ′ ≤ T , if T ′ can be obtained from a subtree of T by contraction of
edges Semple (2003), where the contraction of an edge e = uv in a tree T = (V , E)

refers to the removal of e and identification of u and v. It is easy to verify that every
refinement T of T ′ also displays T ′. However, the converse is not always true since
L(T ′) � L(T ) and thus, C(T ′) � C(T ) may be possible.

2.2 (Reciprocal) best matches

Weconsider a pair T = (V , E) and S = (W , F) of planted phylogenetic trees together
with a map σ : L(T ) → L(S). We interpret T as a gene tree and S as a species tree; the
mapσ describes, for each gene x ∈ L(T ), in the genomeofwhich speciesσ(x) ∈ L(S)

it resides.W.l.o.g. we assume that the “gene-species-association” σ is a surjective map
to avoid trivial cases. Since σ can be viewed as a coloring of the leaves of T , we call
(T , σ ) a leaf-colored tree. For s ∈ L(S) we write L[s] := {x ∈ L(T )|σ(x) = s}.
Definition 1 Let (T , σ ) be a leaf-colored tree. A leaf y ∈ L(T ) is a best match of the
leaf x ∈ L(T ) if σ(x) �= σ(y) and lca(x, y) �T lca(x, y′) holds for all leaves y′ from
species σ(y′) = σ(y). The leaves x, y ∈ L(T ) are reciprocal best matches if y is a
best match for x and x is a best match for y.

Neither bestmatches nor reciprocal bestmatches are unique. That is, a gene x mayhave
two or more (reciprocal) best matches of the same color r �= σ(x). Some orthology
detection tools, such as ProteinOrtho Lechner et al. (2011), explicitly attempt to
extract all reciprocal best matches from the sequence data. Moreover, neither of the
two relations is transitive. These two properties are at odds e.g. with the clusters of
orthologous groups (COGs) concept (cf. Tatusov et al. 1997, 2000; Roth et al. 2008),
which at least conceptually presupposes unique reciprocal best matches.

The graph �G(T , σ ) = (V , E) with vertex set V = L(T ), vertex coloring σ , and
with arcs (x, y) ∈ E if and only if y is a best match of x w.r.t. (T , σ ) is known as the
(colored) best match graph of (T , σ ) Geiß et al. (2019). The symmetric part G(T , σ )

of �G(T , σ ) obtained by retaining the edges of �G(T , σ ) is the (colored) reciprocal best
match graph Geiß et al. (2020c).

Definition 2 An arbitrary vertex-colored graph ( �G, σ ) is a best match graph (BMG)
if there exists a leaf-colored tree (T , σ ) such that ( �G, σ ) = �G(T , σ ). In this case, we
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say that (T , σ ) explains ( �G, σ ). An arbitrary undirected vertex-colored graph (G, σ )

is a reciprocal best match graph (RBMG) if it is the symmetric part of a BMG ( �G, σ ).

For the symmetric part of the BMG ( �G, σ ), i.e., the RBMG (G, σ ), we have xy ∈
E(G) if and only if x and y are reciprocal best matches in (T , σ ). In this sense, (T , σ )

also explains (G, σ ). We note, furthermore, that RBMGs are not associated with a
unique least resolved tree Geiß et al. (2020c).

2.3 Reconciliationmaps, event-labeling, and orthology relations

An evolutionary scenario extends the map σ : L(T ) → L(S) to an embedding of the
gene tree into the species tree. It (implicitly) describes different types of evolutionary
events: speciations, gene duplications, and gene losses. In this contribution we do not
consider other types of events such as horizontal gene transfer. Gene losses do not
appear explicitly since L(T ) only contains extant genes. Inner vertices in the gene tree
T that designate speciations have their correspondence in inner vertices of the species
tree. In contrast, gene duplications occur independently of speciations and thus belong
to edges of the species tree. The embedding of T into S is formalized by

Definition 3 (Reconciliation Map) Let S = (W , F) and T = (V , E) be two planted
phylogenetic trees and let σ : L(T ) → L(S) be a surjective map. A reconciliation
from (T , σ ) to S is a map μ : V → W ∪ F satisfying

(R0) Root Constraint. μ(x) = 0S if and only if x = 0T .
(R1) Leaf Constraint. If x ∈ L(T ), then μ(x) = σ(x).
(R2) Ancestor Preservation. If x ≺T y, then μ(x) �S μ(y).
(R3) Speciation Constraints. Suppose μ(x) ∈ W 0 for some x ∈ V . Then

(i) μ(x) = lcaS(μ(v′), μ(v′′)) for at least two distinct children v′, v′′ of x in T .
(ii) μ(v′) and μ(v′′) are incomparable in S for any two distinct children v′ and v′′

of x in T .

Several alternative definitions of reconciliation maps for duplication/loss scenarios
have been proposed in the literature, many of which have been shown to be equivalent.
This type of reconciliation map has been established in Geiß et al. (2020b). Moreover,
it has been shown in Geiß et al. (2020b) that the axiom set used here is equivalent to
axioms that are commonly used in the literature, see e.g. Górecki and Tiuryn (2006),
Vernot et al. (2008), Doyon et al. (2011), Rusin et al. (2014), Hellmuth (2017), Nøj-
gaard et al. (2018), and the references therein. Without any further constraints, Def. 3
gives rise to a well-known result:

Lemma 1 (Geiß et al. 2020b, Lemma 3) For every tree (T , σ ) there is a reconciliation
map μ to any species tree S with leaf set L(S) = σ(L(T )).

The reconciliation map μ from (T , σ ) to S determines the types of evolutionary
events in T . This can be formalized by associating an event labeling with the vertices
of T . We use the notation introduced in Geiß et al. (2020b):

Definition 4 Given a reconciliation map μ from (T , σ ) to S, the event labeling on T
(determined by μ) is the map tμ : V (T ) → {�,
,�,�} given by:
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tμ(u) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

� if u = 0T , i.e., μ(u) = 0S (root)


 if u ∈ L(T ), i.e., μ(u) ∈ L(S) (leaf)

� if μ(u) ∈ V 0(S) (speciation)

� else, i.e., μ(u) ∈ E(S) (duplication)

The following result is a simple but useful consequence of combining the axioms
of the reconciliation map with the event labeling of Def. 4.

Lemma 2 (Geiß et al. 2020b, Lemma 3) Letμ be a reconciliation map from (T , σ ) to a
tree S and suppose that u ∈ V (T ) is a vertex with μ(u) ∈ V 0(S) and thus, t(μ(u)) =�. Then, σ(L(T (v1))) ∩ σ(L(T (v2))) = ∅ for any two distinct v1, v2 ∈ child(u).

We will regularly make use of the observation that, by contraposition of Lemma 2,
σ(L(T (v)))∩σ(L(T (v′))) �= ∅ for two distinct v1, v2 ∈ child(u) implies thatμ(u) ∈
E(S), and thus tμ(u) = �.

Lemma 2 suggests to define event-labeled trees as trees (T , t) endowed with a map
t : V (T ) → {�,
,�,�} such that t(0T ) = � and t(u) = 
 for all u ∈ L(T ). In
Geiß et al. (2020b), Lemma 2 also served as a motivation for

Definition 5 Let (T , σ ) be a leaf-colored tree. The extremal event labeling of T is the
map̂tT : V (T ) → {�,
,�,�} defined for u ∈ V (T ) by

̂tT (u) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

� if u = 0T

 if u ∈ L(T )

� if there are two children v1, v2 ∈ child(u) such that

σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅
� otherwise

An example of an extremal event labeling is shown in Fig. 9 (rightmost tree). The
extremal event labeling is closely related to the concept of apparent duplication (AD)
vertices often found in the literature (e.g. Swenson et al. 2012; Lafond et al. 2014).
For a (binary) gene tree T and a reconciliation of T with a species tree S, a duplication
vertex of T is an AD vertex if its two subtrees have at least one color in common. In
contrast, it is a non-apparent duplication (NAD) vertex if the color sets of its subtrees
are disjoint. This notion is useful for a variety of parsimony problems that usually aim
to avoid or minimize the number of NAD vertices Swenson et al. (2012), Lafond et al.
(2014). However, the extremal event labelinĝtT is completely defined by (T , σ ). That
is, in contrast to both the event labeling in Def. 4 and the concept of AD and NAD
vertices,̂tT does not depend on a specific reconciliation map. On the other hand, there
is no guarantee that there always exists a reconciliation map μ from (T , σ ) to some
species tree S such that tμ = ̂tT , cf. (Geiß et al. 2020b, Fig. 2) and Fig. 9 in Sec. 4.2
for counterexamples. Nevertheless, we shall see below that the extremal labeling is a
key step towards identifying false-positive orthology assignments.

The event labeling on T defines the orthology graph.

Definition 6 The orthology graph �(T , t) of an event-labeled tree (T , t) has vertex
set L(T ) and edges uv ∈ E(�) if and only if t(lca(u, v)) = �.
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The orthology graph is often referred to as the orthology relation. Orthology graphs
coincide with a well-known graph class:

Theorem 1 (Hellmuth et al. 2013, Cor. 4) A graph G is an orthology graph for some
event-labeled tree (T , t), i.e. G = �(T , t), if and only if G is a cograph.

One of many equivalent characterizations of cographs identifies them with the graphs
that do not contain an induced path P4 on four vertices Corneil et al. (1981).

The orthology graph is a subgraph of the RBMG (and thus also of the BMG) for
any given reconciliation map connecting a gene with a species tree.

Theorem 2 (Geiß et al. 2020b, Lemma 4& 5) Let (T , σ ) be a leaf-colored tree andμ a
reconciliation map from (T , σ ) to some species tree S. Then �(T , tμ) ⊆ �(T ,̂tT ) ⊆
G(T , σ ) ⊆ �G(T , σ ).

In particular, tμ(v) = � implieŝtT (v) = � for any reconciliation map. By contra-
position, therefore, if̂tT (v) = � then tμ(v) = � for all possible reconciliation maps
μ from (T , σ ) to any species tree S. A crucial implication of Thm. 2 is that edges
in a BMG �G(T , σ ) always correspond to either correct orthologous pairs of genes or
false-positive orthology assignments. Hence, �G(T , σ ) never contains false-negative
orthology assignments.

3 False-positive orthology assignments

As discussed in the introduction, we are not concerned here with the errors that arise in
the reconstruction of best matches from sequence similarity data.We therefore assume
that we are given a BMG ( �G, σ ) as specified in Def. 2. More precisely, we assume
that ( �G, σ ) derives from a duplication/loss scenario that is unknown to us. Denote
by (˜T ,˜t, σ ) the corresponding true leaf-colored and event-labeled gene tree. An edge
xy of ( �G, σ ), or equivalently of the corresponding RBMG (G, σ ), is a false-positive
orthology assignment if xy ∈ E(G) but xy /∈ E(�(˜T ,˜t)). By Thm. 2, (G, σ ) cannot
contain false-negative orthology assignments, i.e., there is no xy ∈ E(�(˜T ,˜t)) with
xy /∈ E(G). We assume no additional information about the gene tree or the species
tree, i.e., the only data about the evolutionary scenario that is available to us is the
BMG ( �G, σ ).

In order to study false-positive orthology assignments,wefirst consider a tree (T , σ )

that explains the BMG ( �G, σ ). We neither make the assumption that (T , σ ) is least
resolved nor that (T , σ ) reflects the true history, i.e., that (T , σ ) is related to the true
gene tree (˜T , σ ).

Definition 10 ((T , σ )-false-positive) Let (T , σ ) be a tree explaining the BMG ( �G, σ ).
An edge xy in �G is called (T , σ )-false-positive, or (T , σ )-fp for short, if for every
reconciliation map μ from (T , σ ) to any species tree S we have tμ(lcaT (x, y)) = �,
i.e., μ(lcaT (x, y)) ∈ E(S),

In other words, xy is called (T , σ )-fp whenever x and y cannot be orthologous w.r.t.
any possible reconciliationμ from (T , σ ) to any species tree. Interestingly, (T , σ )-fps
can be identified without considering reconciliation maps explicitly.
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Fig. 3 The BMG ( �G, σ ) shown on the right is explained by both (T1, σ ), which is the unique least resolved
tree for ( �G, σ ), and (T2, σ ). The vertices labeled � must be duplications due to Lemma 2, whereas the
vertices labeled “?” could be both duplications or speciations. The edges xz, x ′z and yz are (T1, σ )-fp but
not (T2, σ )-fp (cf. Lemma 10). Thus, neither of the edges xz, x ′z and yz is u-fp

Lemma 10 Let ( �G, σ ) be a BMG, xy be an edge in �G and (T , σ ) be a tree that explains
( �G, σ ). Then, the following statements are equivalent:

1. The edge xy is (T , σ )-fp.
2. There are two children v1 and v2 of lcaT (x, y) such that σ(L(T (v1))) ∩

σ(L(T (v2))) �= ∅.
3. For the extremal labelinĝtT of (T , σ ) it holds that̂tT (lcaT (x, y)) = �.

Lemma 10 implies that (T , σ )-fp can be verified in polynomial time for any given
gene tree (T , σ ). By contraposition of Lemma 2, inner vertices with two distinct
children v1 and v2 satisfying σ(L(T (v1)))∩σ(L(T (v2))) �= ∅ are duplication vertices
for every possible reconciliation map to every possible species tree. Therefore, the
property of being an AD vertex only depends on (T , σ ). In particular, (T , σ )-fp edges
coincide with the edges xy in ( �G, σ ) for which lcaT (x, y) is an AD vertex.

As shown in Fig. 3, there are trees (T1, σ ) and (T2, σ ) that explain the same BMG
for which, however, the edges xz, x ′z, and yz are (T1, σ )-fp but not (T2, σ )-fp. Since
we assume that no information on (T , σ ) is available a priori, it is natural to consider
the set of edges that are false positives for all trees explaining a given BMG.

Definition 11 (Unambiguous false-positive) Let ( �G, σ ) be a BMG. An edge xy in �G
is called unambiguous false-positive (u-fp ) if for all trees (T , σ ) that explain ( �G, σ )

the edge xy is (T , σ )-fp.

Hence, if an edge xy in �G is u-fp, then it is in particular (T , σ )-fp in the true history
that explains ( �G, σ ). Thus, u-fp edges are always correctly identified as false positives.
Not all “correct” false-positive edges are u-fp, however. It is possible that, for an edge
xy in �G, we have tμ(lcaT (x, y)) = � for the true gene tree and the true species tree,
but xy is not (T ′, σ )-fp for some gene tree (T ′, σ ) possibly different from (T , σ ). One
of the simplest examples is shown in Fig. 2, assuming that ( �G, σ ) is the “true” BMG.
Since tμ(lca

˜T (x, y)) = � may be possible (Fig. 2, leftmost scenario, the edge xy is
not (˜T , σ )-fp and therefore not u-fp.

123



Complete Characterization of Incorrect Orthology Assignments... Page 11 of 64 20

4 Main results

4.1 Characterization of u-fp edges

In order to adapt the concept of AD vertices for our purposes, we introduce the
color-intersection S∩ associated with a gene tree (T , σ ). For a pair of distinct leaves
x, y ∈ L(T ) we denote by vx , vy ∈ childT (lcaT (x, y)) the unique children of the last
common ancestor of x and y for which x �T vx and y �T vy . That is, T (vx ) and
T (vy) are the subtrees of T rooted in the children of lcaT (x, y) with x ∈ L(T (vx ))

and y ∈ L(T (vy)). The set

S∩
T (x, y) := σ(L(T (vx ))) ∩ σ(L(T (vy)))

contains the colors, i.e. species, that are common to both subtrees. The existence of
common colors, S∩

T (x, y) �= ∅, determines whether or not the inner vertex lcaT (x, y)
is AD. Lemma 11 (Sec. B.2) shows that the color-intersection S∩

T (x, y) of an edge in
a BMG ( �G, σ ) is independent of the corresponding tree. Hence, it suffices to consider
the color-intersection for the unique least resolved tree (T ∗, σ ) explaining ( �G, σ ).
From here on, we drop the explicit reference to the tree and simply write S∩(x, y);
see also Remark 1 in Sec. B.2. The color-intersection provides a sufficient condition
for u-fp edges in a BMG.

Prop. 1 and Cor. 3 Every edge xy in a BMG ( �G, σ ) with S∩(x, y) �= ∅ is (T , σ )-fp
for every tree (T , σ ) that explains ( �G, σ ), and thus u-fp.

As we shall see below, the converse of Prop. 1 and Cor. 3 is not true in general. It
does hold for the special case of binary trees, however:

Theorem 4 Let ( �G, σ ) be a BMG that is explained by a binary tree (T , σ ). Then, for
every edge xy in ( �G, σ ), the following three statements are equivalent:

1. The edge xy is (T , σ )-fp.
2. S∩(x, y) �= ∅.
3. The edge xy is u-fp.

Prop. 8 in Sec. 4.3 provides a characterization of BMGs that can be explained by
binary trees; a property that can be tested in polynomial time (cf. Cor. 6). However,
not every BMG can be explained by a binary tree as shown by the simple example in
Fig. 6(A). This BMG can only be explained by the unique non-binary tree as shown
in Fig. 6(B).

Since every orthology graph is a cograph (Thm. 1) and thus free of induced P4s,
every induced P4 in the RBMG necessarily contains a false-positive orthology assign-
ments. The subgraphs of the BMG spanned by a P4 in its symmetric part (i.e., the
RBMG) are known as quartets. The quartets on three colors of a BMG ( �G, σ ) fall into
three distinct classes depending on the coloring and the additional, non-symmetric
edges (cf. (Geiß et al. 2020c, Lemma 32)). We write 〈abcd〉 or, equivalently, 〈dcba〉
for an induced P4 with edges ab, bc, and cd.
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Fig. 4 The three types of quartets in BMGs. Ugly quartets may or may not contain either of the two (dashed)
arcs between x and y, and y and z, respectively. Bold edges highlight the middle and first edges of the
respective quartets as specified in Def. 12

Definition 12 (Good, bad, and ugly quartets) Let ( �G, σ ) be a BMG with symmetric
part (G, σ ) and vertex set L , and let Q := {x, y, z, z′} ⊆ L with x ∈ L[r ], y ∈ L[s],
and z, z′ ∈ L[t]. The set Q, resp., the induced subgraph ( �G[Q], σ|Q) is

a good quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ ) and (ii) (z, y), (z′, x) ∈
E( �G) and (y, z), (x, z′) /∈ E( �G),
a bad quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ ) and (ii) (y, z), (x, z′) ∈ E( �G)

and (z, y), (z′, x) /∈ E( �G),
an ugly quartet if 〈zxz′y〉 is an induced P4 in (G, σ ).

The edge xy in a good quartet 〈zxyz′〉 is its middle edge. The edge zx of an ugly
quartet 〈zxz′y〉 or a bad quartet 〈zxyz′〉 is called its first edge. First edges in ugly
quartets are uniquely determined due to the colors. In bad quartets, this is not the case
and therefore, the edge yz′ in 〈zxyz′〉 is a first edge as well.

The three different types of quartets are shown in Fig. 4. RBMGs never contain
induced P4s on two colors (Geiß et al. 2020c, Obs. 5). This, in particular, implies that
for the induced P4s in Def. 12 the colors r , s, and t must be pairwise distinct. Note
that (R)BMGs may also contain induced P4s on four colors. These are investigated in
some more detail in Secs. 4.3 and D.3.

Good quartets are characteristic of a complementary gene loss (as shown in Fig. 2)
that is “witnessed” by a third species in which both child branches of the problematic
duplication event survive. That is, good quartets appear if there is a pair of genes z and
z′ with σ(z) = σ(z′) and lca(z, z′) = lca(x, y) in the true gene tree. We remark that
previous work also noted that complementary gene loss can be resolved successfully
under certain circumstances Dessimoz et al. (2006) such as this one. An in-depth
analysis of quartets shows that they can be used to identify many of the u-fp edges.
We collect here the main results of Sec. B.3:

Prop. 2, 3 and 4 Let Q = 〈xyzw〉 be a quartet in a BMG ( �G, σ ).

(i) If Q is good, then its middle edge yz is u-fp.
(ii) If Q is ugly, then its first edge xy and its middle edge yz are u-fp.
(iii) If Q is bad, then its first edges xy and zw are u-fp.

Not surprisingly, quartets are intimately linked to color-intersections:
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Fig. 5 Example for a (T , σ )-fp edge xy in ( �G, σ ) which is not the middle edge of a good quartet, but the
first edge in an ugly quartet (right). Note, ( �G, σ ) does not contain bad quartets

Corollary 4 Let ( �G, σ ) be a BMG that contains the edge xy. Then, S∩(x, y) �= ∅
implies that xy is either the middle edge of some good quartet or the first edge of some
ugly quartet, which in turn implies that xy is u-fp.

All u-fp edges xy with S∩(x, y) �= ∅ in ( �G, σ ) are therefore completely determined
by the middle edges of good quartets and the first edges of ugly quartets. In particular,
not all such edges are the middle edge of a good quartet as the example in Fig. 5
shows. Therein, the edge xy must be u-fp since S∩(x, y) = {σ(z)} �= ∅ (cf. Prop. 1).
The only good quartet is 〈zx ′yz′〉 identifying x ′y as u-fp. Moreover, ( �G, σ ) does not
contain any bad quartet. The edge xy, on the other hand, is the first edge of the ugly
quartet 〈xyx ′z〉.

Furthermore, if an edge xy is the middle edge of a good quartet, then S∩(x, y) �= ∅.
Therefore, only ugly quartetsmay provide additional information about u-fp edges that
are not identified with the help of the color-intersection S∩ (see Fig. 14 in Sec. B.3
for an example). Ugly quartets, however, do not convey all the missing information on
u-fp edges. The edge xy in the BMG shown in Fig. 6(A) is u-fp, but it is not contained
in a good, bad, or ugly quartet.

In order to characterize the u-fp edges that are not identified by quartets, we first
introduce an additional motif that may occur in vertex-colored graphs.

Definition 13 (Hourglass) An hourglass in a proper vertex-colored graph ( �G, σ ),
denoted by [xy ↘↗ x ′y′], is a subgraph ( �G[Q], σ|Q) induced by a set of four pair-
wise distinct vertices Q = {x, x ′, y, y′} ⊆ V ( �G) such that (i) σ(x) = σ(x ′) �=
σ(y) = σ(y′), (ii) xy and x ′y′ are edges in �G, (iii) (x, y′), (y, x ′) ∈ E( �G), and (iv)
(y′, x), (x ′, y) /∈ E( �G).

Note that Condition (i) rules out arcs between x, x ′ and y, y′, respectively, i.e., the
only arcs in an hourglass are the ones specified by Conditions (ii) and (iii). An example
is shown in Fig. 6(A).

Observation 5 Every hourglass is a BMG since it can be explained by a tree as shown
in Fig. 6(B).

Hourglasses are not necessarily part of an induced P4. In particular, an hourglass does
not contain an induced P4 (see Fig. 6(A)).

