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Abstract

This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in
MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for
studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm,
to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is
computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a
parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is
dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the
hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated
using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and
quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation
by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average,
depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the
same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the
proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may
provide implementation guidance for possible future clinical applications such as online diagnosis.
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Introduction

Dynamic Causal Modelling for Event Related Potentials (DCM

for ERP) [1,2] is a recently developed advanced method

embedded in SPM (Statistical Parametric Mapping; a MATLAB

software package; http://www.fil.ion.ucl.ac.uk/spm) as a module

for studying neuronal effective connectivity measured with EEG.

DCM for ERP has been used to address the issues about the brain

plasticity and functional asymmetries [3–5]. The basic idea of

DCM for ERP is to fit the observed time series data with a

spatiotemporal model, of which the temporal dynamics is

formulated based on a neuronally plausible model, the Jansen

model [6], and the neuronal network architecture is specified

based on the prior knowledge of the user and the hypothesis been

tested. The event related potentials are assumed as a result of the

changes of the connection or coupling strength at each level of a

cortical hierarchy in that spatiotemporal DCM model. This can be

parameterized as a multiple-inputs multiple-outputs (MIMO)

system, referred as the neuronal state equations in DCM for

ERP. To solve these neuronal state equations, an iterative

procedure named the expectation maximization (EM) algorithm

[7], is employed to find the optimal model parameters that govern

the underlying neuronal dynamics given a set of observed events

(data) and the underlying probability model. The convergence will

be reached when the likelihood function is maximized (for details,

see [8]). Several models could be inverted according to the testing

hypothesis, and Bayesian Model Comparison (BMS) allows one to

select one winning plausible model that best explains the EEG

data in terms of their model evidence. The computing workload is

extremely heavy in DCM because of the compute-intensive EM

algorithm and the possible combinatorial explosion of models to

be tested [9]. Furthermore, while MATLAB could be efficient in

numerical computations (for instance, matrices operations), it still

has inherent limitation incurred by sequential execution. In fact,

there are several attempts to parallelize the applications on

MATLAB, such as image registration [10] and B-spline interpo-

lation [11], and they have gained acceleration by a factor of about

4 to 13, depending on the applications.

Recently, the graphics processing units (GPUs) have been

widely adopted as coprocessors to accelerate computation of

CPUs, such as online biomedical applications [12,13] and massive

computing applications [13–20]. A GPU is an electronic device,

which is initially developed for efficient manipulation of computer

graphics. A GPU is notable for its multi-core architecture, and

thus becomes a good tool to handle compute-intensive problems in

parallel. A GPU contains several stream multi-processors (SMs)

that can launch huge threads to process a computing task

simultaneously in a single-instruction-multiple-data (SIMD) man-
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ner. The compute unified device architecture (CUDA) is a GPU

programming model proposed by NVIDIA (CUDA C Program-

ming Guide,’’ Available: http://developer.nvidia.com/nvidia-

gpu-computing-documentation). In CUDA, the data-parallel

portion of a program is executed as the kernel on the NVIDIA

GPU device. The kernel is executed as a grid of thread blocks, and

threads from different thread blocks cannot cooperate. A thread

warp is the basic unit of execution in a block, which contains 32

threads in CUDA Toolkit 4.2 and the earlier versions. That is, an

NVIDIA GPU can only run 32 threads simultaneously per block.

As the amount of cores in a GPU is different, the number of GPU

blocks which can work simultaneously is also different.

Since a GPU is a physically independent device to a CPU, the

only way to communicate with each other is by transferring data

among them. Before the GPU starts computation, the CPU,

referred as the host, has to copy data and sends them to the GPU,

referred as the device. The data transfer procedure is necessary

and may incur performance hit that reduces the performance

improvement from GPU parallelism. When the data arrives at the

GPU, the data have to be stored in the GPU memory hierarchy.

