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Abstract

Background

Ferroptosis has exhibited great potential in the treatment of cancer and has gained wide-

spread attention in soft tissue sarcoma (STS). The aim was to explore the immunological

and prognostic significance of novel ferroptosis-related genes in STS.

Methods

We identified ferroptosis-related differentially expressed genes (DEGs) in STS to construct

the networks of enrichment analysis and protein-protein interaction. Subsequently, hub

genes with prognostic significance were localized and a series of prognostic and immune

analyses were performed.

Results

40 ferroptosis-related DEGs were identified, of which HELLS, STMN1 EPAS1, CXCL2,

NQO1, and IL6 were classified as hub genes and were associated with the prognosis in

STS patients. In the results of the immune analysis, PDCD1, CTLA4, TIGIT, IDO1 and

CD27 exhibited consistent intense correlations as immune checkpoint genes, as well as

macrophage, neutrophil, cytotoxic cell, dendritic cell, interdigitating dendritic cell and plas-

macytoid dendritic cell as immune cells. EPAS1 and HELLS might be independent prognos-

tic factors for STS patients, and separate prognostic models were constructed by using

them.

Conclusions

We recognized novel ferroptosis-related genes with prognostic value in STS. Furthermore,

we searched out potential immune checkpoints and critical immune cells.
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Introduction

Soft tissue sarcoma (STS) is a group of malignant tumors originating from mesenchymal tissue

and containing multiple histological subtypes [1]. The prognosis of partial STS is poor with no

effective treatment and the precise prediction of the prognosis for STS patients is a challenging

topic [2]. The previous view was that immunotherapy was unpromising in STS, but this has

been reversed in recent years [3].

Ferroptosis is an emerging phenotype of regulated cell death (RCD) which relies on reactive

oxygen species deposition mediated by iron catalysis and lipid peroxidation [4]. Ferroptosis

performs an essential role in the initiation, progression and prognosis of multiple diseases [5].

Meanwhile, ferroptosis has exhibited great potential in the treatment of cancer and has gained

widespread attention in STS as well [6]. Recent studies have revealed that ferroptosis and

tumor immunity can be mutually regulated [7, 8].

In the present study, differentially expressed genes (DEGs) were identified through the

Gene Expression Omnibus (GEO) database, the FerrDb database, the Immunology Database

and Analysis Portal (ImmPort) database, and the networks of enrichment analysis and pro-

tein-protein interaction (PPI) were constructed. Prognostic and immune analyses were per-

formed through the Cancer Genome Atlas (TCGA) database. The aim was to explore the

immunological and prognostic significance of novel ferroptosis-related genes in STS.

Materials and methods

Data sources

We downloaded RNA-seq data from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)

in the GSE21122, GSE6481 and GSE2719 datasets, and all three datasets were from the GPL96

platform. Selected samples from GSE21122 included leiomyosarcoma (26), dedifferentiated

liposarcoma(46), myxoid liposarcoma (20), pleomorphic liposarcoma (23), myxofibrosarcoma

(31), pleomorphic fibrosarcoma (3), normal human fat (9); selected samples from GSE6481

included synovial sarcoma (16), malignant peripheral nerve sheath tumor (3); selected samples

from GSE2719 included gastrointestinal stromal tumor (2), round cell tumor (4). In total,

from the GSE21122, GSE6481 and GSE2719 datasets, we selected 174 STS samples covering 10

subtypes as the experimental group and 9 normal human fat samples as the control group for

difference analysis. Furthermore, we chose the GSE63157 dataset for external validation of the

gene prognostic value. We downloaded RNA-seq and clinical data from the TCGA database

(https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) for

263 samples, including leiomyosarcoma (105), dedifferentiated liposarcoma (59), undifferenti-

ated pleomorphic sarcoma (51), myxofibrosarcoma (25), synovial sarcoma (10), malignant

peripheral nerve sheath tumor (9), desmoid tumor (2), unclassified sarcoma (2). RNA-seq data

in FPKM format was converted to TPM format and log2 transformed. We downloaded the

lists of 259 ferroptosis-related genes and 2498 immune-related genes from the FerrDb database

(http://www.zhounan.org/ferrdb) [9] and ImmPort database (https://immport.niaid.nih.gov)

[10], respectively. All material was sourced from public databases and did not involve

informed consent from participants.