Hourglasses [xy ↘↗ x ′y′] can be used to identify false-positive edges xy with
S∩(x, y) = ∅. More precisely, we have

123



20 Page 14 of 64 D. Schaller et al.

A

B

C

D

Fig. 6 A: Hourglass. B: Visualization of Lemma 14. C: Hourglass chain with left tail z and right tail z′ for
an odd number of hourglasses in the chain. Edges of the form xi y

′
j ∈ E(G) are only shown for x1, the

others are omitted. An hourglass chain H is a subgraph but not necessarily induced and thus additional arcs
may exist. In particular, the elements e ∈ {x1yk , zyk , x1z′, zz′} are not necessarily edges in an hourglass
chain. However, whenever they exist, they are u-fp (cf. Lemma 17). Moreover, each single hourglass in H
is an induced subgraph of the BMG; by definition, therefore, there are no arcs (z, x ′

1) or (z′, y′
k ). Note,

σ(z) �= σ(z′) is possible. D: Visualization of Lemmas 15 and 16

Proposition 6 If a BMG ( �G, σ ) contains an hourglass [xy ↘↗ x ′y′], then the edge xy
is u-fp.

Prop. 6 implies that there are u-fp edges that are not contained in a quartet, see
Fig. 6(A). In this example, we have S∩(x, y) = ∅ and no induced P4. However, as
shown in Fig. 6(B), the subtree T (v2) contains both colors σ(x) and σ(y) and thus,
“bridges” the color sets of the subtrees T (v1) and T (v3). Similarly, in the tree (T , σ )

in Fig. 6(D), each subtree T (vi ), 1 ≤ i ≤ k “bridges” the color sets of the subtrees
T (vi−1) and T (vi+1). This observation suggests the concept of hourglass chains, a
generalization of hourglasses.

Definition 14 (Hourglass chain)An hourglass chainH in a graph ( �G, σ ) is a sequence
of k ≥ 1 hourglasses [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] such that the following two

conditions are satisfied for all i ∈ {1, . . . , k − 1}:
(H1) yi = x ′

i+1 and y′
i = xi+1, and

(H2) xi y′
j is an edge in �G for all j ∈ {i + 1, . . . , k}

A vertex z is called a left (resp., right) tail of the hourglass chain H if it holds that
(z, x1) ∈ E( �G) and (z, x ′

1) /∈ E( �G) (resp., (z, yk) ∈ E( �G) and (z, y′
k) /∈ E( �G)). We

call H tailed if it has a left or right tail.

In contrast to the quartets and the hourglass, an hourglass chain in ( �G, σ ) is not
necessarily an induced subgraph. Hourglass chains are “overlapping” hourglasses.
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The additional condition that xi y′
j ∈ E(G) for all 1 ≤ i < j ≤ k ensures that the

two pairs x ′
k, y

′
k and x ′

l , y
′
l with k �= l cannot lie in the same subtree below the last

common ancestor u which is common to all hourglasses in the chain (cf. Lemma 15
and 16 in Sec. B.4).

Definition 16 An edge xy in a vertex-colored graph ( �G, σ ) is a hug-edge if it satisfies
at least one of the following conditions:

(C1) xy is the middle edge of a good quartet in ( �G, σ );
(C2) xy is the first edge of an ugly quartet in ( �G, σ ); or
(C3) there is an hourglass chain H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] in ( �G, σ ),

and one of the following cases holds:

1. x1 = x and yk = y;
2. yk = y and z := x is a left tail of H;
3. x1 = x and z′ := y is a right tail of H; or
4. z := x is a left tail and z′ := y is a right tail of H.

The term hug-edge refers to the fact that xy is a particular edge of an hourglass-chain,
an ugly quartet, or a good quartet. In Sec. C.4, we show that hug-edges coincide with
the u-fp edges.

Theorem 11 An edge xy in a BMG ( �G, σ ) is u-fp if and only if xy is a hug-edge of
( �G, σ ).

Interestingly, bad quartets turn out to be redundant for the identification of u-fp edges
in the sense that every u-fp edge in a bad quartet appears as a u-fp edge in a good
quartet, an ugly quartet, or an hourglass chain. At present, we do not know whether
hourglass chains in a colored graph ( �G, σ ) can be found efficiently. We shall see in
the following section, however, that the identification of u-fp edges does not require
the explicit enumeration of hourglass chains.

The fact that all hug-edges are u-fp by Thm. 11 suggests to consider the subgraph of
a BMG that is left after removing all these unambiguously recognizable false-positive
orthology assignments.

Definition 17 Let ( �G, σ ) be a BMG with symmetric part G and let F be the set of its
hug-edges. The no-hug1 graph NH( �G, σ ) is the subgraph of G with vertex set V ( �G),
coloring σ and edge set E(G)\F .
By Thm. 11, NH( �G, σ ) is therefore the subgraph of the underlying RBMG of ( �G, σ )

that does not contain any u-fp edge. Importantly, it contains the orthology graph for
every reconciliation map μ as well as the orthology graph induced by the extremal
event labeling as subgraphs:

Corollary 5 Let (T , σ ) be a leaf-colored tree and μ a reconciliation map from (T , σ )

to some species tree S. Then,

�(T , tμ) ⊆ �(T ,̂tT ) ⊆ NH( �G(T , σ )) ⊆ �G(T , σ ).

1 A good advice in the time of COVID-19
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The no-hug graph still may contain false-positive orthology assignments, i.e.,
NH( �G(T , σ )) = �(T ,̂tT ) does not hold in general. As an example, consider the
BMG �G(T1, σ ) in Fig. 3. Here, none of the edges xz, x ′z and yz are u-fp and thus,
by Thm. 11 also not hug-edges. Hence, they still remain in NH( �G(T1, σ )). However,
these edges are not contained in �(T1,̂tT ), sincêtT (lcaT1(x, x

′, y, z)) = � and thus,
�(T1,̂tT ) � NH( �G(T1, σ )).

4.2 Algorithms

In this section, we provide a polynomial-time algorithm to identify all u-fp edges in
a given BMG. To this end, we take a closer look at hourglass chains and the trees
that explain them. In Fig. 6(D), each subtree T (vi ), 1 ≤ i ≤ k, “bridges” the color
sets of the subtrees T (vi−1) and T (vi+1). That is, σ(L(T (vi−1))) ∩ σ(L(T (vi ))) and
σ(L(T (vi ))) ∩ σ(L(T (vi+1))) are non-empty. This suggests to consider the children
of a vertex u as the vertices of a “color-set intersection graph” with edges connecting
children with non-empty color-set intersection:

Definition 7 The color-set intersection graph CT (u) of an inner vertex u of a leaf-
colored gene tree (T , σ ) is the undirected graph with vertex set V := childT (u) and
edge set

E := {v1v2 | v1, v2 ∈ V , v1 �= v2 and σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅}.

This construction is similar to the definition of intersection graphs e.g. used in McKee
and McMorris (1999). CT (u) can be viewed as a natural generalization of S∩(x, y)
in the following sense: if u = lcaT (x, y) is a binary vertex, then CT (u) = K2 iff
S∩(x, y) �= ∅ and therefore, CT (u) = K1 ∪ K1 iff S∩(x, y) = ∅. In the non-binary
case, there is an edge v1v2 iff S∩(x, y) �= ∅ for some x ∈ L(T (v1)) and y ∈ L(T (v2)).

Every BMG ( �G, σ ) contains all information necessary to determine the trees (T , σ )

by which it is explained. Since u-fp edges are defined in terms of the explaining trees,
every BMG ( �G, σ ) also contains – at least implicitly – all information needed to
identify its u-fp edges. Since ( �G, σ ) is determined by its unique least resolved tree
(T ∗, σ ), the u-fp edges must also be determined by (T ∗, σ ). It is not sufficient for this
purpose, however, to find an event labeling t of the vertices of T ∗.

To see this, consider for example the “true” history (˜T ,˜t, σ ) of the BMG �G(˜T , σ )

as shown in Fig. 7. The unique least resolved tree (T ∗, σ ) for �G(˜T , σ ) is obtained
by merging the two vertices v1 and v2 of ˜T resulting in the vertex v of T ∗. We have
˜t(v1) = � �= � = ˜t(v2). For vertex v and every reconciliation map μ from (T ∗, σ )

to any species tree S, it must hold that μ(v) ∈ E(S) and thus t∗μ(v) = �, since v has
two children with overlapping color sets and by Lemma 2. Thus, the edges cx with
x ∈ {a1, a2, b1, b2} are (T ∗, σ )-fp although they are not false positives at all. Since
speciation and duplication vertices may be merged into the same vertex v of T ∗, the
least resolved tree T ∗ in general cannot simply inherit the event labeling from the true
gene history, and thus there may not be a “correct” labeling t∗ of T ∗ that provides
evidence for all u-fp edges.
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Fig. 7 The evolutionary scenario (left) shows the event-labeled gene tree (˜T ,˜t, σ ) embedded into a species
tree S. In the least resolved tree (T ∗, σ ) of �G(˜T , σ ), the edge v1v2 of ˜T has been contracted into vertex v.
The BMG �G(˜T , σ ) does not contain any u-fp edge. See text for further explanations

The example in Fig. 7 shows that the least resolved tree T ∗ simply may not be
“resolved enough”. In the following, we therefore describe how the unique least
resolved tree can be resolved further to provide more evidence about u-fp edges.
Eventually, this will lead us to a characterization of the u-fp edges. To this end, we
need to gain more insights into the structure of redundant edges, i.e., those edges e in
T for which (Te, σ ) still explains �G(T , σ ).

Since the color sets of distinct subtrees below a speciation vertex cannot overlap
by Lemma 2, Cor. 1 (Sec. A) implies that all edges below a speciation vertex are
redundant and thus can be contracted. More precisely, we have

Observation 8 Let μ be a reconciliation map from (T , σ ) to S and assume that there
is a vertex u ∈ V 0(T ) such that μ(u) ∈ V 0(S) and thus, tμ(u) = �. Then every inner
edge uv of T with v ∈ childT (u) is redundant w.r.t. �G(T , σ ). Moreover, if an inner
edge uv with v ∈ childT (u) is non-redundant, then u must have two children with
overlapping color sets, and hence, tμ(u) = �.

Our goal is to identify those vertices in (T ∗, σ ) that can be expanded to yield a
tree that still explains �G(T ∗, σ ). To this end, we need to introduce a particular way of
“augmenting” a leaf-colored tree.

Definition 18 Let (T , σ ) be a leaf-colored tree, u be an inner vertex of T , CT (u) the
corresponding color-set intersection graph, and C the set of connected components of
CT (u). Then the tree Tu augmented at vertex u is obtained by applying the following
editing steps to T :

– If CT (u) is connected, do nothing.
– Otherwise, for each C ∈ C with |C | > 1

– introduce a vertex w and attach it as a child of u, i.e., add the edge uw,
– for every element vi ∈ C , substitute the edge uvi by the edge wvi .

The augmentation step is trivial if Tu = T , in which case we say that no edit step was
performed.

An example of an augmentation is shown in Fig. 8. The tree Tu obtained by an aug-
mentation of a phylogenetic tree T is again a phylogenetic tree.
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Fig. 8 Left, a (part of a) leaf-colored tree (T , σ ). The tree (Tu , σ ) on the right is obtained from (T , σ )

by augmenting T at vertex u. The color-set intersection graph CT (u) (shown in the middle) has more
than one connected component and there are connected components consisting of more than two vertices
vi ∈ childT (u). According to Lemma 21, σ(L(Tu(v))) ∩ σ(L(Tu(v′))) = ∅ for any two distinct vertices
v, v′ ∈ childTu (u) = {v1, w1, w2}. By Cor. 1 (Sec. A), the edges uw1 and uw2 are redundant w.r.t.
�G(Tu , σ ) and thus, both trees explain the same BMG

A key property of the procedure in Def. 18 is that repeated augmentation of the
same inner vertex leads to at most one expansion and that the order of augmenting
multiple vertices does not matter. More precisely, Lemma 23 in Sec. C.3 ensures the
existence of a unique augmented tree:

Definition 19 (Augmented tree) Let (T , σ ) be a leaf-colored tree. The augmented tree
of (T , σ ), denoted by (A(T ), σ ), is obtained by augmenting all inner vertices of
(T , σ ) (in an arbitrary order).

In particular, the augmented tree preserves the best match relation:

Proposition 7 For every leaf-colored tree (T , σ ), it holds �G(T , σ ) = �G(A(T ), σ ).

We now have everything in place to present the main results of this section.

Theorem 10 Let ( �G, σ ) be a BMG, (T ∗, σ ) its unique least resolved tree, and
̂t := ̂tA(T ∗) the extremal event labeling of the augmented tree (A(T ∗), σ ). Then
(�(A(T ∗),̂t), σ ) = NH( �G, σ ).

Since (�(A(T ∗),̂t), σ ) = NH( �G, σ ) is the subgraph of the underlying RBMG of
( �G, σ ) that does not contain any u-fp edges (cf. Def. 17 and Thm. 11), the set of all
u-fp edges can readily be obtained by comparing the edges of ( �G, σ ) with the edges
in the orthology graph obtained from (A(T ∗),̂t). Since only u-fp edges have been
removed to obtain (�(A(T ∗),̂t), σ ) and since (A(T ∗), σ ) still explains ( �G, σ ), the
graph (�(A(T ∗),̂t), σ ) is, in the sense of an unambiguous editing, the best estimate of
the orthology relation that we can make by solely utilizing the structural information
of a given BMG ( �G, σ ). Note, Thm. 1 implies that NH( �G, σ ) must, in particular, be
a cograph.

Since (�(A(T ∗),̂t), σ ) = NH( �G, σ ), the computation of NH( �G, σ ) can be
achieved in polynomial time and avoids the need to find the hourglass chains of ( �G, σ ).
In fact, the effort is dominated by computing the least resolved tree (T ∗, σ ) for a given
BMG.

Theorem 12 For a given BMG ( �G, σ ), the set of all u-fp edges can be computed in
O(|L|3|S|) time, where L = V ( �G) and S = σ(L(T )) is the set of species under
consideration.
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Fig. 9 An evolutionary scenario (left) with a no-hug graphNH( �G, σ ) that still contains false-positive edges.
Deletion of the highlighted u-fp edge a1b1 for �G(˜T , σ ) yields NH( �G, σ ) = (�(A(T ∗),̂t), σ ) and thus, an
orthology graph. However, none of its cotrees can be reconciled with any species tree since each of them
contains the contradictory species triples σ(a1)σ (b1)|σ(c1) and σ(a1)σ (c1)|σ(b1) (see e.g. Hernandez-
Rosales et al. (2012), Hellmuth (2017)). Note, the trees (˜T ,˜t) and (A(T ∗),̂t) differ in the event label
marked by the arrows, resulting in the three additional fp edges a3b3, c2b3 and c3b3 in NH( �G, σ )

As argued in (Geiß et al. 2019, Sec. 5), the number of genes between different
species will be comparable in practical applications, i.e., O(�) = O(|L|/|S|) with
� = maxs∈S |L[s]|. In this case, the running time to compute (T ∗, σ ) reduces to
O(|L|3/|S|) and we obtain an overall running time to compute the set of all u-fp edges
of O(|L|3/|S| + |L|2|S|). Thms. 10 and 12 imply that we do not need to find induced
quartets and hourglasses explicitly, nor do we need to identify the hourglass chains.
Instead, it is more efficient to compute the least resolved tree (T ∗, σ ), its augmented
tree (A(T ∗), σ ), and the corresponding extremal event labelinĝt .

Deletion of all u-fp edges is necessary to obtain an orthology relation without false
positives. It is not sufficient, however, since NH( �G, σ ) may contain additional false-
positive orthology assignments. In order to construct an example, we consider for a
BMG ( �G, σ ) the set T of all trees (T , t, σ ) for which NH( �G, σ ) = (�(T , t), σ ). The
example in Fig. 9 shows that it may be the case that none of the trees (T , t, σ ) ∈ T
admits a reconciliation map μ to any species tree such that tμ = t . Lemma 29 in
Sec. C.5 shows that the augmented tree (A(T ∗),̂t, σ ) is sufficient to test in polynomial
time whether or not T contains a reconcilable tree. In the negative case, we have clear
evidence that NH( �G, σ ) still contains a false-positive edge and thus must be edited
further. This type of false-positive orthology assignments is the topic of ongoing work.

In contrast to the LRT of a BMG, its augmented tree is not necessarily displayed
by the true gene tree of the underlying evolutionary scenario. Hence, we advocate the
augmented tree endowedwith the corresponding extremal event labeling (A(T ∗),̂t, σ )

primarily as convenient tool to identify false-positive orthology assignments. Whether
or not (A(T ∗),̂t, σ ) is a plausible representation of the gene phylogeny depends on
whether it admits a reconciliation of the (phylogenetically correct) species tree. As
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discussed above, this is not always the case. The following result, however, shows that
(A(T ∗),̂t, σ ) is informative in an important special case.

Lemma 30 Let (T , t, σ ) be an event-labeled tree explaining the BMG ( �G, σ ), and let
(T ∗, σ ) be the least resolved tree of ( �G, σ ). If (�(T , t), σ ) = NH( �G, σ ), thenA(T ∗)
is displayed by T .

Lemma 30 guarantees that A(T ∗) is displayed by the true gene tree ˜T whenever
NH( �G, σ ) equals the true orthology relation. In a practical workflow, it can be checked
efficiently whether there is evidence for additional false-positive edges becauseT con-
tains no reconcilable tree. If this is not the case, then it is likely that NH( �G, σ ) equals
the true orthology relation. In this case, ˜T also displays the unique discriminating
cotree of NH( �G, σ ).

One has to keep in mind, however, that it is not possible to find a mathematical
guarantee for NH( �G, σ ) to be the true orthology relation, because it cannot be ruled
out that the true scenario contains unwitnessed duplications that are compensated by
additional gene losses. In the extreme case, it is logically possible for every BMG that,
in the true scenario, all inner vertices of the gene tree predate the root of the species
tree, resulting in a true orthology graph without any edges Guigó et al. (1996), Page
and Charleston (1997), Geiß et al. (2020b). Of course, this is extremely unlikely for
real data.

4.3 Quartets, hourglasses, and the structure of reciprocal best match graphs

The characterization of u-fp edges is in a way surprising when compared to previous
results on the structure of RBMGs Geiß et al. (2020b, c), which were focused on P4s
and quartets. The expected connection between good and ugly quartets and u-fp edges
is captured by Cor. 4. However, Prop. 6 implies that there are also u-fp edges entirely
unrelated to quartets and thus induced P4s. In this section, we aim to close this gap in
our understanding.
Hourglass-free BMGs.We start with an important special case for which quartets are
sufficient.

Definition 20 A BMG ( �G, σ ) is hourglass-free if it does not contain an hourglass as
an induced subgraph.

In particular, an hourglass-free BMG does not contain an hourglass chain. It turns out
that hourglasses are the forbidden induced subgraph characterizing BMGs that can be
explained by binary trees.

Prop. 8 and Cor. 6. A BMG ( �G, σ ) can be explained by a binary tree if and only if it
is hourglass-free. In particular, it can be decided in polynomial time whether ( �G, σ )

can be explained by a binary tree.

The RBMGs that are already cographs are called co-RBMGs. As shown in Sec. D.1,
we obtain
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Corollary 7 Let ( �G, σ ) be an hourglass-free BMG. Then its symmetric part (G, σ ) is
either a co-RBMG or it contains an induced P4 on three colors whose endpoints have
the same color, but no induced cycle Cn on n ≥ 5 vertices.

As outlined in Sec. D.1, all u-fp edges in an hourglass-free BMG are identified by the
good and ugly quartets, which are 3-colored by construction. In hourglass-free BMGs,
it is indeed sufficient to consider only the 3-colored P4s to identify all u-fp edges and
thus, to obtain an orthology graph, even though the BMG may also contain 4-colored
P4s. Since hourglasses can only appear in BMGs that require multifurcations for their
explanation (cf. Lemma 14), the case of hourglass-free BMGs is the most relevant for
practical applications.

Since all u-fp edges in an hourglass-free BMG are contained in quartets, it is also
easy to identify the hourglass-free BMGs that are already orthology graphs.

Corollary 8 Let ( �G, σ ) be an hourglass-free BMG. Then, its symmetric part (G, σ ) is
a co-RBMG if and only if there are no u-fp edges in ( �G, σ ).

u-fpEdges in Hourglass Chains. The situation is much more complicated in the pres-
ence of hourglasses. We start by providing sufficient conditions for u-fp edges that are
identified by hourglass chains.

Proposition 9 Let H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain in

( �G, σ ), possibly with a left tail z or a right tail z′. Then, an edge in �G is u-fp if it is
contained in the set

F ={xi y j | 1 ≤ i ≤ j ≤ k} ∪ {zz′} ∪ {zyi , xi z′, zy′
i , x

′
i z

′ | 1 ≤ i ≤ k}
∪ {xi x j+1 | 1 ≤ i < j < k} ∪ {yi y j+1 | 1 ≤ i < j < k}
∪ {x ′

1y
′
i , x

′
1yi | 2 ≤ i ≤ k} ∪ {xi y′

k, x
′
i y

′
k | 1 ≤ i ≤ k − 1}

∪ {x ′
1z, x

′
1z

′, y′
k z, y

′
k z

′}

As outlined in Sec. D.2, hourglass chains identify false-positive edges that are not
associated with quartets in the BMG and, in particular, false-positive edges that are
not even part of an induced P4. This observation limits the use of cograph editing in
the context of orthology detection, at least in the case of gene trees with polytomies:
On one hand, an RBMG can be a cograph and still contain u-fp edges and, on the other
hand, there are examples where deletion of the u-fp edge identified by quartets (and
thus, by induced P4s) is not sufficient to arrive at a cograph (cf. Sec. D.2).
Four-colored P4s Geiß et al (2020c, Thm. 8) established that the RBMG (G, σ ) is a
co-RBMG, i.e., a cograph, if and only if every subgraph induced on three colors is
a cograph. Therefore, if (G, σ ) contains an induced 4-colored P4, it also contains an
induced 3-colored P4. For hourglass-free BMGs ( �G, σ ) it is clear that a 4-colored P4
always overlaps with a 3-colored P4: In this case NH( �G, σ ) is obtained by deleting
middle edges of good quartets and first edges of ugly quartets. Since NH( �G, σ ) is
a cograph, there is no P4 left, and thus at least one edge of any 4-colored P4 was
among the deleted edges. It is natural to ask whether this is true for BMGs in general.
However, as shown in Sec. D.3, good and ugly quartets are not sufficient on their own
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and there are examples with 4-colored P4s that do not overlap with the middle edge
of a good quartet or the first edge of an ugly quartet.

Still, in the context of cograph-editing approaches it is of interest whether the 3-
colored P4s are sufficient. In the following we provide an affirmative answer.

