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Mutations in viral nucleocapsid 
protein and endoRNase 
are discovered to associate 
with COVID19 hospitalization risk
Lue Ping Zhao1,9*, Pavitra Roychoudhury2,3,9, Peter Gilbert1,2, Joshua Schiffer4, 
Terry P. Lybrand5,6, Thomas H. Payne7, April Randhawa2, Sara Thiebaud2, Margaret Mills2, 
Alex Greninger2, Chul‑Woo Pyo4,8, Ruihan Wang4,8, Renyu Li4, Alexander Thomas4, 
Brandon Norris4,8, Wyatt C. Nelson4,8, Keith R. Jerome2,3 & Daniel E. Geraghty4,8*

SARS‑CoV‑2 is spreading worldwide with continuously evolving variants, some of which occur in 
the Spike protein and appear to increase viral transmissibility. However, variants that cause severe 
COVID‑19 or lead to other breakthroughs have not been well characterized. To discover such 
viral variants, we assembled a cohort of 683 COVID‑19 patients; 388 inpatients (“cases”) and 295 
outpatients (“controls”) from April to August 2020 using electronically captured COVID test request 
forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral 
sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have 
significant expansions over the collection period. Applying this filter led to the identification of 53 
SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the 
discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to 
significantly associate with inpatient status (q‑values < 0.01). Using temporal synchrony, we identified 
a four SNV‑haplotype (t19839‑g28881‑g28882‑g28883) that was significantly associated with case/
control status (Fisher’s exact p = 2.84 ×  10–11). This haplotype appeared in April 2020, peaked in June, 
and persisted into January 2021. The association was replicated (OR = 5.46, p‑value = 4.71 ×  10−12) in 
an independent cohort of 964 COVID‑19 patients (June 1, 2020 to March 31, 2021). The haplotype 
included a synonymous change N73N in endoRNase, and three non‑synonymous changes coding 
residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential 
functional role of the nucleocapsid protein in triggering “cytokine storms” and severe COVID‑19 that 
led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences 
in correlations with clinical status.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initially reported in Wuhan, Hubei, People’s 
Republic of  China1, is the causal pathogen for the coronavirus disease (COVID-19), causing over 5 million 
fatalities worldwide as of November 2021 (covid19.who.int). In the United States, COVID-19 has infected more 
than 47 million people and claimed over 750,000 lives as of this date (covid.cdc.gov). In Washington State, 
where the first COVID-19 patient in the US was reported on January 19, 2020, at least 9100 patients have died, 
among 670,000 confirmed infections (www. doh. wa. gov/ Emerg encies/ COVID 19). Like other viruses, SARS-
CoV-2 accumulates mutations with each cycle of replication known as single nucleotide variants (SNVs). Based 
on mutational frequencies or associated phenotypes, a viral strain with one or more such SNVs are referred to 
as variants, and variants meeting specific criteria can be classified as either Variants of Interest (VOI), Variants 
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of Concern (VOC) or Variants of High Consequence (VOHC) by the Centers for Disease Control and Preven-
tion (CDC) (https:// www. cdc. gov/ coron avirus/ 2019- ncov/ cases- updat es/ varia nt- surve illan ce/ varia nt- info. html). 
Currently, three lineages are classified as VOI (B.1.526-lota, B.1.525-Eta and P.2-Zeta), and five lineages as VOC 
(B.1.1.7-Alpha, P.1-Gamma, B.1.351-Beta, B.1.427-Epsilon, B.1.429-Epsilon, and, recently, B.1.617-Kappa/Delta), 
because of their elevated transmissibility or impact on  neutralization2,3. The delta variant (B.1.617.2) was initially 
reported in India and was found to spread throughout the world with substantial transmissibility (https:// www. 
cdc. gov/ coron avirus/ 2019- ncov/ varia nts/ varia nt. html). At this point, no VOHC has been declared by CDC.