Data pre-processing and differential analysis

We downloaded the GSE2719, GSE6481, and GSE21122 datasets by the GEOquery package of

R [11]. Probes with one probe corresponding to more than one molecule were removed, when

probes corresponding to the same molecule were encountered, and only the probe with the

highest signal value was retained. For the filtered data, we used the ComBat function of the sva
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package to remove inter-batch differences, box plots to present the normalization result, prin-

cipal component analysis (PCA) and uniform manifold approximation and projection

(UMAP) plots to present the clustering result (S1A–S1F Fig). Differential analysis was carried

out by the limma package [12] and visualized using the ggplot2 package and ComplexHeatmap

package [13]. The adjusted p value (false discovery rate, FDR) < 0.05 and | log fold change

(FC)| > 1 for the DEGs were set as screening conditions.

Functional enrichment analysis and PPI networks construction

Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were implemented

through the clusterProfiler package of R [14]. FDR < 0.05 for the enriched item was consid-

ered statistically significant. After predicting the interactions between DEGs in the Search

Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (https://string-db.org/

) [15] by setting the combined score > 0.4, the PPI networks were built using Cytoscape [16]

and cytoHubba [17] respectively.

Hub genes identification and prognostic models construction

Through the TCGA database, high expression and low expression groups were divided by

the median of DEGs expression and survival analysis was performed with the survival

package of R [18]. DEGs with potential prognostic significance were identified as hub

genes by log-rank analysis and visualization was achieved through the survminer package.

The Wilcoxon rank sum test was chosen for correlation analysis of hub genes expression

with clinical variables, and the ggplot2 package was used for visualization. All clinical vari-

ables of STS were integrated into univariate Cox regression, parameters were included in

overall survival (OS) and progression free survival (PFS), and variables that were signifi-

cant for univariate analysis were integrated into multivariate Cox regression. After evalu-

ating significant variables in the multivariate analysis by the timeROC package, they were

incorporated into a nomogram to construct the model [19]. The population of the model

was 263 patients with well-defined STS, from the TCGA database and screened with corre-

sponding clinical information, and the model was validated by a calibration curve, with

visualization implemented through the rms package. The results were considered statisti-

cally significant at p < 0.05.

Immune analysis

Through the TCGA database, high expression and low expression groups were classified

according to the upper and lower quartiles of DEGs expression and the GSVA package of R

accompanied by Spearman correlation test was applied for immune analysis [20]. 7 popular

immune checkpoint genes (ICGs) [21, 22] and 24 immune cells composing the main tumor

immune microenvironment [23] were included by applying the CIBERSORT deconvolution

algorithm, and the ggplot2 package was used to construct co-expression plots. The results were

considered statistically significant at p< 0.05.

Statistical analysis

Statistical analysis relied on R software (version 3.6.3) and Cytoscape software (version 3.8.2).
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Results

Ferroptosis-related DEGs identification in STS

A total of 927 DEGs for STS were identified in 183 samples from the GSE21122, GSE6481 and

GSE2719 datasets, including 345 for up-regulation and 582 for down-regulation. The volcano

plot covered all genes in differential analysis (Fig 1A) and the heatmap displayed the top 20

DEGs for each of up-regulation and down-regulation (Fig 1B). Among them, a total of 40

genes were associated with ferroptosis (Table 1), including 6 for up-regulation and 34 for

down-regulation (Fig 1C).

Ferroptosis-related DEGs enrichment analysis

After conducting enrichment analysis on the 40 ferroptosis-related DEGs, the top 5 enriched

entries and pathways were obtained to construct the GO enrichment network (Fig 2A) and the

KEGG enrichment network (Fig 2B) respectively. GO analysis indicated that these genes func-

tioned in response to metalion (GO: 0010038), response to corticosteroid (GO: 0031960),

response to nutrient levels (GO: 0031667), response to oxidative stress (GO: 0006979) and

reactive oxygen species metabolic process (GO: 0072593). KEGG analysis suggested that

Fig 1. Identification of ferroptosis-related DEGs in STS. (A) The volcano plot of all genes. (B) The heatmap of the top 20 DEGs for each of up-regulation and

down-regulation. (C) The Venn diagram of the intersection among up-regulated DEGs, down-regulated DEGs and ferroptosis-related genes.

https://doi.org/10.1371/journal.pone.0262234.g001
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corresponding genes were significantly associated with glutathione metabolism (hsa00480),

FoxO signaling pathway (hsa04068), HIF-1 signaling pathway (hsa04066), legionellosis

(hsa05134) and Kaposi sarcoma-associated herpesvirus infection (hsa05167).