Lemma 34 Let ( �G, σ ) be a BMG and P a 4-colored induced P4 in the symmetric part
of ( �G, σ ). Then at least one of the edges of P is either the middle edge of some good
quartet or the first edge of a bad or ugly quartet in ( �G, σ ).

It is important to recall in this context, however, that the deletion of all u-fp-edges
identified by quartets does not necessarily lead to a cograph (see Fig. 17(C) in Sec. D.3
for an example). Hence, the quartets alone therefore cannot provide a complete algo-
rithm for correcting an RBMG to an orthology graph.

5 Simulation results

We illustrate the potential impact of our mathematical results discussed in the previous
sections with the help of simulated data. To this end, we focus on the accuracy of the
inferred orthology graph assuming that the best matches are accurate. Of course, this is
only one of several components in complete orthology detection pipeline, whichwould
also need to consider the genome annotation, pairwise alignments of genes or predicted
protein sequences, and the conversion of sequence similarities into best match data.
The latter step has been investigated in considerable detail by Stadler et al. (2020).
Here, we start from simulated evolutionary scenarios and extract the BMG directly
from the ground truth using the simulation library AsymmeTree Stadler et al. (2020).

In brief, AsymmeTree generates realistic evolutionary scenarios in four steps.
(1) A planted species tree S is generated using the Innovation Model Keller-Schmidt
and Klemm (2012), which models observed phylogenies well. (2) A dating map τ

assigns time points to all vertices of S and thus branch lengths to the edges of S.
(3) On S, we use a variant of the well-known constant-rate birth-death process with a
given age (see e.g. Kendall 1948;Hagen and Stadler 2018) to simulate an event-labeled
gene tree (T , t, σ ) containing duplication and loss events. Speciations are included as
additional branching events that generate copies of all genes present at a speciation
vertex in all descendant lineages. The simulated gene trees are constrained to have
at least one surviving gene in each species to avoid trivial cases. (4) The observable
part of the gene tree is extracted by recursively removing leaves that correspond to
loss events and suppressing inner vertices with a single child. AsymmeTree can
also assign rates to edges of (T , t, σ ) to convert evolutionary time differences into
general additive distances; however, this is not relevant here since the rates do not
affect evolutionary relatedness and thus the BMG.

Extending the simulations used in Geiß et al. (2020b), Stadler et al. (2020), we
also consider non-binary gene trees. This is important here since, by Lemma 14,
hourglasses cannot appear in BMGs that are explained by a binary tree. There is an
ongoing discussion to what extent polytomies in phylogenetic trees are biological
reality as opposed to an artifact of insufficient resolution. At the level of species trees,
the assumption that cladogenesis occurs by a series of bifurcations (e.g. Maddison
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Fig. 10 Average relative abundance of the different types of hug-edges and undetectable false positives in
the BMGs of simulated evolutionary scenarios. We distinguish hug-edges in good and ugly quartets as well
as hug-edges appearing only in hourglass chains (orange). In the simulations, the fraction of u-fp edges that
are first edges of bad quartets is too small too be visible and therefore not shown here. The undetectable false
positives correspond to complementary gene losses without surviving witnesses of the duplication event.
Species trees are binary, while gene trees contain multifurcations. The number of offsprings is modeled as
2+ k, where k is drawn from a Poisson distribution with parameter λ. For λ = 0, the gene trees are binary.
In the experiments, we observed that on average 62.4% of the 25000 simulated BMGs do not contain any
false-positive edge (cf. Fig. 11). Those instances are included in the computation of the fraction |F|/|E(G)|
(percentage above the bars). However, for the computation of all other values only scenarios that contain
false-positives are considered

1989; DeSalle et al. 1994) seems to be prevailing, several authors have argued quite
convincingly that there is evidence for a least some bona fidemultifurcations of species
Kliman et al. (2000), Takahashi et al. (2001), Sayyari and Mirarab (2018). In the
simulation, polytomies in species trees are introduced after the first step by edge
contraction with a user-defined probability p.

The reality of polytomies is less clear for gene trees. One reason is the abundance
of tandem duplications. Although the majority of tandem arrays comprises only a pair
of genes, larger clusters are not at all rare Pan and Zhang (2008). Although one may
argue that mechanistically they likely arise by stepwise duplications, such arrange-
ments are often subject to gene conversion and non-homologous recombination that
keeps the sequences nearly identical for some time before they eventually escape from
concerted evolution and diverge functionally Liao (1999), Hanada et al. (2018). As a
consequence, duplications in tandem arrays may not be resolvable unless witnesses of
different stages of an ongoing duplication process have survived. Tomodel polytomies
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Fig. 11 False discovery rates computed as proportion of fp among all edges averaged over all scenarios with
given number of duplications and losses. Left: RBMGs (G, σ ), i.e., |F|/|E(G)|. Middle: edited RBMG
(Ggood, σ )with all middle edges of good quartets removed, i.e., |F\UM |/|E(Ggood)|.Right: no-hug graphs
NH( �G, σ ), i.e., |F\U|/|E(NH)|. Scenarios with more than 80 duplication/loss events are not shown

in the gene tree, we modify step (3) of the simulation procedure by replacing a simple
duplication by the generation of 2 + k offspring genes. The number k of additional
copies is drawn from a Poisson distribution with parameter λ > 0.

The simulated data set of evolutionary scenarios comprises species trees with 10 to
30 species (drawn uniformly). The time difference between the planted root and the
leaves of S is set to unity. The duplication and loss rates in the gene trees are drawn
i.i.d. from the uniform distribution on the interval [0.5, 1.5). Multifurcating gene trees
were produced for λ = {0.0, 0.5, 1.0, 1.5, 2.0}. In total, we generated 5000 scenarios
for each choice of p and λ. Since the true scenarios, and thus the true gene tree T , the
true BMG �G, and the corresponding RBMG G are known, we can also determine the
set

F := {xy | xy ∈ E(G) and t(lcaT (x, y)) = �} . (1)

of false-positive edges. From the BMG, we compute the set U of u-fp edges as well
as the subsets UM and UU of u-fp edges that are middle edges of a good or first edges
of an ugly quartet, respectively. Note that in general we have UM ∩ UU �= ∅. We
only discuss the results for binary species trees in some detail, since species trees with
polytomies yield qualitatively similar results. We observe that the relative abundance
of u-fp edges in good and ugly quartets increases moderately for larger p.

First, we note that, consistent with Geiß et al. (2020b), Stadler et al. (2020), the
fraction |F|/|E(G)| of false positive orthology assignments is small in our data set,
on the order of 3%. This indicates that, in real-life data, the main source of errors
is likely the accurate determination of best matches from sequence data rather than
false-positive edges contained in the BMG. Considering the fraction |U|/|F| of u-fp
edges in Fig. 10, we find that even in the most adverse case of all gene trees being
binary, the BMG identifies more than three quarters of F. It may be surprising at
first glance that the problem becomes easier with increasing λ and barely 6% of the
false positives escape discovery. A likely explanation is that multifurcations increase
the likelihood that an inner vertex has two surviving lineages that serve as witnesses
of the event; in addition, multifurcations increase the vertex degree in the BMG, so
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that in principle more information is available to resolve the tree structure. It is also
interesting to note that UU\UM is small, i.e., there are few cases of first edges in an
ugly quartet that are not also middle edges in a good quartet. The fraction of u-fp edges
that appear only as first edges of bad quartets is even smaller; only 2-3% of the u-fp
edges associatedwith hourglass chains, i.e., less than 0.15% of all u-fp edges are of this
type. The overwhelming majority of u-fp edges associated with quartets thus appear
(also) as middle edges of good quartets. This observation provides an explanation for
the excellent performance of removing the UM -edges proposed in Geiß et al. (2020b).
In particular in the case of binary trees, which was considered by Geiß et al. (2020b),
there is only a small number of other u-fp edges, which are completely covered by UU .
Fig. 11 visualizes the appearance of false-positive edges depending on the number of
duplication and loss events. Not surprisingly, F is enriched in scenarios with a large
number of losses compared to the duplications, and depleted when losses are rare. In
fact, in the absence of losses, the RBMG equals the orthology graph, i.e., F = ∅ (Geiß
et al. 2020b, Thm. 4). Removal ofUM , already reduced the false positives considerably.

6 Summary and outlook

We have shown here how all unambiguously false-positive orthology assignments can
be identified in polynomial time provided that all best matches are known. In particu-
lar, we have provided several characterizations for u-fp edges in terms of underlying
subgraphs and refinements of trees. Since the best match graph contains only false
positives, we have obtained a characterization of all unambiguously incorrect orthol-
ogy assignments. Simulations showed that the majority of false positives comprises
middle edges of good quartets, while u-fp edges that appear only as first edges of an
ugly quartet are rare. Not surprisingly, the hourglass-related u-fp edges become impor-
tant in gene trees with many multifurcations. They do not appear in scenarios derived
from binary gene trees. For the theory developed here, it makes no difference whether
polytomies in the gene tree appear as genuine features, or whether limited accuracy
of the approximation from underlying sequence data produced the equivalent of a soft
polytomy in the BMG.

The augmented tree (A(T ∗), σ ) is the least resolved tree that admits an event
labeling such that all inner vertices with child trees that have overlapping colors
are designated as duplications while all inner vertices with color-disjoint child trees
are designated as speciations. The tree (A(T ∗), σ ) therefore does not contain “non-
apparent duplications” in the sense of Lafond et al. (2014), i.e., duplication vertices
with species-disjoint subtrees. This is an interesting connection linking the literature
concernedwith polytomy refinement in given gene trees Chang and Eulenstein (2006),
Lafond et al. (2014) with best match graphs.

The extremal event labelinĝt of (A(T ∗), σ ) is the one that minimizes the necessary
number of duplications on (A(T ∗), σ ). In a conceptual sense, therefore, (A(T ∗),̂t)
is a “most parsimonious” solution, matching the idea of most parsimonious reconcil-
iations Guigó et al. (1996), Page and Charleston (1997). From a technical point of
view, however, the problem we solve here is very different. Instead of considering a
given pair of gene tree T and species tree S, we ask here about the information con-

123



20 Page 26 of 64 D. Schaller et al.

tained in the BMG ( �G, σ ), i.e., we only consider the information on the species tree
that is already implicitly contained in ( �G, σ ). The construction of the event-labeled
gene tree (A(T ∗),̂t) in fact implies a set S of informative triples, namely those
σ(x)σ (y)|σ(z) with σ(x), σ(y), σ(z) pairwise distinct and̂t(lcaA(T ∗)(x, y, z)) = �,
that are displayed by the species tree S Hernandez-Rosales et al. (2012), Hellmuth
(2017). Nothing in our theory, however, ensures that S is a consistent set of triples,
much less that S is consistent with a given species tree S. A lack of consistency,
however, implies that the no-hug graph NH( �G, σ ) cannot be the correct orthology
relation, and thus, necessarily contains additional false-positive edges. Consistency,
on the other hand, cannot provide a mathematical proof for biological correctness.
It makes NH( �G, σ ) a very likely candidate for the true orthology relation, however,
because alternative scenarios require additional gene duplications andmultiple, strate-
gically placed gene losses to compensate for them.

Since constraints on reconciliation maps deriving from the species phylogeny are
fully expressed by informative triples, no such constraint exists in particular for any
vertex u of A(T ∗) that has only leaves as children. That is, false-positive orthology
assignments among the children of u cannot be identified from the BMGalone because
there are no further descendants towitness u as duplication event. Additional evidence,
such as the assumption of a molecular clock or synteny must be used to resolve
situations such as the complementary loss shown in Fig. 2.

Every gene tree T can be reconciled with every species tree S Guigó et al. (1996),
Page and Charleston (1997), Geiß et al. (2020b) at the expense of reassigning events
as duplications. If A(T ∗) is already binary, consistency will require the relabeling of
some speciation nodes as duplications. Can one characterize and efficiently compute
the minimal relabelings? In the general case, a further refinement of A(T ∗) may
be sufficient. Is a refinement of speciation nodes sufficient, or are there in general
speciation nodes in (A(T ∗),̂t) that need to be refined into separate speciation and
duplication events?

Since orthology graphs are cographs contained in the RBMG (G, σ ), it is of interest
to compare the deletion of all u-fp edges in (G, σ ) with finding a (minimal) edge-
deletion set to obtain a cograph. These two problems are clearly distinct: The simplest
example is the BMG ( �G, σ ) in Fig. 6(A): its symmetric part G is already a cograph
but ( �G, σ ) contains the hug-edge xy, which must be deleted. Despite its practical use
Hellmuth et al. (2015), Lafond et al. (2016), this observation relegates cograph editing
Liu et al. (2012), Hellmuth et al. (2020a), Tsur (2020) to the status of a heuristic
approximation for the purpose of orthology detection.

For practical applications, one has to keep in mind that best matches are inferred
from sequence similarity data. Despite efforts to convert best (blast) hits into evolu-
tionary bestmatches in a systematicmanner Stadler et al. (2020), estimated BMGswill
contain errors, which in most cases will violate the definition of best match graphs.
This begs the question how an empirical estimate of a BMG can be corrected to a
closest “correct” BMG that (approximately) fits the data. Not surprisingly, BMG edit-
ing Schaller et al. (2020) and the analogous RBMG editing problem Hellmuth et al.
(2020b) are NP-hard. Efficient, accurate heuristics are a topic of ongoing research.

Orthology prediction tools intended for large data sets often do not attempt to infer
the orthology graph, but instead are content with summarizing the information as
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clusters of orthologous groups (COGs) in an empirically estimated RBMG Tatusov
et al. (1997), Roth et al. (2008). Formally, this amounts to editing the BMG to a set of
disjoint cliques. The example in Fig. 7 shows that this approach can destroy correct
orthology information: the BMG ( �G, σ ) does not contain u-fp edges and thus, it is the
closest orthology graph. However, ( �G, σ ) is not the disjoint union of cliques.
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TECHNICAL PART

A (Reciprocal) best matches

Westart by collecting some useful properties of BMGs andRBMGs thatwill be needed
for later reference.

Lemma 3 (Geiß et al. 2020c, Lemma 10) Let (T , σ ) be a leaf-colored tree on L and
let v ∈ V (T ). Then, for any two distinct colors r , s ∈ σ(L(T (v))), there is an edge
xy in �G(T , σ ) with x ∈ L[r ] ∩ L(T (v)) and y ∈ L[s] ∩ L(T (v)).

Lemma 4 Let ( �G, σ ) be a BMG explained by a tree (T , σ ). Moreover, let x, y ∈ L(T )

with σ(x) �= σ(y) and vx , vy ∈ child(lcaT (x, y)) with x �T vx and y �T vy . Then,
σ(x) /∈ σ(L(T (vy))) and σ(y) /∈ σ(L(T (vx ))) if and only if xy is an edge in �G.

Proof By the definition of best matches, it holds that xy is an edge in �G if and only
if lcaT (x, y) �T lcaT (x, y′) for all y′ ∈ L(T ) of color σ(y) and lcaT (x, y) �T

lcaT (x ′, y) for all x ′ ∈ L(T ) of color σ(x). Clearly, lcaT (x, y) �T lcaT (x, y′) for
all such y′ if and only if σ(y) /∈ σ(L(T (vx ))), and lcaT (x, y) �T lcaT (x ′, y) for all
such x ′ if and only if σ(x) /∈ σ(L(T (vy))). ��
Definition 8 Suppose that (T , σ ) explains ( �G, σ ). Then we say that (T , σ ) is least
resolved (w.r.t. ( �G, σ )) if no tree (T ′, σ ) displayed by (T , σ ) explains ( �G, σ ).

Recall all trees in this contribution are planted, and thus least resolved trees (LRTs)
are also considered as planted. Strictly speaking, this differs from the construction in
Geiß et al. (2019, 2020c, b), the additional (non-contractible) edge 0T ρT is a trivial
detail that does not affect the properties of LRTs.
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Theorem 3 (Geiß et al. 2019, Thm. 8 and Cor. 4) Every BMG ( �G, σ ) is explained by
a unique least resolved tree (T ∗, σ ). In particular, every other tree (T , σ ) explaining
( �G, σ ) is a refinement of (T ∗, σ ). The least resolved tree (T ∗, σ ) of a BMG ( �G, σ )

can be constructed in polynomial time.

The following definition of informative triples is equivalent to the version given by
Geiß et al. (2019).

Definition 9 Let ( �G, σ ) be a colored digraph. We say that a triple ab|b′ is informative
for ( �G, σ ) if a, b and b′ are three different vertices with σ(a) �= σ(b) = σ(b′) in �G
such that (a, b) ∈ E( �G) and (a, b′) /∈ E( �G).

Lemma 5 Let ( �G, σ ) be a BMGand ab|b′ an informative triple for ( �G, σ ). Then, every
tree T that explains ( �G, σ ) displays the triple ab|b′, i.e. lcaT (a, b) ≺T lcaT (a, b′) =
lcaT (b, b′).

Proof The definition of informative triples implies that (a, b) ∈ E( �G) and (a, b′) /∈
E( �G). Using σ(b) = σ(b′) and the definition of best matches we immediately con-
clude lcaT (a, b) ≺T lcaT (a, b′). ��
Lemma 6 Let ab|b′ and cb′|b be informative triples for a BMG ( �G, σ ). Then every tree
(T , σ ) that explains ( �G, σ ) contains two distinct children v1, v2 ∈ childT (lcaT (a, c))
such that a, b ≺T v1 and b′, c ≺T v2.

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ). By Lemma 5, T displays
the informative triples ab|b′ and cb′|b. Thus we have lcaT (a, b) ≺T lcaT (a, b′) =
lcaT (b, b′) and lcaT (c, b′) ≺T lcaT (c, b) = lcaT (b, b′). In particular, lcaT (a, b′) =
lcaT (b, b′) = lcaT (c, b) =: u. Therefore, a �T v1 and b′ �T v2 for distinct v1, v2 ∈
childT (u). Since lcaT (a, b) ≺T u, we have a, b ≺T v1 and thus v1 is an inner node.
Likewise, lcaT (b′, c) ≺T u implies b′, c ≺T v2. ��

Given a tree T and an edge e, denote by Te the tree obtained from T by contracting
the edge e. An edge e �= 0T ρT in (T , σ ) is redundant (w.r.t. ( �G, σ )) if (T , σ ) explains
( �G, σ ) and �G(Te, σ ) = �G(T , σ ). Redundant edges have already been characterized
in (Geiß et al. 2019, Lemma 15, Thm. 8) in terms of equivalence classes using a more
complicated notation. Here we give a simpler characterization:

Lemma 7 Let ( �G, σ ) be a BMG explained by a tree (T , σ ). The edge e = uv with
v ≺T u in (T , σ ) is redundant w.r.t. ( �G, σ ) if and only if (i) e is an inner edge
of T and (ii) there is no arc (a, b) ∈ E( �G) such that lcaT (a, b) = v and σ(b) ∈
σ(L(T (u))\L(T (v))).

Proof Let we be the vertex in Te resulting from the contraction e = uv with v ≺T u
in T . By assumption we have ( �G, σ ) = �G(T , σ ).

First, assume that e is redundant and thus, �G(Te, σ ) = �G(T , σ ). Then e must
be an inner edge, since otherwise L(T ) �= L(Te) and, therefore, (Te, σ ) does not
explain ( �G, σ ). Now assume, for contradiction, that there is an arc (a, b) ∈ E( �G)

such that lcaT (a, b) = v and σ(b) ∈ σ(L(T (u))\L(T (v))). Then there is a leaf
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b′ ∈ L(T (u))\L(T (v)) with σ(b′) = σ(b) and lcaT (a, b) = v ≺T u = lcaT (a, b′).
Thus, (a, b′) /∈ E( �G). After contraction of e, we have lcaT (a, b) = lcaT (a, b′) = we.
Hence, by definition of best matches, (a, b) is an arc in �G(Te, σ ) if and only if (a, b′)
is an arc in �G(Te, σ ); a contradiction to the assumption that (Te, σ ) explains ( �G, σ ).

Conversely, assume that e = uv with v ≺T u is an inner edge in T and that there is
no arc (a, b) ∈ E( �G) such that lcaT (a, b) = v and σ(b) ∈ σ(L(T (u))\L(T (v))). In
order to show that an edge e is redundant, we need to verify that �G(T , σ ) = �G(Te, σ ).
To this end, consider an arbitrary leaf c ∈ L(T ). Then we have either Case (1)
c ∈ L(T )\L(T (v)), or Case (2) c ∈ L(T (v)).

In Case (1) it is easy to verify that lcaT (c, d) = lcaTe (c, d) for every d ∈ L(T ). In
particular, therefore, (c, d) ∈ E( �G(T , σ )) if and only if (c, d) ∈ E( �G(Te, σ )).

In Case (2), i.e. c ∈ L(T (v)), consider another, arbitrary, leaf d ∈ L(T ). Note,
if σ(c) = σ(d), then c and d never form a best match. Thus, we assume σ(c) �=
σ(d). Now, we consider three mutually exclusive Subcases (a) lcaT (c, d) �T v, (b)
lcaT (c, d) = u and (c) lcaT (c, d) �T u.

Case (a). Since no edge below v is contracted, we have for every d ′ with σ(d ′) =
σ(d), lcaT (c, d ′) ≺T lcaT (c, d) �T v if and only if lcaTe (c, d

′) ≺Te lcaTe (c, d) �Te
we. In particular, therefore, (c, d) ∈ E( �G(T , σ )) if and only if (c, d) ∈ E( �G(Te, σ )).

Case (b). lcaT (c, d) = u and c ≺T v implies that d ∈ L(T (u)\L(T (v))

and thus, σ(d) ∈ σ(L(T (u))\L(T (v))). If (c, d) ∈ E( �G(T , σ )), then σ(d) /∈
σ(L(T (v))) must hold. Therefore, (c, d) is still an arc after contraction of e. For
the case (c, d) /∈ E( �G(T , σ )), assume for contradiction (c, d) ∈ E( �G(Te, σ )). Then
(c, d) /∈ E( �G(T , σ )) implies that there must be a vertex d ′ with σ(d ′) = σ(d)

and lcaT (c, d ′) �T v ≺T u = lcaT (c, d). In particular, d ′ ∈ L(T (v)) can be cho-
sen such that lcaT (c, d ′) is farthest away from v and thus, (c, d ′) ∈ E( �G(T , σ )).
Now, lcaT (c, d ′) �T v and (c, d) ∈ E( �G(Te, σ )) imply that lcaTe (c, d

′) = we =
lcaTe (c, d), which is only possible if lcaT (c, d ′) = v. In summary, we found an arc
(c, d ′) ∈ E( �G(T , σ )) with lcaT (c, d ′) = v and σ(d ′) ∈ σ(L(T (u))\L(T (v))); a
contradiction to our assumption. Hence, in Case (b) we have (c, d) ∈ E( �G(T , σ )) if
and only if (c, d) ∈ E( �G(Te, σ )).