The timely identification of VOHC is essential for the public health response against COVID-19 and requires 
viral genomic research directly connected to appropriately acquired clinical phenotypes in the clinical setting. 
Here our primary interest was to discover viral SNVs that associate with the COVID-19 hospitalization risk. 
We report results identifying SNVs that associated with COVID-19 hospitalization risk, through a discovery 
case–control study of COVID-19 patients whose viral genomes were sequenced and whose hospitalization status 
(inpatient versus outpatient) and demographic data were retrieved from a database of COVID testing request 
forms. To improve analytical power, we utilized a large collection of viral sequences from 7137 Washington 
residents deposited in GISAID and selected those SNVs that showed significant and substantial expansions from 
January 2020 to 2021. By correlating these identified SNVs with hospitalization status in the discovery study, we 
identified those SNVs that associated with hospitalization risk. The identified SNPs were subsequently replicated 
in an independent cohort.

Results
SNVs with significant and substantial expansions. The SARS-COV-2 accumulates mutations during 
replication, potentially generating new strains, some of which have undergone substantial expansions in the 
population either because of super-spreader events or due to functional changes resulting in elevated transmissi-
bility. Here we considered an SNV to be of interest if it had a statistically significant expansion in the study period 
and its average proportion of mutations in the last three months of the study period exceeded 10%. To identify 
such SNVs, we utilized 7137 viral genomes that had been generated from laboratories in Washington state and 
deposited to GISAID and that had been aligned and subjected to quality control (see “Materials and methods”). 
Comparing all viral genome sequences to the reference sequence led to counts of mutations at each nucleotide 
in the genome shown in Fig. 1A. This analysis showed that the Spike protein had two common SNVs with 300 or 
more copies and the nucleocapsid (N) protein had multiple common SNVs. Since over 90% of positions in the 
30 Kb genome had fewer than 3 mutations, we focused on the remaining ~ 10% (2516 nucleotides) for possible 
significant expansions. A non-linear logistic regression model to regress the binary indicator for mutation at 
each selected nucleotide on the collection time was then employed. In essence, this model fitted locally averaged 
proportions of mutants throughout the study period. If an SNV had undergone expansion, its locally averaged 
proportion would increase over time, as the mutant type became more common in the population.

This temporal expansion, deviating from random fluctuation, was quantified by a non-parametrically esti-
mated function and its statistical significance was quantified by the p-value. To account for multiple comparisons, 
p-values were then converted to false positive error rates, i.e., q-values. An SNV was deemed to have a significant 
expansion if the q-value was less than 0.01. Meanwhile, to focus on those pertinent SNVs that emerged or main-
tained their dominance in the population, fitted models were used to compute locally averaged proportions daily 
and calculate the maximum proportion in last three months, denoted as Pmax. An SNV was deemed to have 
substantial expansion if the Pmax exceeded 10%. Figure 1B shows q-values and Pmax from 2516 nucleotides, 
among which 53 nucleotides met the established threshold values (q-value < 0.01 and Pmax > 0.10, supplementary 
Table S1). Notably, four coding SNVs and 1 non-coding SNV were identified in the Spike protein, and SNVs with 
substantial expansions occurred in other ORFs/genes as well.

Variants in nucleocapsid, endoRNase and ORF3a have significant associations with COVID‑19 
hospitalization risk. The central goal of this study was to correlate identified SNVs with the hospitalization 
risk in the discovery case–control samples in Washington state. The discovery cohort included 295 outpatients 
(controls) and 388 inpatients (cases) for whom SARS-CoV-2 genome sequences were obtained (Table 1). Given 
constraints on the assembly of nasal swab samples and extraction of clinical data from the operational database, 
the case–control study took available samples from COVID-19 patients, while attempting to balance cases and 
controls for sex, age and collection times. Nevertheless, there were some imbalances in collection times for out-
patients from March to June and for inpatients from March to August.