Table 1. Ferroptosis-related DEGs in STS.

No. Genes Expression FDR log FC

1 CDKN2A Up-regulation <0.001 2.012

2 HELLS Up-regulation <0.001 2.015

3 GDF15 Up-regulation 0.020 1.447

4 STMN1 Up-regulation <0.001 1.162

5 RRM2 Up-regulation <0.001 2.550

6 AURKA Up-regulation <0.001 1.447

7 PGD Down-regulation 0.001 -1.294

8 ACO1 Down-regulation <0.001 -1.714

9 GABARAPL1 Down-regulation <0.001 -1.521

10 EGFR Down-regulation 0.002 -1.189

11 CDO1 Down-regulation <0.001 -2.184

12 EPAS1 Down-regulation <0.001 -1.969

13 HILPDA Down-regulation 0.007 -1.002

14 LPIN1 Down-regulation <0.001 -1.003

15 TLR4 Down-regulation <0.001 -1.037

16 AKR1C1 Down-regulation <0.001 -2.875

17 AKR1C3 Down-regulation <0.001 -2.294

18 GCLC Down-regulation <0.001 -1.694

19 NQO1 Down-regulation <0.001 -2.045

20 MT1G Down-regulation <0.001 -1.565

21 SCD Down-regulation <0.001 -2.246

22 CDKN1A Down-regulation <0.001 -1.196

23 PRDX6 Down-regulation <0.001 -1.083

24 PLIN2 Down-regulation 0.018 -1.054

25 ZFP36 Down-regulation <0.001 -2.141

26 CAV1 Down-regulation <0.001 -1.255

27 PTGS2 Down-regulation <0.001 -1.866

28 DUSP1 Down-regulation <0.001 -1.566

29 NCF2 Down-regulation 0.002 -1.049

30 BNIP3 Down-regulation 0.001 -1.602

31 PCK2 Down-regulation <0.001 -1.341

32 TXNIP Down-regulation <0.001 -1.333

33 IL6 Down-regulation <0.001 -2.806

34 CXCL2 Down-regulation <0.001 -3.999

35 MAP3K5 Down-regulation <0.001 -1.599

36 SLC2A3 Down-regulation 0.008 -1.129

37 ACSF2 Down-regulation <0.001 -1.181

38 TF Down-regulation <0.001 -3.001

39 ATF3 Down-regulation <0.001 -1.931

40 GPX4 Down-regulation <0.001 -1.325

DEGs, differentially expressed genes; STS, soft tissue sarcoma; FC, fold change.

https://doi.org/10.1371/journal.pone.0262234.t001
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Fig 2. Enrichment analysis of ferroptosis-related DEGs in STS. (A) The network of GO enrichment analysis for the top 5 entries. (B) The network of KEGG

enrichment analysis for the top 5 pathways.

https://doi.org/10.1371/journal.pone.0262234.g002
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PPI networks construction

Interactions of ferroptosis-related DEGs in STS were predicted by STRING and a PPI network

covering 38 nodes and 97 edges was structured by Cytoscape (Fig 3A). Subsequently we used

cytoHubba to further identify the top 25 genes and build a 25-node, 69-edge PPI network

(Fig 3B).