Case (c). Since lcaT (c, d) �T u, it is again easy to see that, for every d ′ with
σ(d ′) = σ(d), lcaT (c, d ′) ≺T lcaT (c, d) if and only if lcaTe (c, d

′) ≺Te lcaTe (c, d)

and thus, (c, d) ∈ E( �G(T , σ )) if and only if (c, d) ∈ E( �G(Te, σ )).
In summary, we have (c, d) ∈ E( �G(T , σ )) if and only if (c, d) ∈ E( �G(Te, σ )) for

all c, d ∈ L(T ). Thus, e is redundant. ��
As a consequence of Lemma 7, we obtain

Corollary 1 Let (T , σ ) be a leaf-colored tree explaining (G, σ ) and uv an inner
edge inner of T with v ≺T u. If σ(L(T (v))) ∩ σ(L(T (v′))) = ∅ for every
v′ ∈ childT (u)\{v}, then uv is redundant in T (w.r.t. (G, σ )).

Proof If there is an arc e = (a, b) ∈ E( �G) with lcaT (a, b) = v we have σ(b) /∈
L(T (u))\L(T (v)) = ∪v′∈child(u)\{v}L(T (v′)) because σ(L(T (v))) ∩ σ(L(T (v′))) =
∅ for every v′ ∈ childT (u)\{v}. By Lemma 7, the inner edge uv is redundant. ��

Both Lemma 7 and Cor. 1 are illustrated in Fig. 12: In (A), uv is a non-redundant
inner edge since (a, b) is a best match such that a and b have v as their last common

123



20 Page 30 of 64 D. Schaller et al.

A B

Fig. 12 Visualization of (A) a non-redundant edge uv for Lemma 7 and (B) a redundant edge uv as in
Cor. 1. The gray subtrees may or may not exist. In (A), the crossed out leaf indicates that the blue color must
not be present in this subtree and thus (a, b) is a best match. In (B), σ(L(T (v))) must not have elements in
common with σ(L(T (u))\L(T (v))). See text for further details

ancestor and the color of b is present in another subtree below vertex u. Contraction
of the edge uv would result in a tree Tuv in which lcaTuv (a, b) = lcaTuv (a, b′), and
thus, introduce the additional best match (a, b′). Clearly, this cannot occur whenever
the other subtrees of u do not share any colors with the subtree T (v), a situation that
is shown in (B), i.e., the edge uv is redundant w.r.t. the BMG �G(T , σ ).

Finally, we show that redundant edges can be contracted in arbitrary order, similar
to (Geiß et al. 2019, Lemma 6 & Cor. 2). To this end, we first prove a more general
statement.

Lemma 8 If TA is obtained from T by contracting all edges in a subset A of inner
edges in T , then �G(T , σ ) ⊆ �G(TA, σ ).

Proof First note that L(TA) = L(T ) since A only contains inner edges. Let (x, y)
be an arc in �G(T , σ ). This implies that there is no y′ with σ(y′) = σ(y) such that
lcaT (x, y′) ≺T lcaT (x, y). It is easy to verify that the latter is still true after contraction
of an arbitrary edge e, i.e. there is no y′ with σ(y′) = σ(y) such that lcaTe (x, y

′) ≺Te
lcaTe (x, y). Hence, (x, y) is an arc in �G(Te, σ ). Now consider the subsets A1 ⊂ A2 ⊂
· · · ⊂ A|A| = A where each |Ai | = i , 1 ≤ i ≤ |A|. The argument above implies
�G(T , σ ) ⊆ �G(TA1 , σ ) ⊆ · · · ⊆ �G(TA, σ ), which completes the proof. ��
Lemma 9 Let A and B be disjoint sets of redundant edges in (T , σ ) w.r.t. ( �G, σ ) and
denote by TA the tree obtained by contraction of all edges in A in arbitrary order.
Then B is a set of redundant edges in TA w.r.t. �G(TA, σ ) = �G(T , σ ).

Proof By Lemma 8, contraction of any inner edge e = uv ∈ E(T ) never leads to a
loss of arcs in the BMG ( �G, σ ) = �G(T , σ ). Furthermore, the redundant edges in T
w.r.t. (G, σ ) are completely characterized by Lemma 7. Thm. 8 in Geiß et al. (2019)
states that by contraction of all redundant edges (in an arbitrary order), one obtains
the unique least resolved tree (T ∗, σ ) of ( �G, σ ). As argued above, no arc of �G(T , σ )

can be lost in the stepwise contraction of redundant edges. Together with �G(T , σ ) =
�G(T ∗, σ ) = ( �G, σ ) this implies �G(TA, σ ) = ( �G, σ ). Since by assumption A∩B = ∅
and A ∪ B is a set of redundant edges w.r.t. ( �G, σ ), we have (TA)B = TA∪B and
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�G(TA, σ ) = ( �G, σ ) = �G(TA∪B, σ ) = �G((TA)B, σ ). Hence, B is a set of redundant
edges in TA w.r.t. �G(TA, σ ). ��

B False-positive orthology assignments

B.1 (T,�)-fp and u-fp edges

The aim of this contribution is to characterize all those false-positive edges in a given
BMG ( �G, σ ) that can be identified from the structure of the BMG alone, i.e., without
any a priori knowledge about the gene tree, the species tree, or the reconciliation map.
In this section, we start by considering false-positive edges identifiable with respect
to a given (T , σ ) that explains ( �G, σ ) and then proceed by considering those edges
that are identified by all trees explaining ( �G, σ ).

Definition 10 ((T , σ )-false-positive) Let (T , σ ) be a tree explaining the BMG ( �G, σ ).
An edge xy in �G is called (T , σ )-false-positive, or (T , σ )-fp for short, if for every
reconciliation map μ from (T , σ ) to any species tree S we have tμ(lcaT (x, y)) = �,
i.e., μ(lcaT (x, y)) ∈ E(S).

In other words, xy is called (T , σ )-fp whenever x and y cannot be orthologous w.r.t.
every possible reconciliation μ from (T , σ ) to any species tree. Interestingly, (T , σ )-
fps can be identified without considering reconciliation maps explicitly.

Lemma 10 Let ( �G, σ ) be a BMG, xy be an edge in �G and (T , σ ) be a tree that explains
( �G, σ ). Then, the following statements are equivalent:

1. The edge xy is (T , σ )-fp.
2. There are two children v1 and v2 of lcaT (x, y) such that σ(L(T (v1))) ∩

σ(L(T (v2))) �= ∅.
3. For the extremal labelinĝtT of (T , σ ) it holds that̂tT (lcaT (x, y)) = �.

Proof (2) implies (1). Suppose that there are two children v1 and v2 of lcaT (x, y) such
that σ(L(T (v1)))∩σ(L(T (v2))) �= ∅. By Lemma 2, μ(lcaT (x, y)) ∈ E(S) and thus,
tμ(lcaT (x, y)) = � for all possible reconciliation maps μ from (T , σ ) to any species
tree S. Hence, xy is (T , σ )-fp.
(1) implies (2). By contraposition, let v = lcaT (x, y) and suppose that for all dis-
tinct children vi , v j ∈ child(v) = {v1, . . . , vk}, k ≥ 2 we have σ(L(T (vi ))) ∩
σ(L(T (v j ))) = ∅. In the following, we show that there is a species tree S and a rec-
onciliation map μ from (T , σ ) to S such that tμ(lca(x, y)) = �, which implies that
xy is not (T , σ )-fp.

We construct the species tree S as follows: S has root edge 0SρS . Now add k children
u1, . . . , uk to ρS . For each of these children ui with |σ(L(T (vi )))| > 1, we add a leaf
t for every color t ∈ σ(L(T (vi ))) and the edge ui t . Any other ui is considered to be
a leaf in S, and we identify ui with the single element in σ(L(T (vi ))). Furthermore,
add for all t ∈ σ(L(T ))\σ(L(T (v))) a leaf t that is adjacent to ρS . Since the color sets
σ(L(T ))\σ(L(T (v))), σ (L(T (v1))), . . . , σ (L(T (vk)) are pairwise distinct, S iswell-
defined, and, by construction, a planted phylogenetic tree. To construct a reconciliation
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Fig. 13 Visualization of the
construction of a species tree S
and reconciliation map μ as
described in the proof of
Lemma 10. Note that, in the
example, vk is already a leaf in
the gene tree T . Hence, the
corresponding uk is also a leaf
since |σ(L(T (vk )))| = 1.
Moreover, note that for
x ∈ L(T )\L(T (v)), it is
possible that μ(x) = u j or
μ(x) = t with t ∈ childS(u j )

for some u j

map we put (i) μ(0T ) = 0S ; (ii) μ(x) = σ(x) for all x ∈ L(T ); (iii) μ(v) = ρS ; (iv)
μ(w) = 0SρS for all w ∈ V 0(T \T (v)); and (v) μ(w) = ρSui for all w ∈ V 0(T (vi )).
By Condition (i) and (ii), the Axioms (R0) and (R1) are satisfied, respectively. By
Condition (v), we have μ(vi ) = ρSui if vi is an inner vertex. Otherwise, vi is a leaf
and |σ(L(T (vi )))| = 1. Therefore, μ(vi ) = σ(vi ) = ui by (ii) and by construction.
It is easy to verify that μ satisfies (R2). A sketch of construction of the species tree S
and the reconciliation map μ is provided in Fig. 13.

The only vertex of T that is mapped to a vertex in S is v. Hence, it remains to
show that μ(v) = ρS ∈ V 0(S) satisfies (R3). Note that for every two distinct children
vi , v j of v we have μ(vi ) ∈ {ρSui , ui } and μ(v j ) ∈ {ρSu j , u j }. In any case, μ(vi )

and μ(v j ) are incomparable in S. Hence, (R3.ii) is satisfied. In particular, μ(v) =
ρS = lcaS(μ(vi ), μ(v j )) for all distinct vi , v j ∈ child(v). Hence, (R3.i) is satisfied.
In summary, μ is a reconciliation map from (T , σ ) to S. Since μ(v) = ρS ∈ V 0(S),
we have tμ(v) = �.

Statements (2) and (3) are equivalent by definition of the extremal event labeling.
��

Lemma 10 implies that (T , σ )-fp can be verified in polynomial time for any given
gene tree (T , σ ).

Definition 11 (Unambiguous false-positive) Let ( �G, σ ) be a BMG. An edge xy in �G
is called unambiguous false-positive (u-fp ) if for all trees (T , σ ) that explain ( �G, σ )

the edge xy is (T , σ )-fp.

Hence, if an edge xy in �G is u-fp, then it is in particular (T , σ )-fp in the true history
that explains ( �G, σ ). Thus, u-fp edges are always “correct” false-positives.

B.2 The color-intersectionS∩

Given a gene tree (T , σ ) and a pair of distinct leaves x, y ∈ L(T ), we denote by
vx , vy ∈ childT (lcaT (x, y)) the unique children of the last common ancestor of x and
y for which x �T vx and y �T vy . That is, T (vx ) and T (vy) are the subtrees of T
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rooted in the children of lcaT (x, y) with x ∈ L(T (vx )) and y ∈ L(T (vy)). The set

S∩
T (x, y) := σ(L(T (vx ))) ∩ σ(L(T (vy))) (2)

contains the colors, i.e. species, that are common to both subtrees. Lemma 4 immedi-
ately implies

Corollary 2 Let xy be an edge in a BMG ( �G, σ ). Then σ({x, y}) ∩ S∩
T (x, y) = ∅ for

all trees (T , σ ) that explain ( �G, σ ).

The following result shows that the color-intersection of a given edge in a BMG
( �G, σ ) in fact does not depend on the tree representation of ( �G, σ ).

Lemma 11 Let ( �G, σ ) be a BMG and (T ∗, σ ) the corresponding unique least resolved
tree explaining ( �G, σ ). Then, for each tree (T , σ ) that explains ( �G, σ ), every edge xy
in ( �G, σ ) satisfies S∩

T ∗(x, y) = S∩
T (x, y). Thus, in particular, S∩

T ∗(x, y) �= ∅ if and
only if S∩

T (x, y) �= ∅.

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ). Moreover, let xy be an
edge in �G and denote by vx and vy be the unique children vx , vy ∈ childT (lcaT (x, y))
with x �T vx and y �T vy . Analogously, v∗

x and v∗
y are the unique children v∗

x , v
∗
y ∈

childT ∗(lcaT ∗(x, y)) with x �T ∗ v∗
x and y �T ∗ v∗

y .
First, we show that t ∈ S∩

T ∗(x, y) implies t ∈ S∩
T (x, y). Since (T , σ ) explains

( �G, σ ), we apply Thm. 3 to conclude that T is a refinement of T ∗ and thus, C(T ∗) ⊆
C(T ). Therefore, L(T ∗(lcaT ∗(x, y)), L(T ∗(v∗

x )) and L(T ∗(v∗
y)) are contained in

C(T ). This implies that there must be vertices u, wx , and wy in T with L(T (u)) =
L(T ∗(lcaT ∗(x, y)), L(T (wx )) = L(T ∗(v∗

x )) and L(T (wy)) = L(T ∗(v∗
y)). Note that

L(T ∗(v∗
x )) ∩ L(T ∗(v∗

y)) = ∅, and thus L(T (wx )) ∩ L(T (wy)) = ∅. In particu-
lar, wx and wy are incomparable in T . Moreover, u = lcaT (x, y) = lcaT (wx , wy),
thus we have wx �T vx and wy �T vy . Therefore, L(T ∗(v∗

x )) ⊆ L(T (vx )) and
L(T ∗(v∗

y)) ⊆ L(T (vy)). Therefore, t ∈ S∩
T ∗(x, y) implies t ∈ S∩

T (x, y).
Now, we show that t ∈ S∩

T (x, y) implies t ∈ S∩
T ∗(x, y). Let t ∈ S∩

T (x, y) �= ∅.
In this case, t ∈ σ(L(T (vx ))) and we can choose a vertex z1 ∈ L(T (vx )) such that
σ(z1) = t and lcaT (x, z1) is as far away as possible from vx compared to all lcaT (x, z)
with z ∈ L[t], i.e., lcaT (x, z1) �T lcaT (x, z) for all z ∈ L[t]. Thus, (x, z1) ∈ E( �G).
An analogous argument ensures that there is a vertex z2 ∈ L(T (vy)) such that σ(z2) =
t and (y, z2) ∈ E( �G). Clearly, lcaT (x, z2) = lcaT (x, y) = lcaT (y, z1) and thus
lcaT (x, z1) �T vx ≺T lcaT (x, z2), which in turn implies that (x, z2) /∈ E( �G). Since
(x, z1) ∈ E( �G) and (x, z2) /∈ E( �G),weobtain the informative triple xz1|z2 for ( �G, σ ).
Analogously, yz2|z1 is an informative triple for ( �G, σ ). Lemma 6 and the fact that T ∗
explains ( �G, σ ) implies that there are distinct vertices v1, v2 ∈ childT ∗(lcaT ∗(x, y))
such that x, z1 �T ∗ v1 and y, z2 �T ∗ v2. Since t = σ(z1) = σ(z2), we have
t ∈ S∩

T ∗(x, y).
Finally, t ∈ S∩

T ∗(x, y) if and only if t ∈ S∩
T (x, y) implies both S∩

T ∗(x, y) =
S∩
T (x, y) and S∩

T ∗(x, y) �= ∅ if and only if S∩
T (x, y) �= ∅. ��
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Remark 1 ByLemma11,we haveS∩
T (x, y) = S∩

T ∗(x, y) for every tree (T , σ ) explain-
ing a BMG ( �G, σ ) with corresponding least resolved tree (T ∗, σ ). Therefore, it is
sufficient to consider S∩

T ∗(x, y). We will therefore drop the explicit reference to the
tree and simply write S∩(x, y). We can verify in polynomial time whether or not
S∩(x, y) = ∅ because the least resolved tree (T ∗, σ ) explaining ( �G, σ ) can be com-
puted in polynomial time.

Proposition 1 Every edge xy in a BMG ( �G, σ ) with S∩(x, y) �= ∅ is u-fp.

Proof By Lemma 11 and Remark 1, S∩(x, y) �= ∅ if and only if S∩
T (x, y) �= ∅ for

all trees (T , σ ) that explain ( �G, σ ). By Lemma 2, μ(lcaT (x, y)) ∈ E(S) and thus,
tμ(lcaT (x, y)) = � for all trees (T , σ ) that explain ( �G, σ ). Hence, xy is u-fp. ��
As we shall see later, the converse of Prop. 1 is not always satisfied (cf. also Fig. 14).
An immediate consequence of Prop. 1 is:

Corollary 3 An edge xy in a BMG �G(T , σ ) with S∩(x, y) �= ∅ is (T , σ )-fp.

Although not necessarily true in general, we show next that the converse of Prop. 1
and Cor. 3 does hold for the special case of binary trees.

Lemma 12 Let xy be an edge in �G(T , σ ) and suppose lcaT (x, y) is a binary vertex.
Then, the following three statements are equivalent:

1. The edge xy is (T , σ )-fp.
2. S∩(x, y) �= ∅.
3. The edge xy is u-fp.

Proof (1) implies (2). Suppose xy is (T , σ )-fp. Since v is binary, it has precisely
two children v1 and v2. In particular, v = lcaT (x, y) implies that that x �T vi and
x �T v j for i, j ∈ {1, 2} being distinct. By Lemma 10, the two children v1 and v2 of
v satisfy σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅. By Lemma 11 and Remark 11, we have
S∩(x, y) �= ∅.
(2) implies (3). If S∩(x, y) �= ∅, we can apply Prop. 1 to conclude that xy is u-fp.
(3) implies (1). By definition, if xy is u-fp, then it is in particular also (T , σ )-fp. ��
Theorem 4 Let ( �G, σ ) be a BMG that is explained by a binary tree (T , σ ). Then, for
every edge xy in ( �G, σ ), the following three statements are equivalent:

1. The edge xy is (T , σ )-fp.
2. S∩(x, y) �= ∅.
3. The edge xy is u-fp.

Proof For every edge xy in �G the last common ancestor lcaT (x, y) is binary. Now
apply Lemma 12. ��

Thm. 4 implies that all u-fp edges can be detected in a BMG that is explained by a
known binary gene tree. However, not all BMGs ( �G, σ ) can be explained by a binary
tree, as e.g. the BMG in Fig. 6(A). Thm. 4 does not generalize to the non-binary case,
and S∩(x, y) is not sufficient to identify all u-fp edges. Furthermore, it is not difficult
to find non-binary trees in which (T , σ )-fp and u-fp edges are not the same: As show
in Fig. 3, the edge xz in is (T1, σ )-fp but not (T2, σ )-fp according to Lemma 10. Since
both trees explain the same BMG, the edge xy is not u-fp.
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B.3 S∩(x, y) �= ∅: quartets

Since every orthology graph is a cograph (cf. Thm. 1), we know that every induced P4
in the RBMG is associated with false-positive edges. The induced subgraphs of the
BMG spanned by a P4 in its symmetric part (i.e., the RBMG) are called quartets. We
write 〈abcd〉 or, equivalently, 〈dcba〉 for an induced P4 with edges ab, bc, and cd.
The quartets on three colors fall into three classes:

Definition 12 (Good, bad, and ugly quartets) Let ( �G, σ ) be a BMG with symmetric
part (G, σ ) and vertex set L , and let Q := {x, y, z, z′} ⊆ L with x ∈ L[r ], y ∈ L[s],
and z, z′ ∈ L[t]. The set Q, resp., the induced subgraph ( �G[Q], σ|Q) is

a good quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ ) and (ii) (z, y), (z′, x) ∈
E( �G) and (y, z), (x, z′) /∈ E( �G),
a bad quartet if (i) 〈zxyz′〉 is an induced P4 in (G, σ ) and (ii) (y, z), (x, z′) ∈ E( �G)

and (z, y), (z′, x) /∈ E( �G),
an ugly quartet if 〈zxz′y〉 is an induced P4 in (G, σ ).

The edge xy in a good quartet 〈zxyz′〉 is its middle edge. The edge zx of an ugly
quartet 〈zxz′y〉 or a bad quartet 〈zxyz′〉 is called its first edge. First edges in ugly
quartets are uniquely determined due to the colors. In bad quartets, this is not the case
and therefore, the edge yz′ in 〈zxyz′〉 is a first edge as well.
An RBMG never contains induced P4s on two colors (Geiß et al. 2020c, Obs. 5). This,
in particular, implies that for the induced P4s in Def. 12 the colors r , s, and t must be
pairwise distinct. Induced P4s on four colors are investigated in some more detail in
Sec. D.3 below.

The key property of good quartets is a consequence of (Geiß et al. 2020b, Cor. 5):

Proposition 2 If 〈zxyz′〉 is a good quartet in the BMG ( �G, σ ), then S∩(x, y) �= ∅ and
thus, xy is u-fp.

Proof Let 〈zxyz′〉 in ( �G, σ ) be a good quartet in ( �G, σ ) and let (T , σ ) be an arbi-
trary tree explaining ( �G, σ ). Then (Geiß et al. 2020c, Lemma 36) implies that
v := lcaT (x, y, z, z′) has two distinct children v1, v2 ∈ child(v) such that x, z �T v1
and y, z′ �T v2. Hence, v = lcaT (x, y). Since σ(z) ∈ σ(L(T (v1))) ∩ σ(L(T (v2))),
we have S∩(x, y) �= ∅ and, by Prop. 1, the edge xy is u-fp. ��
Prop. 2 provides a convenient way to identify unambiguous false-positive edges in a
BMG.

Lemma 13 If xy is an edge in a BMG �G(T , σ ) and t ∈ S∩(x, y), then there is a good
quartet 〈z1x∗y∗z2〉 such that

(a) σ(x∗) = σ(x), σ(y∗) = σ(y), and σ(z1) = σ(z2) = t;
(b) x∗, z1 ∈ L(T (vx )) and y∗, z2 ∈ L(T (vy)) with vx and vy being the unique

children in childT (lcaT (x, y)) such that with x �T vx and y �T vy .

Proof Consider an edge xy of �G(T , σ ) and a color t ∈ S∩(x, y). By Cor. 2, t �=
σ(x), σ (y). Lemma 3 ensures the existence of an edge x∗z1 in �G for some leaves
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x∗ ∈ L(T (vx )) ∩ L[σ(x)] and z1 ∈ L(T (vx )) ∩ L[t]. By the same arguments as
in the proof of Cor. 2, we can conclude that z1y′ is not an edge in �G for all y′ ∈
L(T (vy)) ∩ L[σ(y)]. However, (z1, y′) ∈ E( �G) since the color of y′ is not present in
T (vx ). Likewise, there are leaves y∗ ∈ L(T (vy))∩L[σ(y)] and z2 ∈ L(T (vy))∩L[t]
such that y∗z2 forms an edge in �G. Reusing the arguments from L(T (vx )), we find
that x ′z2 is not an edge in �G and (z2, x ′) ∈ E( �G) for any x ′ ∈ L(T (vx )) ∩ L[σ(x)].
Finally, σ(x) /∈ σ(L(T (vy))) and σ(y) /∈ σ(L(T (vx ))) implies that x∗y∗ forms an
edge in �G. Hence, 〈z1x∗y∗z2〉 is a good quartet. ��
The edge x∗y∗ in Lemma 13 is the middle edge of a good quartet. For completeness,
we also provide a result for the identification of u-fp edges using bad quartets:

Proposition 3 Let 〈zxyz′〉 be a bad quartet in a BMG ( �G, σ ). Then, the edges xz and
yz′ are u-fp and every tree that explains ( �G, σ ) is non-binary.