The NVIDIA GPU hierarchy consists of registers, local memory,

global memory, and constant memory, and different types of

memories have different features, of which the details are

described in the NVIDIA CUDA programming Guide. If the

user’s application does not specify the type of GPU memory for

data storage, the GPU will save the data in the global memory on

default. In the implementation of CUDA, a multiprocessor can

execute multiple thread blocks in parallel; shared memory and

registers are partitioned among the threads of all concurrent blocks

accordingly. Since the shared memory and the registers are

optimized for data access among a thread block, putting data in

the shared memory and registers can reduce data access latency

[21]. However, the size of the shared memory and the size of the

registers are small. Only necessary and critical data should be put

in the shared memory and the registers, while other data are put in

the global memory or the memory in the host.

Figure 1. Evaluation of the most time-consuming portion in DCM for ERP (Per EM iteration) in Matlab.
doi:10.1371/journal.pone.0066599.g001

Figure 2. Schematic illustration of the parallelism strategy.
doi:10.1371/journal.pone.0066599.g002

Speedup DCM for ERP by GPU
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The goal of this study aims to use the GPU to reduce the

execution time of DCM that is implemented in MATLAB. There

are two kinds of approaches to do so. The first kind of approach is

to use a high-level programming tool that supports direct GPU

function invocations on MATLAB, such as JACKET (Jacket for

GPU Computing – AccelerEyes. available at: http://www.

accelereyes.com/products/jacket), parallel computing toolbox

(PCT) (Parallel Computing Toolbox – Mathwork.’’ available at:

http://www.mathworks.com/products/parallel-computing/), and

GPUmat (available at: http://sourceforge.net/projects/gpumat/).

The second kind of approach is to call external CUDA programs

from MATLAB. The major advantage of the first approach is that

there exist no barriers between GPU and MATLAB. However,

this also puts some constraints and limitations on a developer’s

code since one cannot design/optimize his own parallel strategy.

On the contrast, the second approach allows a developer to

design/optimize his own parallel strategy with better control on

the GPU and the CPU. We have chosen the second approach in

this study because it provides good flexibility and direct control on

the GPC. We replaced part of the iterative EM algorithm, which is

the most time consuming part of DCM for ERP, by invoking an

external program written in CUDA and C++. In the implemen-

tation, we employed an adaptive computing thread allocation

framework to fulfill a fast estimation of neural effective

connectivity in DCM for ERP. To evaluate the performance

efficacy of our proposed parallelism strategy, synthetic data with

different model complexity and data length were generated. Ten

sets of real experimental EEG data were used to test the

computing accuracy and the speedup factor in practice. Both

synthetic and experimental results showed that the proposed

strategy can shorten the execution time.

Materials and Methods

DCM for ERP
In this study, we propose to accelerate DCM for ERP with a

GPU using CUDA. In this section, we briefly describe the theory

of DCM for ERP, in particular, the neuronal model and the EM

algorithm, which is the parallel processing target. The neuronal

model consists several pre-specified cortical sources and each

cortical source comprises four cell populations – superficial and

deep pyramidal cells, spiny stellate cells and inhibitory interneu-

rons. These populations are coupled through the intrinsic

connectivity among cortical layers and the hierarchical cortico-

cortical network model of cortical sources can be constructed

through three kinds of inter-area connections (forward, backward

and lateral) according to the belief of the users about the data (i.e.

the prior), the experimental manipulation and the hypothesis been

tested. The changes of the connection or coupling strength at each

level of a cortical hierarchy result in the event-related responses

and this can be formulated by a series of differential equations

[22]:
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where each _xxi represents a state of neuronal subpopulations

within one area, and the matrices CF, CB and CL encode forward,

backward and lateral extrinsic connections between areas,

respectively. The deterministic inputs u corresponded to experi-

mental manipulations (i.e., presentation of stimuli) were intro-

duced to the state equations via input connections CU to perturb

the system and subsequently evoke the neuronal responses. In

addition, the experimental factors (i.e., stimulus attributes or

context) can be encoded in CB.

The integration of the state equations gives the brain activities at

the neuronal level and was transferred into the observation h

through a modality-dependent biophysical transfer function g (for

example, the leadfield matrix for EEG in DCM for ERP):

x
.
~f (x,u,h)

h~g(x,h)
ð2Þ

Inversion of this DCM for ERP model, given empirical data,

makes possible the inferences about different models and the

parameters of a particular model.