To ensure the robustness of the association analysis on individual SNVs, we limited our analysis to 13 SNVs 
that had ten or more mutants observed (Table 2). Correlating these SNVs with case/control status through an 
unadjusted logistic regression model, we estimated coefficient (log odds ratio), standard error, Z value, p-value 
and q-value. For two SNVs with zero occurrences among outpatients, we performed the Fisher’s exact test, where 
the logistic regression was not appropriate. Results from the adjusted logistic regression analysis are presented in 
the middle of Table 2. For readability, we highlighted q-values that were less than 0.01 using bold to correspond 
to positive and negative Z-values, reflecting the increase or decrease of COVID-19 hospitalization risk.

Three SNVs (g28881, g28882, g28883) in the nucleocapsid were in perfect linkage disequilibrium, denoted 
as haplotype g28881/2/3, and were found to significantly elevate the risk of hospitalization (OR = 5.81 and 6.55, 
q = 1.47 ×  10–5 and 4.15 ×  10–6 in the unadjusted and adjusted analysis, respectively). Furthermore, SNV c28854, 
also in nucleocapsid, was not observed among outpatients and was found to be highly associated with hospitali-
zation (p = 2.03 ×  10–11) by Fisher’s exact test.

Two SNVs (t19838 and a20268) in endoRNase were found to have significant associations with hospitalization 
status. The SNV t19838 mutant was absent among outpatients and was found to be significantly associated with 

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant.html
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hospitalization risk by the Fisher’s exact test (p = 1.09 ×  10–11). Similarly, the SNV a20268 was found to associate 
with the risk of hospitalization in both unadjusted and adjusted analysis (OR = 38.47 and 42.95, q = 6.85 ×  10–4 
and 4.67 ×  10–4, respectively). Two remaining SNVs (c1059, g25563) were found to have negative associations 
with COVID-19 hospitalization risk (OR = 0.46 and 0.45, p = 8.06 ×  10–6 and 7.18 ×  10–6, respectively). Similar 
negative associations were observed for the adjusted analysis. It is of interest to note that a single SNV a23403, 
coding for the well-known D614G, appeared to have no association with the COVID-19 hospitalization risk in 
unadjusted or adjusted analysis (p = 0.39 and 0.29, respectively).

Figure 1.  Results from analyzing 7137 viral genomes sequenced by laboratories in Washington state and 
deposited to GISAID. (A) Results from counting mutational numbers per nucleotide throughout the viral 
genome. Upper arrow indicates observed counts greater than 300. The viral genome is annotated with gene 
designations immediately below. (B) Computed q-values and maximum values of variant proportions in 
November 2020, December 2020, and January 2021, obtained from fitting generalized linear models to all 
individual SNVs. SNVs exceeding established threshold q-value and maximum proportions are highlighted 
in red (upper right corner). (C) Eight selected SNVs with significant and substantial temporalities are mapped 
using their locally averaged variant proportions over time from fitted generalized linear models (color key upper 
left).
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SNVs in nucleocapsid and ENDORNase have synchronized expansion patterns. By the selec-
tion threshold values, six discovered SNVs were expected to have significant and substantial expansion during 
the study period (Fig. 1C). The SNV haplotype g28881/2/3 started to expand prior to day 100, peaked around 
day 150, declined to below 10% around day 320, and re-emerged in January 2021 (black line). Following a similar 
temporal pattern, SNV t19839 followed a synchronized pattern with g28881/2/3, with a slightly later incline and 
earlier decline (red line). Similarly, two SNVs (a20268, c28854) in enodRNase and Nucleocapsid, respectively, 
appeared to have had a synchronized expansion pattern; proportions started to rise around day 150 and reached 
a plateau after day 200 (blue dash and dotted lines, respectively). Finally, SNVs c1059 and g25563, in nsp2 of 
ORF2ab and ORF3a, respectively, were synchronized, expanding from day 30, then contracting and expanding 

Table 1.  Descriptive statistics of 683 and 964 participating patients in, respectively, the discovery and 
replication case–control studies.