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ), set u := lcaT (x, z) and let
vx , vz ∈ childT (u) be the two distinct children of u such that x �T vx and z �T vz .
By symmetry, it suffices to show that xz is u-fp. Since 〈zxyz′〉 is a bad quartet, we have
(x, z), (x, z′) ∈ E( �G) and thus lcaT (x, z′) = lcaT (x, z) = u. Let vz′ ∈ childT (u)

be the child of u such that z′ �T vz′ . Since lcaT (x, z′) = u we have vx �= vz′ . Now,
assume for contradiction that vz = vz′ , and thus z′ ∈ L(T (vz)). Since 〈zxyz′〉 is a
bad quartet, we have (z′, x) /∈ E( �G), which implies the existence of a vertex x ′ with
σ(x) = σ(x ′) and lcaT (x ′, z′) ≺T lcaT (x, z′) = u and therefore, x ′ ∈ L(T (vz)).
However, this implies that lcaT (x ′, z) �T vz ≺T u = lcaT (x, z), which together
with σ(x) = σ(x ′) contradicts the fact that xz is an edge in �G. Hence, vz �= vz′ .
Therefore, σ(z) = σ(z′) ∈ σ(L(T (vz))) ∩ σ(L(T (vz′))) �= ∅ for distinct children
vz, vz′ ∈ childT (u). By Lemma 10, the edge xz is (T , σ )-fp and since (T , σ ) was
chosen arbitrarily, the edge xz is u-fp. Moreover, we have shown that vx , vz and vz′
must be pairwise distinct and thus, (T , σ ) is non-binary. ��

Fig. 5 shows that u-fp edges xy with S∩(x, y) �= ∅ exist that are neither middle
edges of good quartets or first edges of bad quartets. Thus we next consider ugly
quartets.

Proposition 4 If 〈xyx ′z〉 is an ugly quartet in a BMG ( �G, σ ), then the edges xy and
yx ′ are u-fp.

Proof Consider an ugly quartet 〈xyx ′z〉. Let (T , σ ) be an arbitrary tree explaining
( �G, σ ), put u := lcaT (x, y) and let vx , vy ∈ childT (u) be the two distinct children of
u such that x �T vx and y �T vy .

Since x ′y and xy are edges in �G wehave lcaT (x ′, y) �T u.Moreover, Cor. 2 implies
σ(x ′) = σ(x) /∈ σ(L(T (vy))) and thus x ′ /∈ L(T (vy)). Therefore, lcaT (x ′, y) =
lcaT (x, y) = u.

Now consider an arbitrary reconciliation map μ from (T , σ ) to some species tree
S. The existence of μ is guaranteed by Lemma 1. If x ′ /∈ L(T (vx )), then there is
a vertex v3 ∈ childT (u), v3 �= vx , vy such that x ′ �T v3 and σ(x) = σ(x ′) ∈
σ(L(T (vx ))) ∩ σ(L(T (v3))) �= ∅, which by Lemma 2 implies tμ(u) = �.
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Now suppose x ′ ∈ L(T (vx )) and recall that x ′z is an edge in �G by assumption.
Since lcaT (x ′, z) and lcaT (x, x ′) are both ancestors of x ′ they are comparable. If
lcaT (x ′, z) �T lcaT (x, x ′), then lcaT (x, z) = lcaT (x ′, z). Together with the fact that
x ′z is an edge in �G but not xz, this implies that there is a z′ ∈ L[σ(z)] such that
lcaT (x, z′) ≺T lcaT (x, z). This in turn implies lcaT (x ′, z′) ≺T lcaT (x ′, z), which
contradicts that x ′z is an edge in �G. Therefore, x ′ ∈ L(T (vx )) implies lcaT (x ′, z) �T

lcaT (x, x ′) and x, x ′, z ∈ L(T (vx )). Since yz is not an edge in �G by assumption
and Cor. 2 implies σ(y) /∈ σ(L(T (vx )), there is a leaf z′ with color σ(z′) = σ(z)
such that lcaT (y, z′) ≺T lcaT (y, z). This is only possible if z′ ∈ L(T (vy))∩ L[σ(z)].
Therefore, σ(z) ∈ σ(L(T (vx )))∩σ(L(T (vy))) and Lemma 2 implies that tμ(u) = �.

In summary, lcaT (x ′, y) = lcaT (x, y) = u and tμ(u) = � for every tree explaining
( �G, σ ) and every possible reconciliation map μ from (T , σ ) to any species tree. Thus
both xy and x ′y are u-fp. ��
Proposition 5 Let ( �G, σ ) be a BMG and xy an edge in �G with S∩(x, y) �= ∅. Then
xy is either the middle edge of some good quartet 〈zxyz′〉 or the first edge in some
ugly quartet 〈xyx ′z〉 or 〈yxy′z〉.
Proof Let (T , σ ) be a leaf-colored tree explaining the BMG ( �G, σ ) with symmetric
part (G, σ ). Let vx , vy ∈ childT (lcaT (x, y)) such that x �T vx and y �T vy .
Since S∩(x, y) �= ∅, Lemma 13 implies that there is a good quartet 〈z1x∗y∗z2〉 with
σ(x∗) = σ(x), σ(y∗) = σ(y), σ(z1) = σ(z2) = t ∈ S∩(x, y), x∗, z1 ∈ L(T (vx ))

and y∗, z2 ∈ L(T (vy)).
If x = x∗ and y = y∗ we are done. By symmetry it suffices to consider the case

x �= x∗. Before we proceed, we consider the (non-)existence of certain edges in
the RBMG G(T , σ ) and the BMG �G(T , σ ). By definition of good quartets, we have
x∗z1, x∗y∗, y∗z2 ∈ E(G) and Cor. 2 implies σ(x), σ (y) /∈ S∩(x, y). Hence, σ(x∗) =
σ(x) /∈ σ(L(T (vy))) and σ(y∗) = σ(y) /∈ σ(L(T (vx ))), and thus x∗y ∈ E(G) and
xy∗ ∈ E(G). Moreover, since lcaT (y, z2) ≺T lcaT (y, z1), we have yz1 /∈ E(G).
Similarly, xz2 /∈ E(G). However, σ(x) /∈ σ(L(T (vy))) implies that lcaT (z2, x) =
lcaT (x, y) � lcaT (z2, x ′) for all x ′ ∈ L[σ(x)] and thus, (z2, x) ∈ E( �G). Similarly,
(z1, y) ∈ E( �G). Furthermore, we note that neither x and x∗ nor y and y∗ can be
adjacent in G or �G since σ(x) = σ(x∗) and σ(y) = σ(y∗).

If xz1 /∈ E(G), then 〈xyx∗z1〉 forms an ugly quartet. Now suppose that xz1 ∈
E(G). Assume that there is an edge yz′ ∈ E(G) with z′ ∈ L(T (vy)) ∩ L[t]. Then,
lca(x, z1) ≺T lca(x, z′) implies xz′ /∈ E(G). Moreover, since σ(x) /∈ σ(L(T (vy)))

we have, by similar arguments as above, that (z′, x) ∈ E( �G). Thus, 〈z′yxz1〉 forms
a good quartet. Finally, if there is no such edge yz′ ∈ E(G) then, in particular,
yz2 /∈ E(G) and y �= y∗. In this case, 〈yxy∗z2〉 forms an ugly quartet. ��
The example Fig. 14 shows that the converse of Prop. 5 is not true in general.
We summarize the results of Props. 1, 2, 4 and 5 in the following

Corollary 4 Let ( �G, σ ) be a BMG that contains the edge xy. Then, S∩(x, y) �= ∅
implies that xy is either the middle edge of some good quartet or the first edge of some
ugly quartet, which in turn implies that xy is u-fp.
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Fig. 14 The edge xy is u-fp since it is the first edge of an ugly quartet. However, S∩(x, y) = ∅ and thus,
the converse of Prop. 5 is not satisfied

B.4 S∩(x, y) = ∅: hourglasses

The case S∩(x, y) �= ∅ is sufficient to detect the edge xy as u-fp. In this section we
turn to the case S∩(x, y) = ∅ and show how to identify further u-fp edges.

Definition 13 (Hourglass) An hourglass in a proper vertex-colored graph ( �G, σ ),
denoted by [xy ↘↗ x ′y′], is a subgraph ( �G[Q], σ|Q) induced by a set of four pair-
wise distinct vertices Q = {x, x ′, y, y′} ⊆ V ( �G) such that (i) σ(x) = σ(x ′) �=
σ(y) = σ(y′), (ii) xy and x ′y′ are edges in �G, (iii) (x, y′), (y, x ′) ∈ E( �G), and (iv)
(y′, x), (x ′, y) /∈ E( �G).

Note that Condition (i) rules out arcs between x, x ′ and y, y′, respectively, i.e., the
only arcs in an hourglass are the ones specified by Conditions (ii) and (iii). An example
is shown in Fig. 6(A).

Observation 5 Every hourglass is a BMG since it can be explained by a tree as shown
in Fig. 6(B).

We first show that hourglasses cannot appear in a BMG that can be explained by a
binary tree.

Lemma 14 If ( �G, σ ) is a BMG containing the hourglass [xy ↘↗ x ′y′], then every tree
(T , σ ) that explains ( �G, σ ) contains a vertex u ∈ V 0(T ) with three distinct children
v1, v2, and v3 such that x �T v1, lcaT (x ′, y′) �T v2 and y �T v3.

Proof By assumption, xy and x ′y′ are edges in �G, (x, y′), (y, x ′) ∈ E( �G), and
(y′, x), (x ′, y) /∈ E( �G). By Lemma 5, the informative triples x ′y′|x and x ′y′|y
thus must be displayed by every tree (T , σ ) that explains ( �G, σ ). Thus ux ′y′ :=
lcaT (x ′, y′) ≺T ux := lcaT (x, ux ′y′) and ux ′y′ ≺T uy := lcaT (y, ux ′y′). Fur-
thermore, ux and uy are both ancestors of ux ′y′ and thus comparable w.r.t. �T . If
ux ≺T uy , then lcaT (x, y′) ≺T lcaT (x, y)which implies that xy cannot form an edge
in �G; a contradiction. By similar arguments, uy ≺T ux is not possible and therefore,
ux = uy =: u.

Since ux ′y′ ≺T u, there are two distinct children v1, v2 ∈ childT (u) of u such that
x �T v1 and ux ′y′ �T v2. Clearly, y /∈ L(T (v2)) since lcaT (y, ux ′y′) = u �T v2.
We also have y /∈ L(T (v1)) since y ∈ L(T (v1)) would imply lcaT (x, y) �T v1 ≺T
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u = lcaT (x, ux ′y′) = lcaT (x, y′), contradicting (x, y′) ∈ E( �G). Together with y ∈
L(T (u)), this implies the existence of a vertex v3 ∈ child(u) such that v3 /∈ {v1, v2}
and y �T v3. ��
The result shows that hourglasses [xy ↘↗ x ′y′] can be used to identify false-positive
edges xy with S∩(x, y) = ∅.
Proposition 6 If a BMG ( �G, σ ) contains an hourglass [xy ↘↗ x ′y′], then the edge xy
is u-fp.

Proof According to Lemma 14, every tree (T , σ ) that explains ( �G, σ ) contains a
vertex u ∈ V 0(T ) with three distinct children v1, v2, and v3 such that x �T v1,
lcaT (x ′, y′) �T v2 and y �T v3. Thus, u = lcaT (x, y) and σ(x) ∈ σ(L(T (v1))) ∩
σ(L(T (v2))). Hence, we can apply Lemma 10 to conclude that xy is (T , σ )-fp for
every tree that explains ( �G, σ ). Therefore, the edge xy is u-fp. ��
Prop. 6 implies that there are u-fp edges that are not contained in a quartet, since an
hourglass (see Fig. 6(A)) does not contain a P4. We next generalize the concept of
hourglasses.

Definition 14 (Hourglass chain)An hourglass chainH in a graph ( �G, σ ) is a sequence
of k ≥ 1 hourglasses [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] such that the following two

conditions are satisfied for all i ∈ {1, . . . , k − 1}:
(H1) yi = x ′

i+1 and y′
i = xi+1, and

(H2) xi y′
j is an edge in �G for all j ∈ {i + 1, . . . , k}

A vertex z is called a left (resp., right) tail of the hourglass chain H if it holds that
(z, x1) ∈ E( �G) and (z, x ′

1) /∈ E( �G) (resp., (z, yk) ∈ E( �G) and (z, y′
k) /∈ E( �G)). We

call H tailed if it has a left or right tail.

Note that in contrast to good and bad quartets as well as individual hourglasses, an
hourglass chain in ( �G, σ ) is not necessarily an induced subgraph.

Observation 6 If H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain in

( �G, σ ), then [xi yi ↘↗ x ′
i y

′
i ], . . . , [x j y j ↘↗ x ′

j y
′
j ] is an hourglass chain in ( �G, σ ) for

every 1 ≤ i < j ≤ k.

Hourglass chains are composedof “overlapping”hourglasses. The additional condition
that xi y′

j ∈ E(G) for all 1 ≤ i < j ≤ k ensures that the two pairs x ′
k, y

′
k and x ′

l , y
′
l

with k �= l cannot lie in the same subtree below the last common ancestor u which is
common to all hourglasses in the chain.

Lemma 15 Let H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain in a

BMG ( �G, σ ). Then, for every tree (T , σ ) that explains ( �G, σ ) there is a vertex u ∈
V 0(T ) with pairwise distinct children v0, v1, . . . , vk, vk+1 such that x1 ∈ L(T (v0)),
yk ∈ L(T (vk+1)), and, for all 1 ≤ i ≤ k, we have x ′

i , y
′
i ∈ L(T (vi )).

123



20 Page 40 of 64 D. Schaller et al.

Proof We prove the statement by induction on k. For the base case k = 1, observe
that the hourglass [x1y1 ↘↗ x ′

1y
′
1] together with Lemma 14 implies that there is a

vertex u ∈ V 0(T ) with pairwise distinct children v0, v1 and v2 such that x1 �T v0,
lcaT (x ′

1, y
′
1) �T v1 (thus x ′

1, y
′
1 �T v1) and y1 �T v2.

Now let k > 1 and assume that the statement is true for all hourglass chains
containing less than k hourglasses. Let H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be

an hourglass chain. By induction hypothesis, for every subsequence Hi | := [x1y1 ↘↗
x ′
1y

′
1], . . . , [xi yi ↘↗ x ′

i y
′
i ] of H with 1 ≤ i < k, which by Obs. 6 is again an hourglass

chain, the statement is true.
Consider the subsequence Hi | with i = k − 1. By assumption, there is a vertex

u ∈ V 0(T ) with pairwise distinct children v0, v1, . . . , vi , vi+1 such that it holds
x1 ∈ L(T (v0)), yi ∈ L(T (vi+1)), and, for all 1 ≤ j ≤ i , we have x ′

j , y
′
j ∈ L(T (v j )).

The hourglass [xi+1yi+1 ↘↗ x ′
i+1y

′
i+1] and Lemma 14 imply the existence of a vertex

u′ ∈ V 0(T ) with pairwise distinct children v′
i , v

′
i+1 and v′

i+2 such that xi+1 �T v′
i ,

lcaT (x ′
i+1, y

′
i+1) �T v′

i+1 and yi+1 �T v′
i+2. By the definition of hourglass chains, we

have yi = x ′
i+1 and y′

i = xi+1. Therefore, u′ = lcaT (x ′
i+1, xi+1) = lcaT (yi , y′

i ) = u.
Since vi and v′

i are both children of u, y′
i = xi+1 and it holds both that y′

i �T vi
and xi+1 �T v′

i , we conclude that vi = v′
i . Similarly, it holds vi+1 = v′

i+1 since
vi+1, v

′
i+1 ∈ child(u) and yi = x ′

i+1. In particular, we have v′
i+2 �= v′

i+1 = vi+1
and v′

i+2 �= v′
i = vi . It remains to show that v′

i+2 �= v j for 0 ≤ j < i . Assume, for
contradiction, that v′

i+2 = v j for some fixed j with 0 ≤ j < i . By assumption, x1 �T

v j if j = 0, and otherwise, x j+1 = y′
j �T v j . Moreover, since v′

i+2 = v j , we have
yi+1 �T v j . Hence, lcaT (x j+1, yi+1) �T v j . Furthermore, since y′

i+1 �T vi+1 �= v j ,
it holds lcaT (x j+1, y′

i+1) = u �T v j . Since σ(yi+1) = σ(y′
i+1) by the definition of

hourglasses, the latter two arguments contradict x j+1y′
i+1 ∈ E(G), which must hold

by the definition of hourglass chains. Hence, we can conclude that v′
i+2 �= v j for and

0 ≤ j < i and we set vi+2 := v′
i+2. In summary, the statement holds for the hourglass

chain Hi+1| = H. ��

It is straightforward to generalize the latter statement to tailed hourglass chains.

Lemma 16 Let H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain with

left (resp. right) tail z in a BMG ( �G, σ ). Then, every tree (T , σ ) that explains ( �G, σ )

contains a vertex u ∈ V 0(T ) with pairwise distinct children v0, v1, . . . , vk, vk+1 such
that it holds x1 ∈ L(T (v0)), yk ∈ L(T (vk+1)), and, for all 1 ≤ i ≤ k, we have
x ′
i , y

′
i ∈ L(T (vi )). Furthermore, we have z �T v0 (resp. z �T vk+1).

Proof By Lemma 15, there is a vertex u ∈ V 0(T ) with pairwise distinct children
v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T (v0)), yk ∈ L(T (vk+1)), and, for all
1 ≤ i ≤ k, we have x ′

i , y
′
i ∈ L(T (vi )).

Suppose that z is a left tail of H. We need to show that z �T v0. By definition,
(z, x1) ∈ E( �G), (z, x ′

1) /∈ E( �G), and σ(x1) = σ(x ′
1). Therefore, zx1|x ′

1 is an informa-
tive triple for ( �G, σ ), andhence lcaT (z, x1) ≺T lcaT (z, x ′

1) = lcaT (x1, x ′
1) = u. Since

v0 is the unique child of u with x1 ≺T v0, we can conclude that lcaT (z, x1) �T v0
and thus, z �T v0.
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If z is a right tail of H, a similar argument using the informative triple z′yk |y′
k ,

which must be displayed by T because (z, yk) ∈ E( �G) and (z, y′
k) /∈ E( �G), implies

z �T vk+1. ��
We are now in the position to show that hourglass chains identify additional u-fp

edges that are not contained in a single hourglass.

Lemma 17 Let H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain

in ( �G, σ ), possibly with a left tail z or a right tail z′. Then every edge e ∈
{x1yk, zyk, x1z′, zz′} ∩ E(G) is u-fp, where G denotes the symmetric part of �G.

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ). By the definition of hour-
glass chains, we have k ≥ 1. Hence, the sequence contains at least the hourglass
[x1y1 ↘↗ x ′

1y
′
1]. Since H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] in �G(T , σ ),

Lemma 16 implies the existence of a vertex u ∈ V 0(T )with pairwise distinct children
v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T (v0)), yk ∈ L(T (vk+1)), and, for all
1 ≤ i ≤ k, we have x ′

i , y
′
i ∈ L(T (vi )). Furthermore, this lemma also implies z �T v0

if z is a left tail ofH, and z′ �T vk+1 if z′ is a right tail ofH. Note that lcaT (x1, x ′
1) = u,

and x1 and x ′
1 lie below distinct children of u. More precisely x1 �T v0 and

x ′
1 �T v1. Since σ(x1) = σ(x ′

1), we have σ(L(T (v0))) ∩ σ(L(T (v1))) �= ∅. More-
over, lcaT (a, b) = u for every edge e = ab in �G that coincides with one of x1yk , zyk ,
x1z′, and zz′. The latter two arguments together with Lemma 10 imply that every such
edge is (T , σ )-fp. Since (T , σ ) was chosen arbitrarily, every such edge is also u-fp. ��

It is important to note that the construction of hourglass chains does not imply that
an edge e ∈ {x1yk, zyk, x1z′, zz′} must exist in ( �G, σ ). Nevertheless, whenever such
an edge occurs, it is u-fp. We will take a closer look at the properties of hourglass
chains in Sec. D.

C Characterization of unambiguous false-positive edges

C.1 Color-set intersection graphs

In this section, we take a closer look at the trees that explain a givenBMG. In particular,
we consider the color allocation to the subtrees below each vertex of a tree explaining
a given BMG. This leads us to the idea of a color intersection graph.

Definition 15 The color-set intersection graph CT (u) of an inner vertex u of a leaf-
colored gene tree (T , σ ) is the undirected graph with vertex set V := childT (u) and
edge set

E := {v1v2 | v1, v2 ∈ V , v1 �= v2 and σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅}.

Shortest paths in the color-set intersection graphs will play an important role in
identifying many u-fp edges.
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Lemma 18 Let v1 and vk be two distinct vertices in the same connected component
of the color-set intersection graph CT (u) of a leaf-colored gene tree (T , σ ), and let
P(v1, vk) = (v1, . . . , vk) be a shortest path in CT (u) connecting v1 and vk . Then
σ(L(T (vi ))) ∩ σ(L(T (v j ))) = ∅ for all i and j satisfying 1 ≤ i < i + 2 ≤ j ≤ k.

Proof Assume, for contradiction, that σ(L(T (vi ))) ∩ σ(L(T (v j ))) �= ∅ for some i, j
with 1 ≤ i < i + 2 ≤ j ≤ k. Then the edge viv j must be contained in CT (u),
contradicting the fact that P(v1, vk) is a shortest path. ��

The following lemma establishes a close connection between color-set intersection
graphs and hourglass chains.

Lemma 19 Let ( �G, σ ) be a BMG that is explained by (T , σ ) and suppose that x, y ∈
L(T ) are two distinct leaves with u := lcaT (x, y) and vx , vy ∈ childT (u) such that (i)
x �T vx and y �T vy , and (ii) there is a shortest path (vx = v0, v1, . . . , vk, vk+1 =
vy) of length at least two in CT (u). Then there is an hourglass chain H = [x1y1 ↘↗
x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] in ( �G, σ ). In particular, precisely one of the following

conditions is satisfied:

1. x1 = x and yk = y;
2. yk = y and z := x is a left tail of H;
3. x1 = x and z′ := y is a right tail of H; or
4. z := x is a left tail and z′ := y is a right tail of H.