Figure 3. Schematic illustration of the data passing flow
between the MATLAB and the GPU.
doi:10.1371/journal.pone.0066599.g003

Speedup DCM for ERP by GPU
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DCM utilizes an iterative procedure, the expectation maximi-

zation (EM) algorithm to search for the optimal parameters of the

probability model in a heuristic manner, such that the likelihood

function is maximized given a set of observed events (data) and the

underlying probability model. The EM algorithm has two major

steps, the expectation step (E-step) and the maximization step (M-

step). The E-step calculates the current likelihood with the given/

updated parameters; the M-step produces a new set of estimated

parameters though maximizing the log-likelihood. The two steps

continue in turn iteratively until convergence is reached, and then

Figure 4. The architectures of three arrangements, (A) the block-first arrangement, (B) the thread-first arrangement, and (C) the
block-64 arrangement, and the detection of the maximum number of simultaneous thread blocks using a small benchmark
program (D).
doi:10.1371/journal.pone.0066599.g004

Figure 5. The models used in the performance evaluation (SI: primary sensory area; SII: secondary sensor area; ACC: Anterior
cingulate cortex; TPJ: Temporoparietal junction; IPL: Inferior parietal lobule; PMA: Premotor area; DLPFC: Dorsolateral prefrontal
cortex).
doi:10.1371/journal.pone.0066599.g005

Speedup DCM for ERP by GPU

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e66599



the EM algorithm outputs the searched optimal parameters (see

[8] and [23] for details):
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where the explicit system Jacobian J in the E-step will then used to

calculate the numerical solution of the neuronal state equations

(see Equation 1) as shown in the following update scheme:

Parallelization Strategy
This study re-implemented part of DCM for ERP code using

CUDA and improved the computing efficiency of DCM for ERP.

As in DCM for ERP, the optimization scheme uses the MLE

algorithm to iteratively update the model parameters and the

Table 1. One example of the different estimates from MATLAB and GPU.

Forward Backward

Connection MATLAB (A. U.) GPU (A.U.) Connection MATLAB (A. U.) GPU (A.U.)

LS1 -. LS2 20.357 20.593 LS2 -. LS1 0.099 0.059

RS1 -. RS2 20.366 20.289 RS2 -. RS1 20.023 0.134

LS2 -.LIPL 20.123 20.299 LIPL -. LS2 20.091 0.081

RS2 -. RIPL 20.461 20.317 RIPL -. RS2 20.194 0.024

LIPL -. LDLPFC 20.135 0.228 LDLPFC -. LIPL 20.517 20.062

RIPL -. RDLPFC 20.149 20.411 RDLPFC -. RIPL 20.123 20.006

LDLPFC -. ACC 20.111 0.520 ACC -. LDLPFC 20.046 20.148

RDLPFC -. ACC 20.469 0.314 ACC -. RDLPFC 20.031 0.127

Lateral Input

Connection MATLAB (A. U.) GPU (A.U.) Connection MATLAB (A. U.) GPU (A.U.)

RS2 -. LS2 20.009 0.064 Input -. LS1 20.505 20.541

LS2 -. RS2 20.008 20.185 Input -. RS1 20.859 20.329

doi:10.1371/journal.pone.0066599.t001

Figure 6. The GPU computing efficiency of the three different
thread arrangements in comparison with the original MATLAB
implementation.
doi:10.1371/journal.pone.0066599.g006
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computation inside each iterative loop of the MLE algorithm