Hub genes identification

Survival analysis revealed the potential prognostic value of HELLS, STMN1 in up-regulation

DEGs and EPAS1, CXCL2, NQO1, IL6 in down-regulation DEGs, with high expression of

HELLS, STMN1 and low expression of EPAS1, CXCL2, NQO1, IL6 suggesting a short OS in

STS patients (Fig 4A). Accordingly, these 6 genes were identified as hub genes for further

Fig 3. PPI networks of ferroptosis-related DEGs in STS. (A) The PPI network covering 38 nodes and 97 edges using Cytoscape. (B) The PPI network

covering 25 nodes and 69 edges using cytoHubba.

https://doi.org/10.1371/journal.pone.0262234.g003

Fig 4. Clinical relevance of hub genes. (A) K-M curves of hub genes expression. (B) Box plots of hub genes expression and clinical variables.

https://doi.org/10.1371/journal.pone.0262234.g004
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study and the association between hub genes and STS clinical variables was analyzed (Fig 4B).

Compared to male patients with STS, female patients exhibited high expression of HELLS,

STMN1, NQO1 and low expression of EPAS1. Compared to other histological types, leiomyo-

sarcoma showed high expression of HELLS, EPAS1, NQO1 and low expression of IL6. Besides,

HELLS and STMN1 was highly expressed in STS metastatic patients compared to non-meta-

static patients.

Hub genes GSEA analysis

The 263 STS samples from TCGA database were divided into low expression and high expres-

sion groups based on the median of hub gene expression respectively for GSEA analysis.

GSEA manifested significant differences in enrichment of MSigDB Collection (FDR < 0.05)

and significant-enriched gene sets were ranked based on normalized enrichment score (NES)

values. The top-two most significant-enriched gene sets for HELLS were G alpha signaling

events and olfactory transduction (Fig 5A). The top-two most significant-enriched gene sets

for STMN1 were signaling by Rho GTPases and processing of capped intron-containing pre-

mRNA (Fig 5B). The top-two most significant-enriched gene sets for EPAS1 were M-phase

and metabolism of amino acids and derivatives (Fig 5C). The top-two most significant-

enriched gene sets for CXCL2 were neuronal system and neuroactive ligand receptor interac-

tion (Fig 5D). The top-two most significant-enriched gene sets for NQO1 were signaling by

interleukins and Leishmania infection (Fig 5E). The top-two most significant-enriched gene

sets for IL6 were signaling by interleukins and GPCR-ligand binding (Fig 5F).

Fig 5. GSEA analysis of hub genes. (A) HELLS. (B) STMN1. (C) EPAS1. (D) CXCL2. (E) NQO1. (F) IL6.

https://doi.org/10.1371/journal.pone.0262234.g005

PLOS ONE Novel ferroptosis-related genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262234 January 4, 2022 8 / 18

https://doi.org/10.1371/journal.pone.0262234.g005
https://doi.org/10.1371/journal.pone.0262234


EPAS1 and HELLS might be independent prognostic factors for STS

patients

Clinical variables for STS and the expression of 6 hub genes were included in univariate Cox

regression analysis and those factors of significance were further subsumed into multivariate

Cox regression analysis. The results revealed that when the prognostic indicator was OS, high

grade residual tumor, metastasis, positive margin status, high expression of HELLS and

STMN1, low expression of EPAS1, CXCL2, NQO1, IL6 were associated with poor prognosis.

Furthermore, residual tumor, metastasis status, margin status, EPAS1 expression might be

independent prognostic factors for OS in STS patients (Table 2). When the prognostic indica-

tor was PFS, high grade residual tumor, metastasis, positive margin status, HELLS high expres-

sion were associated with poor prognosis. Residual tumor, metastasis status, margin status,

HELLS expression might be independent prognostic factors for PFS in STS patients (Table 3).

Validation of EPAS1 and HELLS prognostic value

Predictive efficacy of EPAS1 and HELLS for prognosis was internally verified using time-

dependent receiver operating characteristic (ROC) curves in TCGA database (Fig 6A and 6B).

Subsequently, predictive efficacy of EPAS1 and HELLS for prognosis was externally validated

using time-dependent ROC curves in GEO database, which exhibited similar prognostic value

(Fig 6C and 6D).

Construction and evaluation of prognostic models for STS patients

The statistically significant results of the multivariate Cox regression analysis were used to con-

struct the separate nomogram for prediction models of OS (Fig 7A) and PFS (Fig 7B) in STS

patients. For both patients with primary STS and metastatic STS, the indicators for each

nomogram were derived from the primary tumor foci. The C-indexes for OS and PFS model

were 0.756 (0.719–0.794) and 0.782 (0.756–0.808) respectively. Calibration curves for the

Table 2. Univariate and multivariate Cox regression analysis to identify prognostic factors for OS in patients with STS.