Variable Description

Discovery (n = 295 + 388) Replication (n = 476 + 488)

OUT IN p-value OUT IN p-value

Sex

Female 170 (57.63) 184 (47.42) 1.69E−02 216 (45.38) 231 (47.34) 2.39E−26

Male 124 (42.03) 200 (51.55) 177 (37.18) 256 (52.46)

UNK 1 (0.34) 4 (1.03) 83 (17.44) 1 (0.20)

Age (year)

1- 9 (3.06) 29 (7.47) 9.53E−04 112 (23.53) 73 (14.96) 1.15E−06

20- 112 (38.1) 132 (34.02) 213 (44.75) 180 (36.89)

40- 139 (47.28) 151 (38.92) 105 (22.06) 148 (30.33)

60–100 34 (11.56) 76 (19.59) 45 (9.45) 86 (17.62)

UNK 1 (0.34) 1 (0.21) 1 (0.20)

Collection March 167 (56.61) 178 (45.88) 5.00E−04

Month

April 113 (38.31) 72 (18.56)

May 12 (4.07) 24 (6.19)

June 3 (1.02) 14 (3.61) 179 (37.61) 111 (22.75) 5.00E−06

July 96 (24.74) 24 (5.04) 29 (5.94)

August 4 (1.03) 104 (21.85) 137 (28.07)

September 21 (4.41) 16 (3.28)

October 27 (5.67) 14 (2.87)

November 57 (11.97) 6 (1.23)

December 4 (0.84) 10 (2.05)

January 12 (2.52) 109 (22.34)

February 48 (10.08) 56 (11.48)

Table 2.  Association results of selected SNVs (with at least 10 mutations) with hospitalization status (inpatient 
vs outpatient) in a case–control study of 683 Covid 19 cases: frequencies of wildtypes/mutations among 
outpatients and inaptients, estimated coefficients, standard errors, p-values, q-values, corresponding residue (if 
SNV is in the coding region), indicators for urgent SNVs, and corresponding genes. *The analysis adjusted age 
and sex. **R203S or R203R.

ID SNV

Wild/mutant Unadjusted analysis Adjusted analysis*

Residue GenesOUT IN Coef SE Z p q Coef SE Z p q

1 c241 88/207 101/287 0.19 0.17 1.10 2.72E−01 3.93E−01 0.22 0.17 1.28 1.99E−01 2.93E−01

2 c1059 102/193 207/181  − 0.77 0.16  − 4.85 1.24E−06 8.06E−06  − 0.79 0.16  − 4.94 7.98E−07 4.15E−06 T85I nsp2

3 c3037 86/209 101/287 0.16 0.17 0.91 3.65E−01 4.74E−01 0.20 0.18 1.12 2.62E−01 3.41E−01 F106F nsp2

4 c14408 85/210 101/287 0.14 0.17 0.81 4.19E−01 4.95E−01 0.18 0.18 1.00 3.19E−01 3.77E−01

5 t19839 295/0 345/43  >  > 0 1.09E−11  >  > 0 N73N endoRNase

6 a20268 294/1 343/45 3.65 1.01 3.60 3.16E−04 6.85E−04 3.76 1.02 3.70 2.15E−04 4.67E−04 L216L endoRNase

7 a23403 88/207 101/287 0.19 0.17 1.10 2.72E−01 3.93E−01 0.22 0.17 1.27 2.03E−01 2.93E−01 D614G S-spike-protein

8 g25563 98/197 204/184  − 0.80 0.16  − 5.01 5.52E−07 7.18E−06  − 0.83 0.16  − 5.11 3.24E−07 4.15E−06 Q57H ORF3a

9 c27964 288/7 370/18 0.69 0.45 1.53 1.25E−01 2.32E−01 0.70 0.45 1.55 1.22E−01 2.26E−01 S24L ORF8

10 c28854 295/0 346/42  >  > 0 2.03E−11  >  > 0 S194L Nucleocapsid

11 g28881 287/8 334/54 1.76 0.39 4.54 5.66E−06 1.47E−05 1.88 0.39 4.80 1.60E−06 4.15E−06 R203K Nucleocapsid

12 g28882 287/8 334/54 1.76 0.39 4.54 5.66E−06 1.47E−05 1.88 0.39 4.80 1.60E−06 4.15E−06 R203S** Nucleocapsid

13 g28883 287/8 334/54 1.76 0.39 4.54 5.66E−06 1.47E−05 1.88 0.39 4.80 1.60E−06 4.15E−06 G204R Nucleocapsid
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again towards the end of the study period (green lines). Such synchronization may imply that these variants 
share the same mutational histories, and thus the same haplotypes.