could be calculated in parallel [24]. Our strategy follows the above

idea by first identifying the most time-consuming portion in the

iterative loops of the EM algorithm and then parallelizing the

calculation on the GPU. Specifically, the differential part that

calculates the current estimates of the system Jacobin matrix J at

neuronal source space in the E-step (see Equation 3) was selected

to undergo the parallelism. This is because, by using synthetic

data, our profiling records showed that this portion takes up to

80% of the total execution time in each EM loop in MATLAB,

independent of data length and model complexity (i.e. the number

of model parameters to be estimated) (figure 1). We further

investigated this differential operation and found that, explicitly,

the differential operation starts with the integration of the neuronal

state equations given the current model parameters, followed by

the mapping from neuronal states to cortical activities (Eq. 2) and

then proceeds to the derivatives of the system Jacobian. It can be

seen that the integration of the neuronal states is the best target for

parallel computing given its usage and independency between

states. Conceptually, we initiate the differential process in

MATLAB, and then dispatch the computational tasks of state

integrations to the GPU, along with the data for parallel

processing. The result calculated by the GPU is then returned to

MATLAB for subsequent calculation of the system Jacobian J. By

the result, the EM algorithm continues to find a better set of

parameters that maximizes the likelihood of the given model and

the observed data. Figure 2 illustrates the scheme of the parallelism

strategy. This strategy requires sending the data and assigning the

computational tasks from the host (CPU) to the device (GPU). The

communication between the host and the device is through

NVIDIA NVMEX and the C++ code that executes the CUDA

code (kernels) on the device. Figure 3 shows how the data are

passed and computed between MATLAB and the GPU. To

parallelize the E-Step for-loop, we first partition the for-loop into

seven small for-loops, and then use CUDA to implement the four

for-loops, Kernels 1,4, which are suitable for parallel processing

in the GPU. The remaining sequential code pieces in the E-Step

are not parallelized in CUDA because they are very fast in

MATLAB. We have observed that, parallelizing these code pieces

usually causes negative impacts on the performance.

Note that the model to be inverted is specified by the users

according to the hypothesis been tested, including the number of

areas and the connection architectures. Therefore, the number of

model parameters CF, CB and CL, reflecting the model complexity

denoted as N in Figure 2, cannot be determined beforehand. So,

in this study, we have to employ an adaptive parallel strategy,

which dynamically assigns the tasks to the thread blocks to boost

up the computation performance. That is, we dynamically assign

each GPU thread to handle one integration task of inferring

neuronal states.

Adaptive Hardware-Dependent Thread Arrangement
In parallel computing, usually, each thread handles a computing

task at a time. Without the knowledge of the underlying hardware,

there are two naı̈ve ways to arrange threads to computational

tasks: (1) the thread-first arrangement strategy termed as thread

and (2) the block-first arrangement termed as block. Figures 4(A)

and 4(B) represents the concept of these two naı̈ve arrangement

strategies, respectively. Figure 4(A), the thread-first arrangement

strategy, shows that two thread blocks are used to process 2048

independent tasks, where each thread block handles 1024 tasks.

Under the thread-first arrangement, the threads are grouped as

blocks, and a block must be fully occupied first and then the next

block can be assigned to the remaining tasks. Because the

maximum number of GPU threads per block is 1024 (or 512 for

an older version of CUDA) and in this study the maximum

number of tasks is seldom larger than 1024, we may use only one

block by the thread-first arrangement strategy. Since a CUDA SM

executes in the granularity of blocks, the thread-first strategy may

not fully utilize the hardware resources of a GPU in this study. On

the contrast, when employed the block-first arrangement strategy

to process 2048 independent tasks, only the first thread of a block

is used and each thread handles a task, as shown in Figure 4(B).

Therefore, the number of blocks increases as the number of tasks

increases.

The above two thread arrangement strategies are not efficient

because they cannot utilize the hardware resources well. It has

been observed that, the computation on the GPU becomes

inefficient if the number of the blocks is not a multiple of the

number of multiprocessors on the GPU [25]. Figure 4(D) shows

the execution time of running a set of logarithm operations per

thread block in the NVIDIA GTX 560 Ti GPU device, given

different number of thread blocks. The execution time increases

regularly as the number of thread blocks increases by a factor of

64. This means the maximum number of thread blocks that can be

launched concurrently is 64. Since the maximum number of

concurrent thread blocks is determined by the underlying GPU

device, we can use a small program to detect the maximum

number of concurrent thread blocks of the GPU device after the

GPU device is installed in the computer. The detected value X is

then used to assign threads to the computing tasks. The proposed

thread arrangement strategy, termed as blockX, follows the

concept of the block-first strategy, except that the number of

blocks is limited to the detected value X. In the case that the

Figure 7. The effect of the number of tasks (model complexity)
in relation to speedup factor.
doi:10.1371/journal.pone.0066599.g007

Figure 8. The effect of data length in relation to the execution
time.
doi:10.1371/journal.pone.0066599.g008