Variables Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age (>60 vs. < = 60) 263 1.285 (0.864–1.911) 0.216

Gender (Male vs. Female) 263 0.905 (0.607–1.349) 0.623

Race (White vs. Others) 254 0.725 (0.350–1.501) 0.386

Histological type (Leiomyosarcoma vs. Others) 263 0.913 (0.611–1.363) 0.656

Radiation therapy (Yes vs. No) 257 0.864 (0.557–1.339) 0.513

Residual tumor (R2 vs. R0&R1) 235 8.365 (3.972–17.617) <0.001 22.480 (6.480–77.987) <0.001

Metastasis status (Yes vs. No) 179 2.888 (1.762–4.732) <0.001 3.493 (1.852–6.585) <0.001

Margin status (Positive vs. Negative) 213 1.957 (1.215–3.151) 0.006 1.879 (1.054–3.350) 0.032

HELLS (High vs. Low) 263 1.883 (1.250–2.836) 0.002 1.272 (0.603–2.683) 0.527

STMN1 (High vs. Low) 263 1.859 (1.242–2.783) 0.003 0.844 (0.416–1.712) 0.638

EPAS1 (Low vs. High) 263 1.627 (1.093–2.424) 0.017 2.698 (1.347–5.406) 0.005

CXCL2 (Low vs. High) 263 1.625 (1.089–2.425) 0.017 1.142 (0.531–2.455) 0.735

NQO1 (Low vs. High) 263 1.504 (1.009–2.242) 0.045 1.307 (0.737–2.319) 0.360

IL6 (Low vs. High) 263 1.624 (1.085–2.432) 0.018 1.191 (0.557–2.544) 0.652

OS, overall survival; STS, soft tissue sarcoma.

https://doi.org/10.1371/journal.pone.0262234.t002
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models of OS (Fig 7C) and PFS (Fig 7D) confirmed the consistency of the predicted prognosis

with the actual outcome.

Association of hub genes expression and ICGs

CXCL2 and IL6 were shown to be immunologically relevant in 6 hub genes (Fig 8A). We cor-

related hub genes with ICGs and presented the results in co-expression heatmaps. CXCL2 and

IL6 showed consistent results, with both CXCL2 and IL6 positively linked to the expression of

PDCD1, CTLA4, TIGIT, IDO1 and CD27 (Fig 8B and 8C). Consistency of results and signifi-

cant association with ICGs were not demonstrated in HELLS, STMN1, EPAS1 and NQO1

(Fig 8D–8G).

Association of hub genes expression and immune cells infiltration

6 hub genes were subsequently correlated with 24 immune cells in the tumor microenviron-

ment (Fig 9A). In addition to CXCL2 and IL6, we observed that HELLS was also strongly asso-

ciated with immune cells and exhibited the consistent result with CXCL2 and IL6. CXCL2 and

IL6 with down-regulated in STS were significantly positively related to macrophage, neutro-

phil, cytotoxic cell, dendritic cell (DC), interdigitating dendritic cell (iDC), plasmacytoid den-

dritic cell (pDC) (all r> 0.3) (Fig 9B and 9C), and HELLS with up-regulated in STS was

comparatively negatively correlated with macrophage, neutrophil, cytotoxic cell, DC, iDC,

pDC (all r< -0.3) (Fig 9D) Consistency of results and significant association with immune

cells were not demonstrated in STMN1, EPAS1 and NQO1.

Discussion

STS is a set of heterogeneous malignancies involving over 100 different histological types, with

widely varying treatment outcomes [24]. In general, current therapies are only effective in a

small proportion of STS, with limited efficacy in most STS and even recurrence in more than

50% of patients [25]. Although it was considered that STS was extremely insensitive to

Table 3. Univariate and multivariate Cox regression analysis to identify prognostic factors for PFS in patients with STS.