Proof Lemma 18 implies S∩(x, y) = σ(L(T (vx )))∩σ(L(T (vy))) = σ(L(T (v0)))∩
σ(L(T (vk+1))) = ∅. We proceed by showing that the BMG �G(T , σ ) contains an
hourglass chain H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] possibly with left tail z and

right tail z′ such that one of the Conditions 1–4 is satisfied.
We first consider the two cases: either (A) σ(x) ∈ σ(L(T (v1))) or (B) σ(x) /∈

σ(L(T (v1))). In Case (A), we set x1 := x and c0 := σ(x). In Case (B), we set
z := x , choose c0 ∈ σ(L(T (v0))) ∩ σ(L(T (v1))) arbitrarily (note v0v1 forms an
edge in CT (u) and thus, the latter intersection is non-empty) and we set x1 = v

for some v ∈ L(T (v0)) ∩ L[c0] such that lca(v, x) �T lcaT (v′, x) �T v0 for all
v′ ∈ L(T (v0)) ∩ L[c0]. Clearly, such a vertex v exists. Moreover, c0 �= σ(x) and we
obtain (x, v) = (z, x1) ∈ E( �G) as necessary requirement for left tails. In summary,
we have in Case (A) x1 = x and in Case (B) x plays the role of the left tail z and x1
is some other vertex. Moreover, in both Cases (A) and (B), we have σ(x1) = c0 ∈
σ(L(T (v0))) ∩ σ(L(T (v1))).

We now consider the “other end” of the hourglass chain, that is, vertex yk and
the possible right tail. Again, we have two cases: either (A’) σ(y) ∈ σ(L(T (vk+1)))

or (B’) σ(y) /∈ σ(L(T (vk+1))). In Case (A’), we set yk := y and ck := σ(y).
In Case (B’), we set z′ := y, and , by similar arguments as in Case (A) and (B),
we can choose ck ∈ σ(L(T (vk))) ∩ σ(L(T (vk+1))) arbitrarily and set yk = w for
some vertex w ∈ L(T (vk+1)) ∩ L[ck] such that (y, w) = (z′, yk) ∈ E( �G) as a
necessary requirement for right tails. Again, for both cases (A’) and (B’) we have
σ(yk) = ck ∈ σ(L(T (vk))) ∩ σ(L(T (vk+1))).

We continue by picking an arbitrary color ci from σ(L(T (vi )))∩σ(L(T (vi+1))) for
each 1 ≤ i < k. This is possible because vivi+1 ∈ E(CT (u)), and thus σ(L(T (vi )))∩
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σ(L(T (vi+1))) �= ∅. Note that now ci ∈ σ(L(T (vi ))) ∩ σ(L(T (vi+1))) holds for
all 0 ≤ i ≤ k. In particular, the colors c0, c1, . . . , ck are pairwise distinct. To see
this, assume, for contradiction, that ci = c j for some i, j with i < j . Then ci ∈
σ(L(T (vi ))) and ci = c j ∈ σ(L(T (v j+1))) which implies ci ∈ σ(L(T (vi ))) ∩
σ(L(T (v j+1))). This contradicts Lemma 18 for j + 1 ≥ i + 2.

For each 1 ≤ i ≤ k, we have ci−1, ci ∈ σ(L(T (vi ))). Thus Lemma 3 ensures
the existence of vertices x ′

i ∈ L(T (vi )) ∩ L[ci−1] and y′
i ∈ L(T (vi )) ∩ L[ci ] that

form an edge x ′
i y

′
i in �G. By assumption we have x ′

i y
′
i ∈ E(G) for all 1 ≤ i ≤ k since

[xi yi ↘↗ x ′
i y

′
i ] is an hourglass.We already set x1 and yk .We furthermore set xi := y′

i−1
for all 1 < i ≤ k, and yi := x ′

i+1 for all 1 ≤ i < k. Thus ensures that (H1) in Def. 14
is satisfied. Moreover, since σ(x1) = c0 = σ(x ′

1) and σ(xi ) = σ(y′
i−1) = ci−1 for

all 1 < i ≤ k, we have σ(xi ) = ci−1 = σ(x ′
i ) for all 1 ≤ i ≤ k. Similar arguments

imply σ(yi ) = ci = σ(y′
i ) for all 1 ≤ i ≤ k.

We next show that the induced subgraph �G[xi , x ′
i , yi , y

′
i ] is an hourglass for 1 ≤

i ≤ k and thus xi y′
j is an edge in �G for all i < j ≤ k. We also know, by construction,

that x ′
i y

′
i is an edge in �G.

Independent of whether x1 was constructed based on the cases (A) or (B), we have
xi �T v0 if i = 1 and xi = y′

i−1 �T vi−1 otherwise. Thus xi �T vi−1. Likewise,
independent of whether yk was constructed based on the cases (A’) or (B’), we have
yi �T vk+1 if i = k and yi = x ′

i+1 �T vi+1 otherwise. Thus yi �T vi+1. In summary,
we have xi �T vi−1; x ′

i , y
′
i �T vi ; and yi �T vi+1 for all i ∈ {1, . . . , k}. This implies

lcaT (xi , y′
i ) = lcaT (xi , yi ) = lcaT (x ′

i , yi ) = u. Since i + 1 ≥ (i − 1) + 2 and
P(v0, vk+1) is a shortest path, Lemma 18 implies σ(L(T (vi−1)))∩σ(L(T (vi+1))) =
∅.

From σ(xi ) ∈ σ(L(T (vi−1))) and σ(yi ) ∈ σ(L(T (vi+1))) we obtain σ(xi ) /∈
σ(L(T (vi+1))) and σ(yi ) /∈ σ(L(T (vi−1))). Thus, there is no ỹ such that σ(ỹ) =
σ(y′

i ) = σ(yi ) and lcaT (xi , ỹ) ≺T u = lcaT (xi , y′
i ) = lcaT (xi , yi ), and no x̃ such

that σ (̃x) = σ(x ′
i ) = σ(xi ) and lcaT (yi , x̃) ≺T u = lcaT (yi , x ′

i ) = lcaT (yi , xi ).
Hence, �G contains the arcs (xi , y′

i ), (xi , yi ), (yi , xi ) and (yi , x ′
i ). Moreover, xi yi is an

edge in �G. However, sinceσ(x ′
i ) = σ(xi ) and lcaT (x ′

i , y
′
i ) �T vi ≺T u = lcaT (xi , y′

i )

we conclude (y′
i , xi ) /∈ E( �G). Likewise, σ(y′

i ) = σ(yi ) and lcaT (x ′
i , y

′
i ) �T vi ≺T

u = lcaT (x ′
i , yi ) imply that (x ′

i , yi ) /∈ E( �G). In summary, �G[xi , x ′
i , yi , y

′
i ] = [xi yi ↘↗

x ′
i y

′
i ] is an hourglass, for all i ∈ {1, . . . , k}, and xi �T vi−1 and y′

j �T v j for all
1 ≤ i < j ≤ k.

Since j ≥ (i − 1) + 2 and P(v0, vk+1) is a shortest path, Lemma 18 implies that
σ(L(T (vi−1))) ∩ σ(L(T (v j ))) = ∅. Thus, there is no ỹ such that σ(ỹ) = σ(y′

j )

and lcaT (xi , ỹ) ≺T u = lcaT (xi , y′
j ), and no x̃ such that σ (̃x) = σ(xi ) and

lcaT (y′
j , x̃) ≺T u = lcaT (y′

j , xi ). This implies that (xi , y′
j ) ∈ E( �G) and (y′

j , xi ) ∈
E( �G), respectively. Therefore xi y′

j is an edge in �G for 1 ≤ i < j ≤ k. In summary,
(H2) of in Def. 14 is always satisfied.

Hence, if x1 and y1 are constructed based on Case (A) and (A’), respectively, we
are done.

It remains to show that z and z′ are a left and a right tail, resp., of the hourglass chain
in Case (B) or (B’). First assume Case (B), and thus z = x . We have z, x1 �T v0 by
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construction and (z, x1) ∈ E( �G) as shown above. Togetherwith x ′
1 �T v1, this implies

that lcaT (z, x1) �T v0 ≺T u = lcaT (z, x ′
1). Using σ(x1) = σ(x ′

1) we therefore
obtain (z, x ′

1) /∈ E( �G). and hence z is a left tail of the constructed hourglass chain.
Now assumeCase (B’), and thus, z′ = y. We have z′, yk �T vk+1 and (z′, yk) ∈ E( �G)

by construction. Together with y′
k �T vk this implies lcaT (z′, yk) �T vk+1 ≺T u =

lcaT (z′, y′
k). Using σ(yk) = σ(y′

k), we obtain (z′, y′
k) /∈ E( �G) and hence z′ is a right

tail of the constructed hourglass chain.
In summary, H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] is an hourglass chain,

possibly with left tail z and right tail z′. Furthermore, precisely one of the Conditions
1–4 in the statement holds by construction. ��

C.2 Hug-edges and no-hug graphs

Definition 16 An edge xy in a vertex-colored graph ( �G, σ ) is a hug-edge if it satisfies
at least one of the following conditions:

(C1) xy is the middle edge of a good quartet in ( �G, σ );
(C2) xy is the first edge of an ugly quartet in ( �G, σ ); or
(C3) there is an hourglass chain H = [x1y1 ↘↗ x ′

1y
′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] in ( �G, σ ),

and one of the following cases holds:

1. x1 = x and yk = y;
2. yk = y and z := x is a left tail of H;
3. x1 = x and z′ := y is a right tail of H; or
4. z := x is a left tail and z′ := y is a right tail of H.

The term hug-edge refers to the fact xy is a particular edge of an hourglass-chain, an
ugly quartet, or a good quartet.

Theorem 7 An edge xy in �G(T , σ ) with u := lcaT (x, y), vx , vy ∈ childT (u), x �T

vx , and y �T vy is a hug-edge if vx and vy belong to the same connected component
of CT (u). Moreover, every hug-edge is u-fp.

Proof We show first that xy satisfies one of the Conditions (C1), (C2), or ((C3), and
hence is hug-edge. First, note that vx �= vy . Moreover, Lemma 4 implies σ(x) /∈
σ(L(T (vy))) and σ(y) /∈ σ(L(T (vx ))). Since by assumption vx , vy belong to the
same connected component, there is a shortest path P := (vx = v0, . . . , vk+1 = vy)

in CT (u). For k = 0, vxvy ∈ E(CT (u)). This implies S∩(x, y) = σ(L(T (vx ))) ∩
σ(L(T (vy))) �= ∅. By Prop. 5, the edge xy is either the middle edge of a good quartet
or the first edge of an ugly quartets in ( �G, σ ). Hence, Condition (C1) or (C2) is
satisfied. If k > 0, Lemma 19 implies Condition (C3).

For each of the three cases we have already shown that xy is u-fp: For (C1) Prop. 2
applies, for (C2) Prop. 4 provides the desired result, and for (C3) we use Lemma 17.

��
Lemma 20 If the BMG �G(T , σ ) contains a hug-edge xy in a BMG �G(T , σ ), then
there are distinct vertices v1, v2 ∈ childT (lcaT (x, y)) such that σ(L(T (v1))) ∩
σ(L(T (v2))) �= ∅.
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Proof Let xy be a hug-edge in the BMG ( �G, σ ) = �G(T , σ ), i.e. one of (C1), (C2), or
(C3) applies.

If e = xy satisfies (C1), then xy is the middle edge of a good quartet 〈zxyz′〉 in
( �G, σ ). By (Geiß et al. 2020c, Lemma 36), there is a vertex u := lcaT (x, y, z, z′)
such that x, z �T v1 and y, z′ �T for some distinct v1, v2 ∈ childT (u). Thus, u =
lcaT (x, y). Moreover, since σ(z) = σ(z′), we have σ(L(T (v1)))∩σ(L(T (v2))) �= ∅
for two distinct vertices v1, v2 ∈ childT (u).

If e = xy satisfies (C2), then it is the first edge of some ugly quartet, which
w.l.o.g. has the form 〈xyx ′z〉. Re-using the arguments in the proof of Prop. 4 shows
that there must be two distinct children v1 and v2 of vertex u = lcaT (x, y) such that
σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅.

If e = xy satisfies (C3), then there is a (tailed) hourglass chain H = [x1y1 ↘↗
x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k], k ≥ 1, in �G(T , σ ), such that either x = x1 or z := x is a

left tail ofH, and either y = yk or z′ := y is a right tail ofH. In either case, Lemma 16
implies x �T v0 and y �T vk+1. Since x1 and x ′

1 lie below distinct children v0 and
v1 of vertex lcaT (x, y) and σ(x1) = σ(x ′

1) by the definition of hourglasses, it holds
that σ(L(T (v0))) ∩ σ(L(T (v1))) �= ∅.

In each case, therefore, there are distinct vertices v1, v2 ∈ childT (lcaT (x, y)) such
that σ(L(T (v1))) ∩ σ(L(T (v2))) �= ∅. ��

The fact that all hug-edges are u-fp by Thm. 7 suggests to consider the subgraph of
a BMG that is left after removing all these unambiguously recognizable false-positive
orthology assignments.

Definition 17 Let ( �G, σ ) be a BMG with symmetric part G and let F be the set of its
hug-edges. The no-hug graph NH( �G, σ ) is the subgraph of G with vertex set V ( �G),
coloring σ and edge set E(G)\F .
The NH( �G, σ ) is therefore the subgraph of the underlying RBMG of �G that contains
all edges that cannot be identified as u-fp by using only good quartets, ugly quartets
and (tailed) hourglass chains as outlined in Thm. 7.

Corollary 5 Let (T , σ ) be a leaf-colored tree and μ a reconciliation map from (T , σ )

to some species tree S. Then,

�(T , tμ) ⊆ �(T ,̂tT ) ⊆ NH( �G(T , σ )) ⊆ �G(T , σ ).

Proof By Thm. 2, �(T , tμ) ⊆ �(T ,̂tT ) ⊆ �G(T , σ ); and by definition, we
have NH( �G(T , σ )) ⊆ �G(T , σ ). Now, let xy be an edge in �(T ,̂tT ) and thus,
̂tT (lcaT (x, y)) = �. By definition of̂tT , we have σ(L(T (v1))) ∩ σ(L(T (v2))) = ∅
for any two distinct v1, v2 ∈ childT (lcaT (x, y)). The contraposition of Lemma 20
implies that xy is not a hug-edge and thus an edge of NH( �G(T , σ )), which completes
the proof. ��

The no-hug graph still may contain false-positive orthology assignments, i.e.,
NH( �G(T , σ )) = �(T , tμ) does not hold in general. In the following section, we
shall see that there are, however, no u-fp edges left in the no-hug graph.
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C.3 Resolving least resolved trees

Since every BMG ( �G, σ ) at least implicitly contains all information needed to identify
its u-fp edges, this is also true for its unique least resolved tree (T ∗, σ ). It is not always
possible, however, to assign an event labeling t to T ∗ such that (T ∗, t) is the cotree
for the correct orthology relation. Fig. 7 shows that T ∗ may not be “resolved enough”.
To tackle this problem, we analyze the redundant edges of more resolved trees that
explain ( �G, σ ). Cor. 1 implies that all edges below a speciation vertex are redundant
because, by Lemma 2, the color sets of distinct subtrees below a speciation vertex do
not overlap. More precisely, we have

Observation 8 Let μ be a reconciliation map from (T , σ ) to S and assume that there
is a vertex u ∈ V 0(T ) such that μ(u) ∈ V 0(S) and thus, tμ(u) = �. Then every inner
edge uv of T with v ∈ childT (u) is redundant w.r.t. �G(T , σ ). Moreover, if an inner
edge uv with v ∈ childT (u) is non-redundant, then u must have two children with
overlapping color sets, and hence, tμ(u) = �.

To identify the vertices in (T ∗, σ ) that can be expanded to yield a tree that still
explains �G(T ∗, σ ), we introduce a particular way of “augmenting” a leaf-colored
tree.

Definition 18 Let (T , σ ) be a leaf-colored tree, u be an inner vertex of T , CT (u) the
corresponding color-set intersection graph, and C the set of connected components of
CT (u). Then the tree Tu augmented at vertex u is obtained by applying the following
editing steps to T :

– If CT (u) is connected, do nothing.
– Otherwise, for each C ∈ C with |C | > 1

– introduce a vertex w and attach it as a child of u, i.e., add the edge uw,
– for every element vi ∈ C , substitute the edge uvi by the edge wvi .

The augmentation step is trivial if Tu = T , in which case we say that no edit step was
performed.

An example of an augmentation is shown in Fig. 8. It is easy to see that the tree Tu
obtained by an augmentation of a phylogenetic tree T is again a phylogenetic tree. The
augmentation step at vertex u of T is trivial if and only if either CT (u) is connected or
all connected components C ∈ C are singletons, i.e., |C | = 1. If (Tu, σ ) is obtained
by augmenting (T , σ ) at node u, we denote the set of newly introduced vertices by
V¬T := V (Tu)\V (T ). Note that V¬T = ∅ whenever no edit step was performed.

Since augmentation only inserts vertices between u and its children, it affects neither
L(T (u)) nor L(T (v)) for v ∈ child(u). As an immediate consequence we find

Observation 9 Let (T , σ ) be a leaf-colored tree, u �= v two inner vertices of T ,
CT (u) the corresponding color-set intersection graph, and (Tu, σ ) the tree obtained
by augmenting T at u. Then CTu (v) = CT (v).

Lemma 21 Let (T , σ ) be a leaf-colored tree. Let u ∈ V 0(T ) and Tu be the tree
after augmenting T at vertex u. If CT (u) is disconnected, then σ(L(Tu(w1))) ∩
σ(L(Tu(w2))) = ∅ for any two distinct vertices w1, w2 ∈ childTu (u).
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Proof By construction, the vertex wi in Tu , i = 1, 2, is either a child of u in T or was
inserted in the augmentation step. Therefore, the two connected componentsC1 andC2
ofCT (u) to whichw1 andw2 belong are disjoint. Thus σ(L(T (vi )))∩σ(L(T (v j ))) =
∅ for all vi , v j ∈ childT (u) with vi ∈ C1 and v j ∈ C2 because otherwise there would
be an edge viv j in CT (u) and thus, C1 = C2. Since wi is either the single vertex
in Ci or wi has as children the vertices of Ci in Tu , i ∈ {1, 2}, we conclude that
σ(L(Tu(w1))) ∩ σ(L(Tu(w2))) = ∅. ��

The following result shows that no further edit step can be performed at vertices
that have been newly introduced by a previous augmentation step or have already
undergone an augmentation.

Lemma 22 Let (T , σ ) be a leaf-colored tree, u ∈ V 0(T ), (Tu, σ ) the tree obtained
by augmenting T at u, and denote by (Tuw, σ ) the tree obtained by augmenting Tu at
w. Then Tuw = Tu for w = u as well as for all newly introduced vertices, i.e., for all
w ∈ V¬T ∪ {u}.
Proof If Tu = T , then V¬T = ∅ and thus Tuu = Tu = T . If Tu �= T , then the
definition of the augmentation step at u implies that either CTu (u) is connected or all
connected components of CTu (u) are singletons. In either case Lemma 21 ensured that
augmentation at u leaves Tu unchanged, i.e., Tuu = Tu . By construction, CTu (w) is
connected for w ∈ V¬T \{u} and thus, we have Tuw = Tu . ��
The tree obtained by augmenting a set of inner vertices of (T , σ ) is therefore inde-
pendent of the order of the augmentation steps.

Definition 19 (Augmented tree) Let (T , σ ) be a leaf-colored tree. The augmented tree
of (T , σ ), denoted by (A(T ), σ ), is obtained by augmenting all inner vertices of
(T , σ ).

Lemma 23 For every leaf-colored tree (T , σ ) there is a unique tree (A(T ), σ )

obtained from (T , σ ) by repeated application of augmentation steps until only trivial
augmentation steps remain. The tree (A(T ), σ ) is computed by Alg. 1.

Proof Lemma 22 together with Obs. 9 implies that (i) every vertex u in T can be
non-trivially augmented at most once, (ii) the newly introduced vertices cannot be
non-trivially augmented at all, and (iii) augmentation of two distinct inner vertices
of T yields the same result irrespective of the order of the augmentation steps. Thus,
(A(T ), σ ) is unique. The correctness of Alg. 1 now follows immediately. ��

Lemma 24 Alg. 1 with input T = (V , E) and σ runs in O(|V |2|S|) time and O(|V |2)
space, where S = σ(L(T )) is the set of species under consideration.

Proof Assigning the color set L(T (u)) to each u requires O(|V ||S|) time, where |S| <

|V |. The total effort to construct all CT (u) is bounded by O(|V |2|S|), corresponding
to comparing the color sets of all pairs of vertices of T . The total size of all color-set
intersection graphs in O(|V |2). Computation of the connected components is linear
in the size of the graph, which also bounds the editing effort for each u, implying the
claim. ��
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Algorithm 1: Augmented tree
Data: Leaf-colored phylogenetic tree (T , σ )

Result: Augmented tree (A(T ), σ )

1 foreach u ∈ V 0(T ) in pre-order do
2 Compute CT (u).
3 C ← set of connected components of CT (u)

4 if |C| > 1 then
5 foreach C ∈ C such that |C | > 1 do
6 Introduce a vertex w and the edge uw.
7 foreach vi ∈ C do
8 Remove the edge uvi .
9 Add the edge wvi .

10 end
11 end
12

13 end

We finally show that augmentation does not affect the underlying BMG.

Proposition 7 For every leaf-colored tree (T , σ ), it holds �G(T , σ ) = �G(A(T ), σ ).

Proof Let u ∈ V 0(T ) and Tu be the tree after augmenting T at vertex u. Put A :=
{uw | w ∈ V¬T } and note that all edges of Tu in A are inner edges. Now consider
e ∈ A. Since w ∈ V¬T , an edit step was performed to obtain w and thus, |C| > 1
in CT (u). Lemma 21 and |C| > 1 imply that for any v′ ∈ childTu (u) with v′ �= w

we have σ(L(Tu(v′))) ∩ σ(L(Tu(w))) = ∅. Thus, Cor. 1 implies that the edge uw is
redundant in (Tu, σ ) w.r.t. �G(T , σ ).

Denoting by TuA the tree obtained from Tu by contraction of all edges in A, we
obtain (T , σ ) = (TuA , σ ). Lemma 9 now implies �G(Tu, σ ) = �G(TuA , σ ) = �G(T , σ )

for every augmentation step. By Lemma 23, we can repeat this argument for every
augmentation in the arbitrary order in which �G(A(T ), σ ) is obtained from �G(T , σ ),
and thus �G(A(T ), σ ) = �G(T , σ ). ��

C.4 Extremal labeling of augmented trees

While the least resolved tree in general cannot support an event labeling that properly
reflects the underlying true history of a gene family, we shall see here that the aug-
mented tree (A(T ), σ ) does feature sufficient resolution. To this end, we investigate
the extremal event labeling of (A(T ), σ ).

Lemma 25 Let ̂t := ̂tA(T ) be the extremal event labeling of the augmented tree
(A(T ), σ ) obtained from (T , σ ) and let u be some vertex of A(T ). Then it holds
̂t(u) = � if and only if CA(T )(u) is connected.