Speedup DCM for ERP by GPU
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number of tasks exceeds X, we use the round-robin approach to

fairly assign threads to tasks until all of the X blocks reach the

maximum number of threads per thread block, which is an

inherent constraint in CUDA. When all the blocks are full of tasks,

we will create another set of X thread blocks to handle the

remaining tasks. Figure 4(C) shows the concept of the proposed

blockX strategy for X = 64, and thus we named it the block64

strategy. As in typical DCM For ERP studies, the number of

parameters are usually over 64 but less than 1024, the proposed

hardware-dependent thread arrangement strategy (the blockX

strategy) is able to achieve good load balance among all the major

computing components, the streaming multiprocessors. Therefore,

the blockX strategy theoretically achieves better performance than

the two naı̈ve thread arrangement strategies.

Note that the value X can be calculated from the hardware

specification of a GPU card. The maximum number of resident

(simultaneous) thread blocks in a Streaming Multiprocessor is 8 for

the GPU cards with CUDA computing capability 1.x or 2.x; the

maximum number of resident thread blocks in a Streaming

Multiprocessor is 16 for the GPU cards of CUDA computing

capability 3.x. The GPU card used in our simulations complies

with the CUDA computing capability 2.x, and the number of

Streaming Multiprocessors on the card is 8. Therefore, the

maximum number of resident (simultaneous) thread blocks is

868 = 64. As many users of the program DCM for ERP may not

care to know the hardware specification of a GPU card, it would

be more user-friendly and efficient to decide the maximum

number of simultaneous thread blocks automatically by using a

small benchmark program to detect it.

Simulation data
The data used in the simulation was downloaded from SPM

website (http://www.fil.ion.ucl.ac.uk/spm/), in which 128 chan-

nel electroencephalography (EEG) signal was measured during an

auditory oddball paradigm for eliciting Mismatch Negativity

activities (see [3] for details). The model used for evaluating the

execution time has five areas and reciprocal connections between

low and higher areas and the task-specific modulations were set to

be forward and backward (as FB model in [3]). This setting results

in 46 model parameters to be estimated as shown in Figure 1. To

increase the model complexity, we simply allow all possible

connections and get the model complexity of 111 under this

configuration (Figure 1). For more complex model (i.e. model

parameters .111), we manually force the number of parameters

to match our design. To increase the data length, we just

concatenate the same epoch several times and truncate it to fit the

Figure 9. The effect of data length in relation to speedup
factor.
doi:10.1371/journal.pone.0066599.g009

Figure 10. The effect of data length in relation to speedup
factor for the parallelized part of DCM for ERP.
doi:10.1371/journal.pone.0066599.g010

Figure 11. Time span composition, including computing time
(in blue), data transformation (in green) and data passing (in
red), of the three arrangements.
doi:10.1371/journal.pone.0066599.g011

Speedup DCM for ERP by GPU
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Table 2. The speedup factor of the GPU block64 strategy for each model (of one representative subject).

Model No. Number of EM loops per model Execution time per EM loop Total execution time per model

MATLAB (loops)GPU (loops) MATLAB (s) GPU (s) Speedupa (times) MATLAB (s) GPU (s)
Speedupb

(times)

1 21 60 90.97 9.80 9.28 1910.30 588.28 3.24

2 15 49 85.56 12.18 7.02 4623.80 451.73 10.24

3 13 37 63.68 9.21 6.91 827.82 340.68 2.43

4 52 27 91.76 22.42 4.09 4771.70 605.31 7.88

5 48 28 96.33 16.13 5.97 4623.80 451.73 10.24

6 32 51 120.06 23.39 5.13 6123.10 748.37 8.18

Avg. 30.17 42.00 91.39 15.52 6.40 3813.42 531.02 7.04

speedupa: speedup factor per EM loop ; speedupb: speedup factor of total execution time.
doi:10.1371/journal.pone.0066599.t002

Figure 12. The group results of BMS under fixed effect assumption from MATLAB (A) and GPU (B).
doi:10.1371/journal.pone.0066599.g012

Speedup DCM for ERP by GPU
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desired data length. Note that, in these simulations, our design was

only for evaluation of the execution time but not the accuracy.