SNV‑haplotype (t19839‑g28881‑g28882‑g28883) associates with COVID hospitalization 
risk. Focusing on four SNVs that were synchronized temporally (t19839, g28881, g28882, g28883), their hap-
lotypic frequencies across outpatients and inpatients in the discovery case–control study were tabulated (Table 3). 
The reference haplotype “tggg” had frequencies of 287 (97%) and 334 (86%) copies in outpatients and inpatients 
respectively, while the haplotype “taac” with a single mutation was observed 8 (3%) and 11 (3%) times in outpa-
tients and inpatients respectively. Interestingly, the haplotype “caac” was absent among outpatients completely, 
while it was observed 43 times (11%) among inpatients. The application of Fisher’s exact analysis suggested that 
this SNV haplotype was significantly associated with the COVID-19 hospitalization risk (p-value = 2.84 ×  10–11).

Repeating the same haplotype tabulation in the replication case–control study yielded corresponding haplo-
type frequencies. Other than including a rare haplotype “tagg”, the replication analysis showed largely compa-
rable frequencies of three SNV haplotypes, e.g., “tggg” has haplotype frequencies of 82.77% and 68.85% among 
outpatients and inpatients, respectively, in the replication cohort, in comparison with 97.29% and 86.08% in 
the discovery cohort. The haplotypic association of “tggg” with COVID-19 hospitalization risk identified in the 
discovery cohort was replicated in the replication cohort (p = 2.21 ×  10–10).

Applying the logistic regression of hospitalization status over this SNV haplotype, haplotypic association 
with COVID-19 hospitalization risk with “tggg” as the reference haplotype was evaluated (Table 4). By treating 
“tggg” as the reference, which effectively set its coefficient to zero (OR = 1), the mutant haplotype “caac” was 
found to have a significantly elevated risk of COVID-19 hospitalization risk (OR = 3.69, p = 3.44 ×  10–10) without 
adjusting any covariates. After adjusting for sex, age and a potential non-linear effect of collection time, the 
“caac” association was improved further (OR = 5.46, p = 4.71 ×  10–12). Note that male gender and older age tended 
to increase risk of COVID-19 hospitalization risk from the adjusted analysis, and the squared collection time 
appeared to have a significant association with risk of COVID-19 hospitalization, i.e., the risk was relatively low 
around month of November 2020.

Because of their temporal synchrony, we next considered the haplotypic association of t20268-c28854 with 
hospitalization (Table 3). In the discovery set, the mutant “gt” was absent in outpatients, and was observed 10% 
among all inpatients. As a result, this haplotype was found to have a significant association (p = 4.56 ×  10–11) in 
the discovery set. However, the replication analysis provided a support for this association with a marginal sig-
nificance (p = 0.05), given 22% of outpatients carried this haplotype in comparison with 18% of inpatients. The 
discovered association of c1059-g25563 was replicated also with marginal significance (p = 0.07).

Dynamic expansion of SNV haplotype (t19839‑g28881‑g28882‑g28883) in Washington 
state. The SNV haplotype t19839-g28881-g28882-g28883 has a group of seven relatively uncommon hap-
lotypes (cagg, cgac, cggc, taaa, tagc, tag, ttgg) with fewer than 5 copies, known as rare haplotypes, and has four 
other relatively common haplotypes tggg/0 with 5462 copies, cggg/1 with 29 copies, taac/3 with 434 copies and 

Table 3.  Association results of three SNV-haplotypes with hospitalization status (inpatient and outpatient) in 
a case–control study of 683 COVID-19 patients: frequencies of haplotypes among outpatients and inaptients, 
estimated coefficients, and Fisher’s exact p-values, respectively, across three haplotypes. Also included are 
haplotype frequencies in general population of Washington state (far right column). *n—untyped nucleotide, 
y—ambiguity typing of either c or t.