Proof By the definitions of the extremal event labeling andCA(T )(u), the ‘if’-direction
is clear. Now suppose that̂t(u) = �. There are two possibilities:
(1) u ∈ V 0(T ). If CT (u) is connected, then CA(T )(u) = CT (u). Otherwise, Lemma 21
implies that σ(L(A(T )(w1)))∩σ(L(A(T )(w2))) = ∅ for allw1, w2 ∈ childA(T )(u),
thus the definition of the extremal event labeling implieŝt(u) �= �, a contradiction.
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(2) u ∈ V¬T , i.e., u is newly created by augmenting some u′ ∈ V 0(T ), hence CT (u)

is connected and, by Obs. 9 and Lemma 22, CA(T )(u) is connected. ��
For later reference, we need the following

Lemma 26 Let ( �G, σ ) be a BMG, (T ∗, σ ) its least resolved tree, and̂t :=̂tA(T ∗) the
extremal event labeling of the augmented tree (A(T ∗), σ ). Then, (A(T ∗),̂t, σ ) does
not contain adjacent speciation vertices, i.e., if̂t(u) = � for a vertex u of A(T ∗),
then̂t(v) = � for any of its non-leaf children v ∈ childA(T ∗)(u)\L(A(T ∗)).

Proof Set A := A(T ∗) and note that, by Prop. 7, (A, σ ) explains ( �G, σ ). Assume,
for contradiction, that there is an inner edge uv in A with v ≺A u such that̂t(u) =
̂t(v) = �. By the definition of the extremal event labelinĝt , we have σ(L(A(v))) ∩
σ(L(A(v′))) = ∅ for any v′ ∈ childA(u)\{v}. Together with Cor. 1 this implies that
uv is redundant for ( �G, σ ), and hence, not an edge in the least resolved tree (T ∗, σ ).
Now consider the augmentation in which the edge uv, and thus vertex v was created;
resulting in a tree (T ′, σ ). By the definition of augmenting (Def. 18), it clearly holds
that CT ′(v) is connected. By Lemma 22, the edges adjacent to v do not change in any
subsequent augmentation. Thus CA(v) must be connected as well. Lemma 25 now
implies that̂t(v) = �; a contradiction. ��
Lemma 27 Let ( �G, σ ) be a BMG and (T ∗, σ ) its unique least resolved tree. Moreover,
let̂t :=̂tA(T ∗) be the extremal event labeling of the augmented tree (A(T ∗), σ ). Then,
�(A(T ∗),̂t) ⊆ �G.

Proof Since (T ∗, σ ) explains ( �G, σ ), we have ( �G, σ ) = �G(T ∗, σ ). By Prop. 7,
we have �G(T ∗, σ ) = �G(A(T ∗), σ ). Let xy be an edge in �(A(T ∗),̂t). By def-
inition, ̂t(lcaA(T ∗)(u)) = � where u := lcaA(T ∗)(x, y). By definition of the
extremal event labeling, σ(L(A(T ∗)(v1))) ∩ σ(L(A(T ∗)(v2))) = ∅ for all two dis-
tinct vertices v1, v2 ∈ childA(T ∗)(u). The latter is true, in particular, for the two
children vx , vy ∈ childA(T ∗)(u) with x �A(T ∗) vx and y �A(T ∗) vy . Therefore,
σ(x) /∈ σ(L(A(T ∗)(vy))) and σ(y) /∈ σ(L(A(T ∗)(vx ))). We conclude that x and y
are reciprocal best matches in A(T ∗). Finally, ( �G, σ ) = �G(A(T ∗), σ ) implies that
xy is an edge in �G. ��

Now we are in the position to prove the main results of this contribution.

Theorem 10 Let ( �G, σ ) be a BMG, (T ∗, σ ) its unique least resolved tree, and
̂t := ̂tA(T ∗) the extremal event labeling of the augmented tree (A(T ∗), σ ). Then
(�(A(T ∗),̂t), σ ) = NH( �G, σ ).

Proof Let (G, σ ) be the symmetric part of ( �G = (V , E), σ ). For simplicity, we write
G� := �(A(T ∗),̂t) and GNH := (V , E(NH( �G, σ ))). Recall that, by definition,
GNH ⊆ G and, by Lemma 27, G� ⊆ �G. Finally, as G contains only edges of �G,
we have G� ⊆ G. Let F := E(G)\E(GNH) be the set of all edges of G that are
hug-edges, and let F ′ := E(G)\E(G�) be the set of all edges in G that do not form
orthologous pairs. Since GNH,G� ⊆ G it suffices to verify that F = F ′ in order to
show that (G�, σ) = (GNH, σ ).
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Assume e = xy ∈ F ′. Hence, xy /∈ E(G�) and therefore, ̂t(u) = � where
u := lcaA(T ∗)(x, y). By Lemma 25, CA(T ∗)(u) has exactly one connected component.
This together with Thm. 7 implies that xy is a hug-edge and thus, xy ∈ F , and hence
F ′ ⊆ F .

Assume e = xy ∈ F is a hug-edge. Assume, for contradiction, that e /∈ F ′ and thus,
̂t(u) = � where u := lcaA(T ∗)(x, y). By definition of the extremal event labeling,
it must therefore hold that σ(L(A(T ∗)(v1))) ∩ σ(L(A(T ∗)(v2))) = ∅ for any two
distinct vertices v1, v2 ∈ childA(T ∗)(u). By Prop. 7, (A(T ∗), σ ) explains ( �G, σ ).
This together with Lemma 20 implies that there are two distinct vertices v1, v2 ∈
childA(T ∗)(u) such that σ(L(A(T ∗)(v1))) ∩ σ(L(A(T ∗)(v2))) �= ∅; a contradiction.
Therefore, e ∈ F ′, and hence F ⊆ F ′. ��
Theorem 11 An edge xy in a BMG ( �G, σ ) is u-fp if and only if xy is a hug-edge of
( �G, σ ).

Proof Let ( �G, σ ) be a BMG, (T ∗, σ ) its unique least resolved tree, and̂t := ̂tA(T ∗)
the extremal event labeling of the augmented tree (A(T ∗), σ ). As shown in the proof
of Thm. 10, every edge xy of of the symmetric part G that is not a hug-edge satisfies
xy ∈ E(G�) and thereforêt(u) = �, where u := lcaA(T ∗)(x, y). Lemma 10 implies
that e is not (A(T ∗), σ )-fp and thus, in particular, not u-fp. That is, all edges in
(G�, σ) = (GNH, σ ) are non-u-fp edges. Moreover, Thm. 7 implies that all hug-
edges in E(G)\E(GNH) are u-fp. Since (GNH, σ ) does not contain u-fp edges, all
u-fp edges must also be hug-edges, which completes the proof. ��

We next show that NH( �G, σ ) can be computed in polynomial time. In fact, the
effort is dominated by computing the least resolved tree (T ∗, σ ) for a given BMG.

Theorem 12 For a given BMG ( �G, σ ), the set of all u-fp edges can be computed in
O(|L|3|S|) time, where L = V ( �G) and S = σ(L(T )) is the set of species under
consideration.

Proof Given a BMG ( �G, σ ), its least resolved tree (T ∗, σ ) can be computed in
O(|L|3|S|) time (cf. Thm. 3 and (Geiß et al. 2019, Sec. 5)). The augmented tree
(A(T ∗), σ ) can be obtained from (T ∗, σ ) in O(|L|2|S|) time according to Lemma 24.
The extremal event labelinĝt can be obtained from the connectivity information on
the CA(T ∗)(u) in linear time. Computing (�(A(T ∗),̂t), σ ) = NH( �G, σ ) then only
requires evaluation of lcaA(T ∗)(x, y), which can be achieved in polynomial time in
O(|L|2) as described in (Geiß et al. 2019, Sec. 5)). ��

C.5 Additional unidentified false-positives

For an event-labeled, leaf-colored tree (T , t, σ ), we consider the triple set

S(T , t, σ ) = {σ(a)σ (b)|σ(c) : ab|c ≤ T ; t(lcaT (a, b, c)) = �;
σ(a), σ (b), σ (c) pairwise distinct}. (3)

Moreover, we will need the following characterization of biologically plausible event-
labeled gene trees:
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Theorem 13 Hernandez-Rosales et al. (2012), Hellmuth (2017) There is a species tree
S together with a reconciliation map μ from (T , t, σ ) to S such that tμ = t if and only
ifS(T , t, σ ) is compatible. In this case, every species tree S that displaysS(T , t, σ )

can be reconciled with (T , t, σ ). Moreover, there is a polynomial-time algorithm that
determines whether a species tree for (T , t, σ ) exists, and if so, returns a species tree
S together with a reconciliation map μ : T → S.

Throughout this section we are only concerned with the extremal event labeling
̂tA(T ∗) of the augmented trees (A(T ∗), σ ) of least resolved trees (T ∗, σ ). For brevity,
we simply writêt . For a BMG ( �G, σ ), we consider the set of trees

T :=
{

(T , t, σ ) | NH( �G, σ ) = (�(T , t), σ )
}

. (4)

An orthology relation NH( �G, σ ) obtained from a BMG ( �G, σ ) by removing all
of its u-fp edges is biologically feasible only if there is an event-labeled gene tree
(T , t, σ ) ∈ T that can be reconciledwith some species tree. To show that this condition
can be tested in polynomial time, we first need a technical result.

Lemma 28 Let ( �G, σ ) be a BMGwith LRT (T ∗, σ ), and letT be be given by Eq. (4). If
ab|c is displayed byA(T ∗) and̂t(lcaA(T ∗)(a, b, c)) = �, then ab|c is also displayed
by every tree (T , t, σ ) ∈ T and t(lcaT (a, b, c)) = �.

Proof Suppose that ab|c is displayed byA(T ∗) and̂t(lcaA(T ∗)(a, b, c)) = �. Thm. 10
implies (�(A(T ∗),̂t), σ ) = NH( �G, σ ). Thus NH( �G, σ ) is a cograph by Thm. 1. Let
(T ′, t ′, σ ) be a least resolved tree for the cograph NH( �G, σ ). Clearly, (T ′, t ′, σ ) ∈
T. This tree is unique and any other tree in T must be a refinement of (T ′, t ′, σ )

Corneil et al. (1981), Böcker and Dress (1998). We proceed with showing that (1)
t ′(lcaT ′(a, b, c)) = � and (2) ab|c is displayed by T ′.

In order to show (1), assume for contradiction that t ′(lcaT ′(a, b, c)) = � and note
that (T ′, t ′, σ ) ∈ T implies NH( �G, σ ) = (�(T ′, t ′), σ ). Sincêt(lcaA(T ∗)(a, b, c)) =
� and ab|c ≤ A(T ∗), the induced subgraph of NH( �G, σ ) on {a, b, c} contains at
least the two edges ac and bc. However, if t ′(lcaT ′(a, b, c)) = �, then this induced
subgraph can contain at most one edge; a contradiction. Hence, t ′(lcaT ′(a, b, c)) = �.

Next, we show (2). Since A(T ∗) displays ab|c and T ′ is obtained from A(T ∗)
by a series of edge contractions, T ′ can neither display ac|b nor bc|a, thus either
ab|c ≤ T ′ or lcaT ′(a, b) = lcaT ′(a, b, c). By Lemma 26, (A(T ∗),̂t) does not contain
adjacent (consecutive) speciation vertices. Therefore and since A(T ∗) displays ab|c,
the path from lcaA(T ∗)(a, b, c) to lcaA(T ∗)(a, b) in A(T ∗) must contain at least one
duplication vertex. Since T ′ can be obtained from A(T ∗) by contracting all edges uv

in A(T ∗) witĥt(u) = ̂t(v) Corneil et al. (1981), Böcker and Dress (1998), the path
from lcaT ′(a, b, c) to lcaT ′(a, b) in T ′ must contain at least one duplication vertex.
Together with t ′(lcaT ′(a, b, c)) = � this implies lcaT ′(a, b) �= lcaT ′(a, b, c), and
hence, ab|c is displayed by T ′.

Since every tree (T , t, σ ) ∈ T is a refinement of (T ′, t ′, σ ), the triple ab|c is also
displayed by T . Finally, since NH( �G, σ ) = (�(T , t), σ ) for every tree (T , t, σ ) ∈
T, we can re-use the arguments from the proof of Statement (1) to conclude that
t(lcaT (a, b, c)) = �. ��
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Lemma 29 Let ( �G, σ ) be a BMG with LRT (T ∗, σ ) and let T be given by Eq. (4).
Then, the following statements are equivalent:

(1) There is no reconciliation map μ from (A(T ∗),̂t, σ ) to any species tree such that
tμ =̂t .

(2) For all trees (T , t, σ ) in T there is no reconciliation map μ from (T , t, σ ) to any
species tree such that tμ = t .

In particular, Condition (1) can be verified in polynomial time.

Proof First note that (A(T ∗),̂t, σ ) ∈ T since, by Thm. 10, (�(A(T ∗),̂t), σ ) =
NH( �G, σ ). Hence, Statement (2) implies (1).

For the converse, let ab|c be displayed by A(T ∗) where σ(a) = A, σ(b) = B,
σ(c) = C are pairwise distinct, and ̂t(lcaA(T ∗)(a, b, c)) = �. By definition,
AB|C ∈ S(A(T ∗),̂t, σ ). Lemma 28 implies that ab|c is also displayed by every
tree (T , t, σ ) ∈ T and t(lcaT (a, b, c)) = �. Therefore, we have S(A(T ∗),̂t, σ ) ⊆
S(T , t, σ ) for all (T , t, σ ) ∈ T. Now suppose that Condition (1) holds. Then, by
Thm. 13, S(A(T ∗),̂t, σ ) is incompatible. Thus,S(T , t, σ ) must be incompatible as
well for every tree (T , t, σ ) ∈ T. Together with Thm. 13, this implies Condition (2).

Using the arguments in the proof of Thm. 12 and Thm. 13 we find that Condi-
tion (1) can be verified in polynomial time by checking whether S(A(T ∗),̂t, σ ) is
incompatible. ��
It is possible, therefore to check in polynomial time whether the cograph NH( �G, σ )

is a biologically feasible orthology relation for ( �G, σ ) or whether NH( �G, σ ) contains
further false-positive edges.

Now consider again a true evolutionary scenario (˜T ,˜t, σ ).While ˜T always displays
the LRT (T ∗, σ ) of the BMG �G(˜T , σ ), it does not necessarily display the augmented
tree A(T ∗). As an example consider the scenario in Fig. 7. Augmenting the only
multifurcation in this case further resolves the root of T ∗ and thus yields a tree that is
not displayed by ˜T . It is interesting to ask, therefore, whether there are situations in
which ˜T does display A(T ∗).

Lemma 30 Let (T , t, σ ) be an event-labeled tree explaining the BMG ( �G, σ ), and let
(T ∗, σ ) be the least resolved tree of ( �G, σ ). If (�(T , t), σ ) = NH( �G, σ ), thenA(T ∗)
is displayed by T .

Proof Let T be the set of trees corresponding to ( �G, σ ) as given by Eq. (4). First
note that (T , t, σ ) ∈ T and that (T ∗, σ ) is displayed by (T , σ ) (cf. Geiß et al. 2019,
Thm. 8). Now consider the set r(A(T ∗)) of all triples displayed by A(T ∗). For any
triple ab|c ∈ r(A(T ∗)), there are exactly two cases: (a)̂t(u) = � and (b)̂t(u) = �,
where u := lcaA(T ∗)(a, b, c).

In Case (a), Lemma 28 together with (T , t, σ ) ∈ T immediately implies that ab|c
is also displayed by T .

In Case (b), we have ̂t(u) = �. Consider the child v ∈ childA(T ∗)(u) with
a, b ≺A(T ∗) v. Assume, for contradiction, that v is not a vertex in T ∗, i.e., it was
newly created by augmenting a vertex u′. We have u′ = u by Lemma 22 since u′
cannot be (non-trivially) augmented any further. SinceA(T ∗) does not depend on the
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order of augmentation steps, we may assume w.l.o.g. that v was created in the first
augmentation step; resulting in the augmented treeTu .Def. 18 implies thatCT (u) is dis-
connected. Together with Lemma 21, this implies σ(L(Tu(w1)))∩σ(L(Tu(w2))) = ∅
for any two distinct vertices w1, w2 ∈ childTu (u). This must still hold for (A(T ∗), σ )

since the edges uw, where w ∈ childTu (u) correspond to the vertices that have been
newly introduced in the first augmentation step, do not change in any subsequent aug-
mentation due to Lemma 22. The definition of the extremal event labeling now implies
̂t(u) = �; a contradiction. Therefore, we conclude that v is a vertex in T ∗, and in
particular, a, b ∈ L(T ∗(v)) and c /∈ L(T ∗(v)), which in turn implies that ab|c is dis-
played by T ∗. From T ∗ ≤ T wefinally conclude that T also displays ab|c. Denoting by
r(T ) the set of all triples displayed by T we therefore have r(A(T ∗)) ⊆ r(T ). Finally,
we apply Thm. 1 of Bryant and Steel (1995) to conclude that A(T ∗) is displayed by
T . ��

D Quartets, hourglasses, and the structure of reciprocal best match
graphs

D.1 Hourglass-free BMGs

Definition 20 A BMG ( �G, σ ) is hourglass-free if it does not contain an hourglass as
an induced subgraph.

In particular, an hourglass-free BMG also does not contain an hourglass chain. We
will need the following technical result

Lemma 31 Let ( �G, σ ) be a BMG explained by (T , σ ). Then ( �G, σ ) has an hourglass
[xy ↘↗ x ′y′] as an induced subgraph if and only if there is a vertex u ∈ V 0(T ) with
distinct children v1, v2, and v3 and two distinct colors r and s satisfying

1. r ∈ σ(L(T (v1))), r , s ∈ σ(L(T (v2))), and s ∈ σ(L(T (v3))), and
2. s /∈ σ(L(T (v1))), and r /∈ σ(L(T (v3))).

Proof First assume that ( �G, σ ) contains the hourglass [xy ↘↗ x ′y′] as an induced
subgraph. Then by Lemma 14, (T , σ ) contains a vertex u ∈ V 0(T ) with three distinct
children v1, v2, and v3 such that x �T v1, lcaT (x ′, y′) �T v2 and y �T v3. Putting
r := σ(x) = σ(x ′) and s := σ(y) = σ(y′) immediately implies Condition (1). Now,
assume for contradiction that Condition (2) is violated and thus s ∈ σ(L(T (v1))) or
r ∈ σ(L(T (v3))). If s ∈ σ(L(T (v1))), then there is a leaf y′′ ≺T v1 with σ(y′′) = s.
In this case, however, lca(x, y′′) �T v1 ≺T u = lcaT (x, y′) implies that (x, y′)
cannot be an arc in ( �G, σ ); a contradiction to [xy ↘↗ x ′y′] being an hourglass. By
similar arguments, r ∈ σ(L(T (v3))) is not possible. Therefore, Condition (2) must be
satisfied.

Now assume that there is a vertex u ∈ V 0(T ) with pairwise distinct children v1,
v2, and v3 and two distinct colors r and s satisfying Conditions (1) and (2). It is now
straightforward to see that ( �G, σ ) contains an hourglass: Condition (1) immediately
implies the existence of vertices x ∈ L[r ] ∩ L(T (v1)) and y ∈ L[s] ∩ L(T (v3)).
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Moreover, r , s ∈ σ(L(T (v2))) together with Lemma 3 imply that there is an edge
x ′y′ in ( �G, σ ) with x ′ ∈ L[r ] ∩ L(T (v2)) and y′ ∈ L[s] ∩ L(T (v2)). Clearly, the
vertices in {x, x ′, y, y′} are pairwise distinct. By Condition (2) and the location of the
four leaves, we obtain the arcs (x, y′), (x, y), (y, x ′), and (y, x), and thus, in particular
the edge xy. Since T (v2) contains both colors r and s, we can furthermore conclude
that (x ′, y) and (y′, x) are not arcs in ( �G, σ ). In summary, the subgraph of ( �G, σ )

induced by the set {x, x ′, y, y′} is an hourglass [xy ↘↗ x ′y′]. ��
In the following a tree (T , σ ) is called refinable if there is a proper refinement (T ′, σ )

of (T , σ ), i.e., T ≤ T ′ and T �= T ′, such that �G(T ′, σ ) = �G(T , σ ). Otherwise, (T , σ )

is non-refinable. An inner vertex of a tree is non-refinable if it cannot be refinedwithout
changing the best match graph induced by the tree.

Clearly, for every BMG ( �G, σ ), there is a tree that has the maximum number of
vertices among all trees that explain ( �G, σ ) and thus, a tree that cannot be further
resolved. Hence, every BMG can be explained by a non-refinable tree. We will need
the following useful property of non-refinable vertices:

Lemma 32 Let ( �G, σ ) be a BMG explained by a tree (T , σ ), and let u ∈ V 0(T ) be
a non-refinable vertex of (T , σ ). Then, for any proper subset C � childT (u) with
|C | ≥ 2, there are two distinct vertices v, v′ ∈ C, a vertex v′′ ∈ childT (u)\C, and two
vertices a �T v and b �T v′ such that (a, b) ∈ E( �G) and σ(b) ∈ σ(L(T (v′′))).

Proof First note that the statement is trivially true if u is binary, since then there is no
proper subset C � childT (u) such that |C | ≥ 2. Thus, assume |childT (u)| ≥ 3 in the
following.

We refine (T , σ ) at vertex u as follows: Take an arbitrary subset C � childT (u)

such that |C | ≥ 2 (which exists since |childT (u)| ≥ 3) and place all vertices in C
as the children of a new vertex w, and connect w as a child of u. Since u is a non-
refinable vertex of (T , σ ), this refinement leads to a tree (T ′, σ ) that does not explain
( �G, σ ), and therefore, the inner edge uw must be non-redundant w.r.t. �G(T ′, σ ). By
Lemma 7, there must be an arc (a, b) in �G(T ′, σ ) such that lcaT ′(a, b) = w and
σ(b) ∈ σ(L(T ′(u))\L(T ′(w))). In particular, lcaT ′(a, b) = w implies that a �T v

and b �T v′ for two distinct vertices v, v′ ∈ childT ′(w) = C . Note that (T , σ )

can be obtained from (T ′, σ ) by contraction of the edge uw. Hence, we can apply
Lemma 8 to conclude that �G(T ′, σ ) ⊆ ( �G, σ ). Therefore, (a, b) ∈ E( �G). Taking
the latter arguments together, for any subset C � childT (u) with |C | ≥ 2, there are
vertices a �T v and b �T v′ with distinct v, v′ ∈ C such that (a, b) ∈ E( �G) and
σ(b) ∈ σ(L(T (v′′))) for some v′′ ∈ childT (u)\C . ��
Proposition 8 A BMG ( �G, σ ) can be explained by a binary tree if and only if it is
hourglass-free.