Empirical data
The real experimental data were used to test the computing

accuracy and the speedup factor in practice. The 32 channel EEG

data were measured with 250 Hz sampling rate during a 3-D

Virtual Reality based ball catch task. Ten healthy right-handed

volunteer subjects participated in this experiment and part of the

data will be published for addressing other scientific issues later.

All subjects gave written informed consent for the experiment with

a protocol approved by the institutional review board of the Taipei

Veterans General Hospital. They were instructed to perform a ball

catch task using their dominant hand under the virtual reality

environment. The ball catch task has two conditions: standard and

rare, which differ in their occurrence frequency. In the standard

condition (80% of occurrence), the subjects have to catch a ball

and when it is successful, the subjects will receive a sensational

force through the hepatic device. For 20% of total events, there

will have no force feedback even the subjects have caught the ball

successfully. This oddball paradigm is to elicit a sensory P300

cortical activities. The data were epoched offline, with a

peristimulus window of 0 to 900 ms, filtered with 30 Hz low-

pass filter, artefact removal using the fully automated correction

method [26] and averaged across artefact-free trials. For DCM for

ERP analysis, we first specify six plausible models (Figure 5),

differed in the areas and the inputs based on three previous

literatures [27–29], to identify the most likely model hierarchy.

The experimental data were used to evaluate the speedup factor

and the estimation accuracy in practice in terms of the model

evidence by Bayesian Model Selection (BMS).

Results

In this study, we proposed a computing scheme using external

calls from MATLAB to the GPU to achieve a fast estimation of

neural effective connectivity in DCM for ERP. Synthetic data

were used to evaluate the computing efficacy of the GPU in terms

of the speedup factor and the experimental data were used to

validate the accuracy of the computation in the GPU and

quantified the speedup factor in practice.

Simulation result
Impact of thread arrangements on execution time. We

used the NVIDIA GTX 560 Ti GPU device to analyse the

synthetic data for DCM for ERP in parallel. The NVIDIA GTX

560 Ti GPU device has 8 streaming multiprocessors and allows at

most 8 resident thread blocks per streaming multiprocessor. Based

on the result of our detection program, we found that X = 64

achieves better performance for the proposed blockX thread

arrangement strategy. The relationship between the number of

tasks (complexities) and the performance of the proposed parallel

computing strategies was first evaluated in terms of execution time

per spm_diff function call (Figure 2) using synthetic data. Figure 6

shows the GPU efficiency resulting from the three thread

arrangement strategies in comparison with the original MATLAB

implementation, given 500 points of time series data. It can be

seen that, with the external function calls to the GPU, the

execution time reduces dramatically for all the three thread

arrangement strategies (Figure 6(A)). We then further examine the

superiority of the proposed blockX (block64 in this case) strategy in

execution time while comparing it to the block-first strategy in

Figure 6(B). The best speedup factor of them occurs when the

number of tasks is a multiple of 64, and the block64 strategy

performs better when the number of tasks exceeds 64. This is the

evidence that the hardware constraints affect the performance of

the software implementation. The speedup factors of the three

arrangements are shown in Figure 7. The proposed hardware-

dependent thread arrangement strategy (block64) can accelerate

the computation by up to a factor of 31, depending on the model

complexity.

The effect of data length in relation to the execution time is

illustrated in Figure 8, given the model complexity of 128. The

execution time increases linearly with the data length, and the

block64 strategy has the slowest increasing slope, implying it has

the best performance. This is confirmed by Figure 9, where the

block64 strategy outperforms the others and reaches about 49

times of speedup based on the execution time of the MATLAB

implementation. When we only compare the speedup of the code

pieces that are parallelized by different thread arrangement

strategies, as shown in Figure 10, the block64 strategy outperforms

the others by a large margin and reaches about 155 times of

speedup.

We further investigated the time span composition of the three

thread arrangement strategies to reassure the efficiency of the

block64 strategy. Figure 11 illustrates the breakdown of the

execution time in different phases: computing, data transformation

(from matrices to vectors for GPU computing) and data passing

(between MATLAB and GPU). As the time for data transforma-

tion and data passing are the same for all the three thread

arrangement strategies, the computing phase of block64 takes only

up to 80% of the total execution time while the other two could

use up 90 of it, though it relates to data length.