Hap

Discovery Set Replication Set

OUT IN p-value OUT IN p-value WA (%)

H1:t19839-g28881-g28882-g28883

caac 43 (11.08) 2.84E−11 35 (7.35) 110 (22.54) 2.21E−10 16.83

taac 8 (2.71) 11 (2.84) 45 (9.45) 41 (8.4) 5.93

tagg 2 (0.42) 1 (0.2) 0.06

tggg 287 (97.29) 334 (86.08) 394 (82.77) 336 (68.85) 75.84

H2:a20268-c28854

ac 294 (99.66) 341 (87.89) 4.56E−11 361 (75.84) 399 (81.76) 5.28E−02 87.95

at 2 (0.52) 7 (1.47) 2 (0.41) 0.60

gc 1 (0.34) 4 (1.03) 2 (0.42) 1 (0.2) 0.55

gt 40 (10.31) 106 (22.27) 86 (17.62) 8.55

nc* 1 (0.26) 1.33

H3:c1059-g25563

cg 94 (31.86) 199 (51.29) 2.40E−06 195 (40.97) 239 (48.98) 7.19E−02 54.95

ct 8 (2.71) 8 (2.06) 15 (3.15) 15 (3.07) 2.70

tg 4 (1.36) 3 (0.77) 2 (0.42) 3 (0.61) 0.04

tt 189 (64.07) 176 (45.36) 264 (55.46) 231 (47.34) 41.04

yg* 2 (0.52) 0.00
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caac/4 with 1201 copies, in which /# indicates the number of mutants in the haplotype. Tabulating these hap-
lotypes over collection time by months, Fig. 2 shows that the reference haplotype tggg (gray) dominated over 
all months. The mutant haplotype “caac” (green), which was associated with increased risk of hospitalization, 
appeared in April, peaked in June, subsequently declined to a relatively low level, and then appeared to rise 
again in January, 2021. The other mutant haplotype taac (red) was relatively steady throughout the year, since its 
appearance from April, 2020. In Washington state, the reference haplotype “tggg” had a frequency of 76%, while 
the mutant “caac” had a frequency of 17% (Table 3).

Classification of the haplotype (t19839c‑g28881a‑g28882a‑g28883c). All of the Washington viral 
genomes obtained from GISAID were classified by nextstrain, GISAID-clade, and lineage. To assess the relation-
ship between the haplotype and nextstrain classification, we tabulated their cross-table frequencies (Table 5). 
All 1201 carriers of the “caac” haplotype were classified to 20B as were 2 carriers of “tggg”. Similarly, carriers of 
“caac” and “taac” belonged to the clade GR, while no carriers of the reference haplotype were assigned to that 
clade. Finally, with respect to the assigned lineage, 80% of “caac” carriers were assigned to lineage B.1.1.291, 7% 

Table 4.  Replication results of (t19839-g28881-g28882-g28883) with hospitalization status (inpatient and 
outpatient) in a case–control study of 476 outpaitents and 488 inpatients: estimated coefficients, standard 
error, Z-score and p-value across three haplotypes, from the marginal and adjusted analysis. Adjusted analysis 
controled sex, age, collection time and its square (to account possible non-linear time effect). *"tggg" is treated 
as a reference haplotype for comparison with other haplotypes.