Proof If theBMG ( �G, σ ) can be explained by a binary tree, it must be hourglass-free as
a consequence of Lemma 14. To prove the converse, we assume, for contradiction, that
( �G, σ ) is hourglass-free and cannot be explainedby anybinary tree.Then there is a non-
refinable non-binary tree (T , σ ) that explains ( �G, σ ). By construction, furthermore,
T contains a non-binary vertex u ∈ V 0(T ), which by assumption is non-refinable.
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The key device for our proof are pairs (M,N) where M := {v1, . . . , vk} is an
ordered set of k ≥ 2 pairwise distinct children of u and N := {c1, . . . , ck−1} is an
ordered set of k − 1 pairwise distinct colors. We call (M,N) an hourglass-free pair
(hf-pair) of order k for u if the following conditions are satisfied:

(i) For all ci ∈ N we have ci ∈ σ(L(T (v j ))), i ≤ j ≤ k − 1,
(ii) For all ci ∈ N we have ci /∈ σ(L(T (v j ))), 1 ≤ j < i , and
(iii) N ⊆ σ(L(T (vk))).

If (M,N) is an hf-pair of order k, then Condition (i) implies by construction that
N ⊆ σ(L(T (vk−1))). Therefore, (M′ = (v1, . . . , vk, vk−1),N) is also an hf-pair
where M′ is obtained from M by exchanging the positions of its last two elements.
Hf-pairs and the following arguments are illustrated in Fig. 15. In order to obtain
the desired contradiction, we show by induction that the children of the non-binary,
non-refinable vertex u harbor hf-pairs of arbitrary large order k.
Base case. There is an hf-pair (M,N) of order 2 for u.

Proof of Claim Consider an arbitrary subset {v, v′} � childT (u) consisting of two
distinct children v and v′ of the non-binary vertex u. By Lemma 32 and since u is non-
refinable, there are vertices a �T v and b �T v′ such that w.l.o.g. (a, b) ∈ E( �G) and
σ(b) ∈ σ(L(T (v′′))) for some v′′ ∈ childT (u)\{v, v′}. The latter implies that there
is a vertex b′ �T v′′ of color σ(b). Clearly, b and b′ are distinct and the color σ(b)
is also present in the subtree T (v′). Thus we can set M := (v1 := v′, v2 := v′′) and
N := (c1 := σ(b)). It is an easy task to verify that (M,N) satisfies Conditions (i)–(iii).

��
Induction step. The existence of an hf-pair of order k implies the existence of an
hf-pair of order k + 1 for u.

Proof of Claim Let (M = (v1, . . . , vk),N = (c1, . . . , ck−1)) be an hf-pair, and con-
sider the set {vk−1, vk} � childT (u). By Lemma 32 and since u is non-refinable,
there are again vertices a �T v and b �T v′ for distinct v, v′ ∈ {vk−1, vk} such that
(a, b) ∈ E( �G) and σ(b) ∈ σ(L(T (v′′))) for some v′′ ∈ childT (u)\{vk−1, vk}. We
can assume w.l.o.g. that a �T v = vk−1 and b �T v′ = vk since otherwise we can
simply swap vk−1 and vk in the ordered setM as argued above. Since (a, b) is an arc
in ( �G, σ ) and lcaT (a, b) = u, the color σ(b) cannot be present in the subtree T (vk−1).
Since N ⊆ σ(L(T (vk−1))) and σ(b) /∈ σ(L(T (vk−1))), we conclude that σ(b) /∈ N.

We continue to show that v′′ is distinct from all elements inM. Clearly, in the case
k = 2, v′′ is distinct from all elements inM = {v1, v2} = {v, v′} by construction. Now
let k > 2 and assume, for contradiction, that there is a vertex v j ∈ {v1, . . . , vk−2} such
that σ(b) ∈ σ(L(T (v j ))). In this case, j < k−1 and Condition (ii) imply that ck−1 /∈
σ(L(T (v j ))). In addition, we have ck−1 ∈ σ(L(T (vk−1))) and ck−1 ∈ σ(L(T (vk)))

by Conditions (i) and (iii), respectively. Recall that v′ = vk . In summary, we obtain
three distinct vertices v j , vk, vk−1 and two distinct colors σ(b) and ck−1 satisfying
Conditions (1) and (2) in Lemma 31, which implies that ( �G, σ ) contains an hourglass;
a contradiction. Hence, σ(b) /∈ σ(L(T (v j ))) for all j ∈ {1, . . . , k − 2}. This implies
that v′′ is distinct from v1, . . . , vk−2. Moreover, by construction, v′′ is distinct from
vk−1 and vk . In summary, v′′ is therefore distinct from all elements inM.
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A B C

Fig. 15 Illustration of the induction argument in the proof of Prop. 8. (A) Base case: an hourglass-free pair
(hf-pair) (M = {v1, v2},N = {σ(b)}) of order 2. Note that vertex a is only required to show the existence
of (M,N). (B) An hf-pair (M = {v1, v2, v3},N = {c1, c2}) of order 3. (C) Induction step: The existence
of an hf-pair of order k implies the existence of an hf-pair of order k + 1, and thus, an infinite number of
children of u. This gives the desired contradiction in the proof of Prop. 8. The dashed arrow indicates the
last two elements in the ordered setM of an hf-pair (M,N) are interchangeable

Consider now thepair (M′ := (v1, . . . , vk, vk+1 := v′′),N′ := (c1, . . . , ck−1, ck :=
σ(b))). Since (M,N) is an hf-pair, and since, by construction, ck = σ(b) /∈
σ(L(T (v j ))) for 1 ≤ j ≤ k − 1 and ck = σ(b) ∈ σ(L(T (vk))), we can imme-
diately conclude that Conditions (i) and (ii) are satisfied for (M′,N′). It remains to
show that Condition (iii) is satisfied aswell, i.e., ci ∈ σ(L(T (vk+1))) for all 1 ≤ i ≤ k.
By construction, we have ck ∈ σ(L(T (vk+1))). Now assume that ci /∈ σ(L(T (vk+1)))

for some 1 ≤ i ≤ k − 1. We have ci ∈ σ(L(T (vk−1))) and ci , ck ∈ σ(L(T (vk))) by
Condition (i), and ck /∈ σ(L(T (vk−1))) by Condition (ii). Taken together, we obtain
three distinct vertices vk−1, vk, vk+1 and two distinct colors ci and ck satisfying Con-
ditions (1) and (2) in Lemma 31, which implies that ( �G, σ ) contains an hourglass; a
contradiction. Therefore, Condition (iii) must be satisfied as well, and (M′,N′) is an
hf-pair of order k + 1. ��

Repeated application of the induction step implies that children of a non-refinable
non-binary vertex u in a non-refinable tree (T , σ ) explaining an hourglass-free BMG
harbor an hf-pair of arbitrary order. This is of course impossible since G is finite,
i.e, no such vertex u can exist. Therefore, every hourglass-free BMG ( �G, σ ) can be
explained by a binary tree. ��

Prop. 8 gives rise to a procedure for determining whether a BMG ( �G, σ ) can be
explained by a binary tree. We simply need to check whether ( �G, σ ) is hourglass-free,
a task that can be done trivially in O(|E( �G)|2) time by checking, for all pairs of edges
ab and a′b′ (in constant time), whether or not they induce an hourglass [ab ↘↗ a′b′]
or [a′b′ ↘↗ ab], respectively. Hence, we obtain
Corollary 6 It can be decided in polynomial time whether a BMG ( �G, σ ) can be
explained by a binary tree.

It remains open, however, whether such a tree can be constructed efficiently.
Geiß et al. (2020c) found that a certain type of colored 6-cycles is an important

characteristic of RBMGs with a “complicated” structure that can only be explained
by multifurcating trees. Let us write 〈x1x2 . . . xk〉 for an induced cycle Ck with edges
xi xi+1, 1 ≤ i ≤ k − 1, and xkx1 in the symmetric part G of �G. We say that ( �G, σ )

contains a hexagon if the corresponding RBMG (G, σ ) contains an induced C6 =
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Fig. 16 Two examples of treeswhoseBMGs �G(T , σ ) contain a hexagon 〈x1x2x3x4x5x6〉. There are exactly
two distinct possibilities for the placement of the non-symmetric arcs in the subgraph of the BMG induced
by the hexagon

〈x1x2 . . . x6〉 such that any three consecutive vertices of C6 have pairwise distinct
colors, i.e., σ(xi ) = σ(xi + 3), 1 ≤ i ≤ 3. Since hexagons contain P4s and, by (Geiß
et al. 2020c, Lemma 32), any P4 is either a good or a bad quartet, there are exactly
two possible induced subgraphs spanned by a hexagon C6 = 〈x1x2 . . . x6〉, which are
shown in Fig. 16. A graph ( �G, σ ) is hexagon-free if it does not contain a hexagon.

Lemma 33 Every hourglass-free BMG ( �G, σ ) is hexagon-free.

Proof By Prop. 8, every hourglass-free BMG ( �G, σ ) can be explained by a binary
tree. Lemma 9 in Geiß et al. (2020b) implies that hexagons can only be explained by
non-binary trees. Hence, ( �G, σ ) must be hexagon-free. ��
Clearly, the converse ofLemma33 is not always satisfied, since, byObs. 5, an hourglass
is a BMG without hexagons.

A very useful observation in previous work is the fact that every 3-colored vertex
induced subgraph of an RBMG (G, σ ) is again an RBMG (Geiß et al. 2020c, Thm. 7).
Furthermore, the connected components (C, σ ) of every 3-colored vertex induced
subgraph of (G, σ ) belong to precisely one of the three types (Geiß et al. 2020c,
Thm. 5):

Type (A) (C, σ ) contains a K3 on three colors but no induced P4.
Type (B) (C, σ ) contains an induced P4 on three colors whose endpoints have the

same color, but no induced cycle Cn on n ≥ 5 vertices.
Type (C) (C, σ ) contains a hexagon.

The graphs for which all such 3-colored connected components are of Type (A) are
exactly the RBMGs that are cographs, or co-RBMGs for short (Geiß et al. 2020c,
Thm. 8 and Remark 2). Together with Lemma 33, this classification immediately
implies

Corollary 7 Let ( �G, σ ) be an hourglass-free BMG. Then its symmetric part (G, σ ) is
either a co-RBMG or it contains an induced P4 on three colors whose endpoints have
the same color, but no induced cycle Cn on n ≥ 5 vertices.

Since all u-fp edges in an hourglass-free BMG are contained in quartets, we have

Corollary 8 Let ( �G, σ ) be an hourglass-free BMG. Then its symmetric part (G, σ ) is
a co-RBMG if and only if there are no u-fp edges in ( �G, σ ).
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Proof Since (G, σ ) is a cograph, it contains no induced P4s and thus, ( �G, σ ) contains
no good or ugly quartets. By Thm. 11, all hug-edges are determined by hourglass
chains and good or ugly quartets. Since none of them is contained in ( �G, σ ), it also
does not contain u-fp edges. Conversely, suppose that ( �G, σ ) contains no u-fp edges.
Then, by Thm. 10, (G, σ ) = NH( �G, σ ) is an orthology graph and thus, by Thm. 1, a
cograph. ��

D.2 u-fp edges in hourglass chains

The situation is much more complicated in the presence of hourglasses. We start by
providing sufficient conditions for u-fp edges that are identified by hourglass chains.

Proposition 9 Let H = [x1y1 ↘↗ x ′
1y

′
1], . . . , [xk yk ↘↗ x ′

k y
′
k] be an hourglass chain in

( �G, σ ), possibly with a left tail z or a right tail z′. Then, an edge in �G is u-fp if it is
contained in the set

F ={xi y j | 1 ≤ i ≤ j ≤ k} ∪ {zz′} ∪ {zyi , xi z′, zy′
i , x

′
i z

′ | 1 ≤ i ≤ k}
∪ {xi x j+1 | 1 ≤ i < j < k} ∪ {yi y j+1 | 1 ≤ i < j < k}
∪ {x ′

1y
′
i , x

′
1yi | 2 ≤ i ≤ k} ∪ {xi y′

k, x
′
i y

′
k | 1 ≤ i ≤ k − 1}

∪ {x ′
1z, x

′
1z

′, y′
k z, y

′
k z

′}

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ). By analogous arguments
as in the proof of Lemma 17 and by Lemma 16, there is a vertex u ∈ V 0(T ) with
pairwise distinct children v0, v1, . . . , vk, vk+1 such that it holds x1 ∈ L(T (v0)), yk ∈
L(T (vk+1)) and, for all 1 ≤ i ≤ k, we have x ′

i , y
′
i ∈ L(T (vi )). Since xi+1 = y′

i
and x ′

i+1 = yi by definition of hourglass chains, it is an easy task to verify that for
all edges e = ab ∈ F the vertices a and b are located below distinct children of u
and thus, lcaT (a, b) = u for all such edges. As argued in the proof of Lemma 17, we
have σ(L(T (v0)))∩σ(L(T (v1))) �= ∅. The latter arguments together with Lemma 10
imply that every edge in F is u-fp. ��

Figs. 6 and 17 furthermore show that hourglass chains identify false-positive edges
that are not associated with quartets in the BMG: The BMG in Fig. 6(A) has the u-fp
edge xy, and the BMG in Fig. 17(B) contains the u-fp edges x1y2, x1z′ and x ′

1z
′. A

careful investigation shows that these edges are either not even part of an induced P4
(such as xy in Fig. 6 and x ′

1z
′ in Fig. 17), or at least not identifiable as u-fp via good,

bad or ugly quartets according to Props. 2, 3 and 4, as it is the case for x1y2 and x1z′
in Fig. 17.

D.3 Four-colored P4s

Geiß et al (2020c, Thm. 8) established that the RBMG (G, σ ) is a co-RBMG, i.e., a
cograph, if and only if every subgraph induced on three colors is a cograph. Therefore,
if (G, σ ) contains an induced 4-colored P4, it also contains an induced 3-colored P4.
For hourglass-free BMGs ( �G, σ ) it is clear that a 4-colored P4 always overlaps with
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A B C D

E

F

G

H

Fig. 17 The (non-binary) tree (T , σ ) in Panel (A) explains the BMG ( �G, σ ) in Panel (B), which contains
several induced P4s and an hourglass chain of length k = 2 with right tail z′. Edges that are not (T , σ )-fp
(and thus not u-fp) are shown as thick lines. Thin edges correspond to those that can be identified as u-fp
by the subgraphs in (E–H), where they are highlighted in red. (C) The graph after deletion of all edges that
can be identified by good, bad and ugly quartets according to Props. 2, 3, and 4. Note that it contains the
induced P4s 〈y′

1x
′
1z

′y2〉 and 〈y′
1x

′
1z

′x1〉, which were not induced subgraphs of the original BMG in (B).

Its symmetric part (H , σ ) differs from NH( �G, σ ) (cf. Def. 17) since it still contains u-fp edges. (D) The
BMG after deletion of all u-fp edges. Its symmetric part, comprising the thick edges, is NH( �G, σ ). (E) The
two good quartets. (F) The single bad quartet. (G) Examples for ugly quartets that cover the remaining u-fp
edges that are identifiable via quartets. Panel (H) shows the BMG ( �G, σ ) in a different layout that highlights
the hourglass chain with right tail z′. All edges that are u-fp according to Prop. 9 are in red. To identify the
u-fp edges in ( �G, σ ), only the subgraphs in Panel (E), (G) and (H) are necessary (cf. Def. 16 and Thm. 10).

Fig. 18 The symmetric part of the BMG ( �G, σ ) contains the 4-colored induced P4 〈abcd〉. None of its
edges is the middle edge of a good quartet or the first edge of an ugly quartet. According to Lemma 34,
there is the bad quartet 〈abcad 〉 that contains as first edge the edge ab

a 3-colored P4: In this case NH( �G, σ ) is obtained by deleting middle edges of good
quartets and first edges of ugly quartets. Since NH( �G, σ ) is a cograph, there is no P4
left, and thus at least one edge of any 4-colored P4 was among the deleted edges. It
is natural to ask whether this is true for BMGs in general. Fig. 18 shows that good
and ugly quartets are not sufficient on their own: there are 4-colored P4s that do not
overlap with the middle edge of a good quartet or the first edge of an ugly quartet.
On the other hand, it is clear that at least one of its edges is u-fp. This does not imply,
however, that the u-fp edges in a 4-colored P4 are also edges of 3-colored P4s.
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Still, in the context of cograph-editing approaches it is of interest whether the 3-
colored P4-s are sufficient. In the following we provide an affirmative answer.

Lemma 34 Let ( �G, σ ) be a BMG and P a 4-colored induced P4 in the symmetric part
of ( �G, σ ). Then at least one of the edges of P is either the middle edge of some good
quartet or the first edge of a bad or ugly quartet in ( �G, σ ).

Proof Let (T , σ ) be an arbitrary tree that explains ( �G, σ ) and suppose that P :=
〈abcd〉 is a 4-colored induced P4 in the symmetric part (G, σ ).

If one of the edges ab, bc, or cd of P is the middle edge of some good quartet or the
first edge of some ugly quartet, then we are done. Hence, we assume in the following
that this is not the case and show that at least one of the edges of P is the first edge in
a bad quartet.

By contraposition of Prop. 5, we have S∩(a, b) = ∅, S∩(b, c) = ∅ and S∩(c, d) =
∅. We set v := lcaT (b, c) with children vb, vc ∈ childT (v) such that b �T vb and
c �T vc, and w := lcaT (a, b) with children wa, wb ∈ childT (w) such that a �T wa

and b �T wb. Note, that v, vb, w, and wb are pairwise comparable, since they are all
ancestors of b.

We show that w = v. Assume, for contradiction, that (i) w ≺T v or (ii) v ≺T w.
In Case (i), we have wa ≺T w �T vb and thus, σ(a) ∈ σ(L(T (vb))). Hence,
as S∩(b, c) = ∅, it must hold that σ(a) /∈ σ(L(T (vc))) and σ(c) /∈ σ(L(T (vb))).
Lemma 4 implies ac ∈ E(G). But thenP is not an induced P4; a contradiction. In Case
(ii), we have vc �T v � wb and thus, σ(c) ∈ σ(L(T (wb))). Since S∩(a, b) = ∅ we
thus have σ(c) /∈ σ(L(T (wa))) and σ(a) /∈ σ(L(T (wb))). By Lemma 4, ac ∈ E(G);
again a contradiction. Thus w = v. Analogous arguments can be used to establish
lcaT (c, d) = v. We therefore have v = lcaT (a, b) = lcaT (b, c) = lcaT (c, d). In the
following vx denotes the child of v with x �T vx for x ∈ {a, b, c, d}. Note, va �= vb,
vb �= vc and vc �= vd .

We next show that va , vb, vc, and vd are pairwise distinct. Fist, assume for con-
tradiction that va = vc. Together with S∩(c, d) = ∅, this assumption implies that
σ(a) /∈ σ(L(T (vd))) and σ(d) /∈ σ(L(T (vc))). By Lemma 4, ad ∈ E(G), contra-
dicting the assumption that P is an induced P4. Hence, va �= vc. By symmetry of P,
we can use similar arguments to conclude that vb �= vd . Finally, assume for contra-
diction that va = vd . Then, σ(d) ∈ σ(L(T (va))). Hence, S∩(a, b) = ∅ implies that
σ(d) /∈ σ(L(T (vb))) and σ(b) /∈ σ(L(T (vd))). Again Lemma 4 implies bd ∈ E(G);
a contradiction. In summary, va , vb, vc, and vd must be pairwise distinct.

We claim σ(c) ∈ σ(L(T (va))). Since ad /∈ E(G) and lcaT (a, d) = v, Lemma 4
implies that σ(a) ∈ σ(L(T (vd))) or σ(d) ∈ σ(L(T (va))). By symmetry of P, we can
w.l.o.g. assume that σ(a) ∈ σ(L(T (vd))) and thus, there is a vertex ad ∈ L(T (vd))

with σ(ad) = σ(a). In this case, S∩(c, d) = ∅ implies that σ(a) /∈ σ(L(T (vc))).
This together with ac /∈ E(G) and Lemma 4 implies that σ(c) ∈ σ(L(T (va))).

We claim σ(d) ∈ σ(L(T (va))). We assume for contradiction that this is not the
case and show that this implies the existence of an ugly quartet 〈cdc′a′〉 containing cd
as its first edge, which leads to a contradiction to our initial assumption that none of
the edges inP is the first, resp., middle edge of an ugly, resp., good quartet. To see this,
note that σ(a), σ (c) ∈ σ(L(T (va))) and Lemma 3 imply that there is an edge a′c′ for
two vertices a′, c′ ≺T va with σ(a′) = σ(a) and σ(c′) = σ(c). Since σ(a) = σ(a′)
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and lcaT (a′, c′) �T va ≺T v = lcaT (a′, c), we have a′c /∈ E(G). Since σ(ad) =
σ(a′) and lcaT (ad , d) �T vd ≺T v = lcaT (a′, d), we have a′d /∈ E(G). Now,
S∩(c, d) implies that σ(c) /∈ σ(L(T (vd))). This and σ(d) /∈ σ(L(T (va))) together
with Lemma 4 implies that there is an edge c′d ∈ E(G). Thus, we obtain the ugly
quartet 〈cdc′a′〉 and hence, the desired contradiction. Therefore,σ(d) ∈ σ(L(T (va))).
Because of S∩(a, b) = ∅ we also have σ(d) /∈ σ(L(T (vb))).

Since σ(d) ∈ σ(L(T (va))), there is a vertex da � va with σ(da) = σ(d).
Moreover, σ(b) /∈ σ(L(T (va)) and σ(d) /∈ σ(L(T (vb))) together with Lemma 4
implies that bda ∈ E(G). Furthermore, σ(c) ∈ σ(L(T (va))) and Lemma 4 imply
that cda /∈ E(G). Now, S∩(c, d) = ∅ implies σ(d) /∈ σ(L(T (vc))) and therefore,
lcaT (c, da) = v � lcaT (c, d ′) for all d ′ ∈ L[σ(d)]. Hence, (c, da) ∈ E( �G).

In summary, 〈dcbda〉 is an induced P4 in G. By (Geiß et al. 2020c, Lemma 32),
every such induced P4 forms either a good, bad, or ugly quartet in ( �G, σ ) and, since
(c, da) ∈ E( �G), we can conclude that 〈dcbda〉 is a bad quartet with first edge cd,
which completes the proof. ��
Corollary 9 (Geiß et al. 2020c, Thm. 8) Let (G, σ ) be an RBMG. Then, (G, σ ) is a
cograph if and only if all subgraphs induced by three colors are cographs.

Proof If (G, σ ) is a cograph, then all its induced subgraphs are also cographs Corneil
et al. (1981). Conversely, if (G, σ ) is not a cograph, then it contains at least one
induced P4. By Lemma 34, (G, σ ) cannot contain only 4-colored P4s and therefore
the restriction to at least one combination of three colors contains a P4 and is thus not
a cograph. ��
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