Experimental results
Computational accuracy and efficiency. Six DCM models

were inverted using the MATLAB implementation and the

CUDA-GPU (block64) implementation, for each subject as

described in the previous section (see Figure 5). At the single

subject level, six out of ten subjects have the model 6 as the best

model from the results of the MATLAB implementation and only

4 subjects have Model 6 as the winning model from the results of

the CUDA-GPU implementation. At the group level, the summed

log-evidences over 10 subjects from the MATAB and the CUDA-

GPU implementations are shown in Figure 12 (up panel). Bayesian

model selection demonstrated that both, under fixed effect

assumption, have chosen the model 6 (P . 0.99) as the best

model, followed by model 5 and then model 2 (Figure 7, lower

panel). When comparing the model-evidence of the same data and

the same model between the MATLAB implementation and the

CUDA-GPU implementation, the MATLAB implementation has

33 out of 60 (10 subjects * 6 models) greater values while the

CUDA-GPU implementation has 27. Two sample t-test confirmed

that, there has no significant difference (t = 0.4362, p = 0.66) on

the model evidence between the results of both implementations.

In other words, qualitatively, the CUDA-GPU implementation

gives the same results as the MATLAB implementation does. We

then compared the coupling parameters estimated by both

implementations and found that, given the same initial priors,

they didn’t converge to the same results (Table 1). This may be

due to the fact that, the two implementations have different

numerical accuracy and lead to be trapped in different local

maximum.

In relation to the reduced execution time, the GPU can shorten

the total execution time by a factor of 7 per model or 6 per EM

loop on average. Table 2 shows the detailed information of the

speedup factors of the GPU block64 strategy for each model. Note

that the time saved by the GPU is data- and model- dependent
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since the EM algorithm may execute different number of loops for

a different case.

Discussions

In this study, we proposed a computing scheme using external

calls from MATLAB to the GPU to achieve a fast estimation of

neural effective connectivity in DCM for ERP. Synthetic data

were used to evaluate the computing efficacy of the GPU in terms

of the speedup factor. The simulations show that this proposed

GPU-based parallel computing strategy can accelerate the

computation by a factor of about 155 for the parallel part and

about 49 per EM loop. The impact of data length on the execution

time in terms of speedup factor is minor, in the fact that the

execution time increases linearly with the data length. The

experimental data were then used to validate the accuracy of the

computation in the GPU and quantified the speedup factor in

practice. The speedup factor using real experimental data achieves

about 7 per model, depending on the model complexity and the

data length. This GPU-based implementation of DCM for ERP

gives qualitatively the same results as MATLAB does in model

selection though quantitatively the estimates of model parameters

are not equal.

GPU computing accuracy
Qualitatively, the GPU-based DCM for ERP gives the same

results at the group level analysis as what MATLAB does.

However, at the single subject level, the estimates of model

parameters vary considerably. The reason for the difference

between the MATLAB implementation and the GPU implemen-

tation, shown in Table 1, is due to the fact that the intrinsic

numerical accuracy is different between MATLAB and the GPU,

despite they both use double precision floating-point for compu-

tation. The difference is trivial in the beginning (,1025) but is

further amplified by the iterative procedure in the EM algorithm.

Furthermore, as in DCM for ERP, the Restricted maximum

likelihood (ReML) approach was used in the optimization for

degrading the importance of the nuisance parameters and this

makes the likelihood function in DCM for ERP sensitive to the

change of model parameters, i.e. the system Jacobian. Both

together result in different gradient direction and convergence

paths in MATLAB and the GPU as shown in the iteration number

in EM in Table 2, for instance, 21 iterative loops in MATLAB and

60 iterative loops in the GPU for Model 1. Nevertheless, the

accuracy of GPU computing is fair as there has no significant

difference of model evidence between them at the group level.