Hap

Unadjusted analysis Adjusted analysis

Coef OR SE Z p Coef OR SE Z p

tggg* 0.00 1.00 0.00 1.00

caac 1.30 3.69 0.21 6.28 3.44E−10 1.70 5.46 0.25 6.91 4.71E−12

taac 0.07 1.07 0.23 0.29 7.72E−01  − 0.15 0.86 0.25  − 0.59 5.53E−01

tagg  − 0.53 0.59 1.23  − 0.44 6.63E−01  − 0.79 0.46 1.24  − 0.63 5.26E−01

Male 0.34 1.41 0.14 2.38 1.74E−02

Unkown sex  << 0

Age 0.01 1.01 0.00 3.68 2.34E−04

Time  − 0.01 0.99 0.00  − 1.80 7.25E−02

Time*Time 0.00 1.00 0.00 2.82 4.76E−03

Month

Freq

Washington

Discovery

Replicaon

4
20
20
-0
1

56
20
20
-0
2

34
5
16
26

20
20
-0
3

18
5

82
9

20
20
-0
4

36
88
3

20
20
-0
5

29
0

17
13
51

20
20
-0
6

53
96

14
2

20
20
-0
7

24
1

4
50
7

20
20
-0
8

37
18
4

20
20
-0
9

41
15
4

20
20
-1
0

63
37
3

20
20
-1
1

14
55
4

20
20
-1
2

12
1

47
4

20
21
-0
1

10
4

20
21
-0
2

Figure 2.  Evolving haplotype frequencies of SNV haplotype (t19839-g28881-g28882-g28883) over January 
2020–2021 in Washington. Total number of samples sequenced in each month is placed below the plot. For 
convenience, patient numbers in discovery and replication cohorts are also included below the plot. Besides 
rare haplotypes, four haplotypes are annotated together with number of SNVs in each haplotype and haplotypic 
frequency in bracket.
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to B.1.1.290, 6% to B.1.1, in addition to several sporadic assignments, mostly to B.1.1 (Table 6). In contrast, only 
11% of the carriers of the reference haplotype “tggg” were assigned to the B.1.371 lineage.

Table 5.  Relationships of identified SNV haplotype (t19839-g28881-g28882-g28883) with classifications of 
Nextstrain and clades by GISAID.

Hap caac taac cggg tggg Rares

Nextstrain n = 1201 434 29 5462 11

Unspecified 7 (0.13)

19A 42 (0.77)

19B 1 (0.23) 8 (27.59) 1422 (26.03) 1 (9.09)

20A 5 (17.24) 1032 (18.89) 4 (36.36)

20A.EU2

20B 1201 (100) 423 (97.47) 13 (44.83) 2 (0.04) 3 (27.27)

20C 3 (10.34) 2005 (36.71) 3 (27.27)

20D 2 (0.46)

20E (EU1) 1 (0.02)

20F

20G 951 (17.41)

20H/501Y.V2

20I/501Y.V1 8 (1.84)

20 J/501Y.V3

GISAID-Clade

G 1 (0.23) 18 (62.07) 858 (15.71) 4 (36.36)

GH 3 (10.34) 3131 (57.32) 3 (27.27)

GR 1196 (99.58) 429 (98.85) 2 (18.18)

GV 1 (0.02)

L

O 5 (0.42) 2 (0.46) 35 (0.64) 1 (9.09)

S 2 (0.46) 8 (27.59) 1413 (25.87) 1 (9.09)

V 24 (0.44)

Table 6.  Relationships of identified SNV haplotype (t19839-g28881-g28882-g28883) with lineages assigned by 
Pangolin. *Corresponding lineages associated with "taac" only or "tggg" only are excluded. For a complete list, 
see a separate table.

Hap caac taac cggg tggg

Lineage n = 1201 434* 29 5462*

A.1 2 (0.46) 8 (27.59) 1412 (25.85)

B.1 1 (0.23) 5 (17.24) 937 (17.15)

B.1.1 75 (6.24)

B.1.1.110 1 (0.08)

B.1.1.158 37 (3.08) 1 (3.45)

B.1.1.222 23 (1.92)

B.1.1.26 136 (31.34) 2 (0.04)

B.1.1.290 84 (6.99) 1 (0.23) 1 (3.45)

B.1.1.291 956 (79.6) 7 (1.61) 11 (37.93)

B.1.1.65 18 (4.15) 1 (0.02)

B.1.1.76 20 (1.67) 1 (0.02)

B.1.169 8 (1.84) 52 (0.95)

B.1.333.1 5 (0.42) 5 (1.15) 7 (0.13)

B.1.371 1 (3.45) 617 (11.30)