Variables Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age (>60 vs. < = 60) 263 0.938 (0.675–1.305) 0.706

Gender (Male vs. Female) 263 1.092 (0.785–1.520) 0.600

Race (White vs. Others) 254 1.155 (0.605–2.203) 0.662

Histological type (Leiomyosarcoma vs. Others) 263 1.101 (0.790–1.536) 0.570

Radiation therapy (Yes vs. No) 257 1.124 (0.788–1.602) 0.519

Residual tumor (R2 vs. R0&R1) 235 4.230 (2.140–8.360) <0.001 4.985 (1.811–13.723) 0.002

Metastasis status (Yes vs. No) 179 7.294 (4.700–11.318) <0.001 6.672 (4.087–10.894) <0.001

Margin status (Positive vs. Negative) 213 2.176 (1.493–3.173) <0.001 2.497 (1.551–4.021) <0.001

HELLS (High vs. Low) 263 1.549 (1.111–2.160) 0.010 1.707 (1.040–2.803) 0.035

STMN1 (High vs. Low) 263 1.368 (0.981–1.908) 0.064

EPAS1 (Low vs. High) 263 1.053 (0.757–1.464) 0.760

CXCL2 (Low vs. High) 263 1.017 (0.731–1.413) 0.922

NQO1 (Low vs. High) 263 1.343 (0.965–1.870) 0.081

IL6 (Low vs. High) 263 1.303 (0.937–1.813) 0.116

PFS, progression free survival; STS, soft tissue sarcoma.

https://doi.org/10.1371/journal.pone.0262234.t003
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immune responses in the past, which precluded the application of immunotherapy to STS,

recent studies have demonstrated a large degree of immune heterogeneity within the subclass

of STS and some positive responses to immunotherapy have also been reported in successive

clinical trials [26, 27]. Partial STS subtypes, including dedifferentiated liposarcoma, leiomyo-

sarcoma, embryonal rhabdomyosarcoma and undifferentiated pleomorphic sarcoma, have

been identified as featuring high levels of immune cells infiltration and ICGs expression, and

exhibit a potentially active reaction to immune checkpoint inhibitors (ICIs) therapy [3]. Con-

sequently it is essential to locate critical ICGs and immune infiltration factors adapted to STS.

Currently, the availability of immunotherapy alone is severely limited in patients with most

tumor types. Since extensive crossover between immunotherapy and non-apoptotic RCD

Fig 6. Validation of EPAS1 and HELLS prognostic value. (A) The ROC curve of EPAS1 predicting OS for STS patients in TCGA database. (B) The ROC

curve of HELLS predicting PFS for STS patients in TCGA database. (C) The ROC curve of EPAS1 predicting OS for STS patients in GEO database. (D) The

ROC curve of HELLS predicting PFS for STS patients in GEO database.

https://doi.org/10.1371/journal.pone.0262234.g006

PLOS ONE Novel ferroptosis-related genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0262234 January 4, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0262234.g006
https://doi.org/10.1371/journal.pone.0262234


Fig 7. Visualization of prognostic prediction models in STS. (A) The nomogram for predicting OS. (B) The nomogram for predicting PFS. (C) The

calibration curve to evaluate the OS nomogram. (D) The calibration curve to evaluate the PFS nomogram.

https://doi.org/10.1371/journal.pone.0262234.g007
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mechanisms has been detected, non-apoptotic cancer cell death accompanied by immunomo-

dulation is considered an exceedingly promising strategy for cancer treatment [28]. Ferropto-

sis, a neoteric form of RCD with unique biological and morphological features, has been

shown to interact with the tumor immune response and can influence immunotherapeutic

efficacy on the one hand [8], and in turn is regulated by immune cells on the other [7]. In the

present study, based on ferroptosis-related genes in STS, we identified potential ICGs includ-

ing PDCD1, CTLA4, TIGIT, IDO1 and CD27, which might serve as important targets for

immunotherapy. In addition, we explored a group of closely related immune cells including

macrophage, neutrophil, cytotoxic cell, DC, iDC and pDC, which might act as pivotal regula-

tors in the immune microenvironment of STS. Interestingly, we observed high concordance of

immune analysis results for HELLS with CXCL2 and IL6, revealing for the first time a possible

immunological effect of HELLS in tumor.