GPU speedup factor
The computing efficiency of our GPU implementation in terms

of execution time is much better than the original MATLAB

implementation of DCM for ERP, and the performance of the

proposed blockX thread arrangement strategy is the best among

the three thread arrangement strategies mentioned in the previous

sections. The speedup factor varies significantly with a range from

a few hundred in the parallel part using synthetic data down to

about 7 per one plausible DCM model in real EEG data. The

notable decrease of computing performance in practice using

experimental data is because there are still many parts which can’t

be parallelized (or is not worthy) in the computing of DCM for

ERP. These parts still take up a lot of computing time, for

example, the matrix calculation, even though this part only takes

less than 20% of the execution time in the original MATLAB

implementation. As MATLAB has be known for its ability to

handle complex matrix operations efficiently, we simply take this

advantage by leaving the complex matrix operation in MATLAB

to boost the most computing gain of both, as seen in Figure 2. This

results in the best overall execution time per model. In addition,

the different convergent paths also add the variability to the GPU

speedup factor in practice. From the simulation, it can be inferred

that the impact of data length on reducing execution time is minor

in real data applications, as the typical EEG epoch is usually less

than 2500 points. Nevertheless, the more complex the model is,

the better the performance of the proposed blockX (block64 in all

our simulation and experiment) strategy will achieve until all GPU

resources are fully utilized.

Apart from the implementation consideration, the other

important factor that affects the GPU performance is the time

used for data transmission. We have observed that data

transformation and data passing could be a performance

bottleneck of our GPU implementations. It consumes a lot of

time to pack and send data from the CPU to the GPU and this

may reduce the benefits of GPU parallelism, especially when the

data length is short. Furthermore, if the data type of the

transmitted data is double-precision, the transmission speed can

be 8 times as slow as that of single-precision data based on our

measures. Because our goal is to maintain the same computing

precision in the GPU as in MATLAB, our GPU implementation

must suffer slow transmission speed to transmit double-precision

data between the CPU and the GPU. In addition, the CUDA C

programming guide also indicates that an NVIDIA GPU works

much more efficient on single-precision data than on double-

precision data. This means our GPU implementation can achieve

better computing efficiency if we adopt single-precision data

instead of double-precision data.

GPU memory hierarchy and data layout
In the CUDA architecture, the data to be processed are sent

from the main memory of the CPU to the global memory of the

GPU. Each thread block has its shared memory, and all threads in

a block can access the shared memory. Accessing the shared

memory is much faster than accessing the global memory.

However, to access the shared memory, one has to copy the data

from the global memory to the shared memory. This procedure

may incur overheads from data transmission and shared memory

management. A GUDA program can be benefited from putting

data in the shared memory if the data are frequently used and

aligned well to reduce "bank conflicts" (a bandwidth problem

caused by the hardware limitation) of the shared memory.

Unfortunately, it is hard to use the GPU memory hierarchy to

improve the efficiency of our parallel version of DCM of ERP. We

have identified two difficulties in this problem domain. First, the

data to be processed on the GPU by our DCM for ERP

implementation consist of several data arrays of different sizes.

The data are retrieved from the MATLAB computing environ-

ment and then sent to the GPU device. To avoid possible "bank

conflicts" in the shared memory, the data have to be re-organized.

However, data re-organization takes time, which may not be

covered by the benefit of using the shared memory. Moreover, the

data that are sent to GPU for parallel processing are not used

frequently enough to reduce execution time. Importantly, the

global memory becomes more efficient since CUDA computing

capability 2.x. This may help to explain why our attempt of using

shared memory does not work well. Nevertheless, in general, it is

possible to use the shared memory to improve the execution time

by putting some of the most frequent data items in the shared

memory, though the cost of re-engineering is high and the gain is

small in DCM for ERP.
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Conclusion

In conclusion, we have proposed a computing scheme using

external calls to the GPU to achieve a fast estimation of neural

effective connectivity in DCM for ERP. The speedup factor of

GPU computing varies significantly with a range from 155 in the

parallel part using synthetic data, and down to 7 per one plausible

DCM model in real EEG data, depending heavily on the model

complexity and the data length. This GPU-based DCM for ERP

implementation gives qualitatively the same results as MATLAB

does in model selection though quantitatively the estimates of

model parameters are not equal. As the proposed hardware-

dependent thread arrangement strategy could yield the computing

efficiency of DCM for ERP while maintaining the accuracy and

fidelity, we consider this a fast screen tool for users to select the

most likely model and may provide implementation guidance for

possible future clinical applications such as online diagnosis.
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