Among dedifferentiated liposarcoma, undifferentiated pleomorphic sarcoma and leiomyo-

sarcoma, it has been confirmed that tumors with high immunogenic gene profiles are accom-

panied by high levels of PDCD1 expression [29]. PD-1, as the most researched immune

checkpoint, is encoded by PDCD1 and also occupies an important position in STS study.

More than half of the samples in a STS cohort had positive expression of PD-1 on immune

cells [30], and PD-1 expression is also generally considered to be associated with the prognosis

of STS patients [31, 32]. Moreover, CTLA4, IDO1 and other ICGs have demonstrated varying

degrees of value for STS management [3]. In terms of immune cells, macrophage has been

established as a significant player in several sarcoma types [33], with the modification of the

macrophage phenotype from tumor-promoting to tumor-suppressing regarded as a promising

option for STS treatment [34]. And a range of immunotherapies targeting DC, iDC and pDC

may be well tolerated in patients with refractory STS due to their excellent immunological

response and safety profile, as well as offering the opportunity to prevent recurrence of sar-

coma [35]. On balance, for most STS subtypes, immunotherapy may be required novel regi-

mens and combinations [34].

In addition, we substantiated that EPAS1 and HELLS might act as independent prognostic

predictors of STS, leading to the construction of two efficient prognostic models. For both

Fig 8. Analysis of ICGs in STS. (A) The Venn diagram of the intersection between hub genes and immune-related genes. The correlation of ICGs with the

expression of CXCL2 (B), IL6 (C), HELLS (D), STMN1 (E), EPAS1 (F), NQO1 (G).

https://doi.org/10.1371/journal.pone.0262234.g008
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patients with primary STS and metastatic STS, the indicators for each nomogram were derived

from the primary tumor foci. However, the obtained model still needs to be further verified in

an independent cohort. The expression of 6 hub genes was discovered to be associated with

survival during the model construction, with EPAS1, STMN1, CXCL2, NQO1 being identified

for the first time in STS. EPAS1 is a diver of ferroptosis [36], compared to normal tissue,

which is expressed at lower levels in most human STS [37]. Zhu et al. found that up-regulation

of EPAS1 significantly enhanced the growth inhibition of gastric adenocarcinoma and that tar-

geting EPAS1 might be an alternative therapeutic approach for cancer [38]. Relatively, HELLS,

NQO1 are suppressors of ferroptosis [39, 40]. Law et al. suggested that HELLS mediated epige-

netic silencing of various cancer suppressor genes and evidenced in hepatocellular carcinoma

that its overexpression potentiated tumor cell migration and proliferation [41]. Huang et al.

identified high expression and prognostic impact of HELLS in STS samples [42], which also

underpinned our findings. In the TCGA database of STS samples, GSEA indicated that NQO1

was closely connected to interleukin-related signaling pathways. NQO1 has been confirmed to

Fig 9. Analysis of immune cells in STS. (A) The correlation of 6 hub genes expression with 24 immune cells. (B) The correlation of CXCL2 expression with 6

immune cells. (C) The correlation of IL6 expression with 6 immune cells. (D) The correlation of HELLS expression with 6 immune cells.

https://doi.org/10.1371/journal.pone.0262234.g009
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interact with interleukins in a variety of cancers, thereby affecting the inflammatory response

and participating in the immune regulation associated with the tumor microenvironment [43,

44]. As for STMN1, CXCL2 and IL6, they are currently treated as biomarkers of ferroptosis

and their expression is monitored for down-regulation once ferroptosis occurs [45, 46].

STMN1 is commonly recognized as an oncogene, and its up-regulation is tightly linked to the

malignant behaviour and poor prognosis of various tumors [47]. In leiomyosarcoma, STMN1

has also been characterised by high expression and can be a sensitive biomarker with strong

diagnostic efficacy [48, 49]. Our study revealed the potential immunological relevance and

clinical value of these novel ferroptosis-related genes, which might contribute to the precise

treatment and prognostic prediction of patients with STS.

Conclusions

In conclusion, we identified novel ferroptosis-related genes with prognostic value in STS. Fur-

thermore, we searched out potential immune checkpoints and critical immune cells.
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