B.1.426 2 (6.90) 12 (0.22)
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Discussion of Washington state
This investigation utilized 7137 viral sequences obtained from Washington state from January 19, 2020 through 
January 31, 2021, identifying 53 SNVs that had significant expansions and maximum proportions of mutations 
in the last three months exceeding 10%. Through a discovery case–control design, this study discovered six SNVs 
associating with increased risk of COVID-19 hospitalization, while two SNVs associated with decreased hospi-
talization risk. Among these six SNVs, four nucleotides (c28854, g28881, g28882, g28883) were non-synonymous 
and code residues S194L, R203K, R203S and G204R, respectively, in Nucleocapsid, and two nucleotides (t19839, 
a20268) in endoRNase of orf1ab encoded synonymous changes (N73N and L216L, respectively). Interestingly, 
t19839 appears to have expanded together with g28881, g28882, g28883, and the combined haplotype had a sig-
nificant association with COVID-19 hospitalization risk (p = 2.84 ×  10–11 and 2.21 ×  10–10 in the discovery and rep-
lication studies, respectively). Conversely, the risk association of a20268, c28854 was discovered (p = 4.56 ×  10–11) 
but only marginally replicated (p = 0.05).

The non-synonymous mutations R203K, R203S and G204R in the nucleocapsid protein all occur in the flex-
ible linker region between the N-terminal RNA-binding domain and the C-terminal dimerization domain, and 
this linker segment is not resolved in any reported cryo-EM or x-ray  structures4. However, small-angle X-ray 
scattering (SAXS) experiments revealed that the full-length nucleocapsid protein has a much larger radius 
of gyration than would be expected for a 99 kDa globular protein, indicating that the flexible linker region is 
relatively extended in  solution4. Consistent with the low-resolution conformational ensemble results from the 
SAXS experiments, recent single-molecule Förster resonance energy transfer (FRET) and fluorescence correla-
tion spectroscopy experiments demonstrated that the linker region is highly flexible, with rapid interconversion 
between two general conformational  populations5, Together, these two experimental studies show that the linker 
region undergoes rapid conformational transitions but is generally extended, thus minimizing direct interac-
tions of the well-structured RNA binding and dimerization domains. The mutations R203S and G204R are non-
conservative and even the R203K mutation is often observed to function as a non-conservative substitution in 
many cases, due to the different size of the R versus K residues and the notably different chemical features of the 
side-chain guanidinium group (arginine) versus the primary amine (lysine). Thus, we hypothesize that these 
mutations may influence disease severity by altering linker region flexibility and dynamics, which would likely 
alter nucleocapsid function. We also note that the linker region is involved in RNA binding interactions, so at 
least some of the linker region mutations might impact non-specific RNA binding.

The main variant in the endoRNase, N73N, is synonymous which suggests a testable hypotheses concerning 
potential impact on virus fitness or function. It is well documented that the translation kinetics for synonymous 
codons are often different, and this can have an impact on co-translational protein folding kinetics, yielding pro-
teins with identical primary sequence but different conformations and  properties5. For example, Kimchi-Sarfaty 
et al. demonstrated that P-glycoprotein expression using different synonymous codons yielded product with 
identical amino acid sequence but different substrate specificities that was attributed to differing P-glycoprotein 
 conformations6. More recently, Hu et al. showed that the use of synonymous codons in heterologous expression 
of anti-IgE single chains in E. coli yielded scFv molecules with identical sequence but altered solubilities and 
antigen-binding  affinities7. Thus, these synonymous mutations may lead to an endoRNase with improved func-
tion and/or properties due to alternate protein conformations. It is also possible that the synonymous mutations 
may impart a competitive advantage simply by resulting in enhanced translational kinetics for the endoRNase.

Many mutations in Spike protein that are correlated with increased transmission and/or severity exhibit 
“predictable” attributes. Specifically, such mutations are non-synonymous and occur in functionally important 
regions of the Spike protein where they may logically be anticipated to impact ACE2 receptor binding, alter 
neutralizing antibody recognition sites, or affect function via modulation of Spike protein flexibility. It is worth 
noting that the a23403 (D614G), the only SNV in the spike protein, was found not to associate with the severity 
of COVID-19 (p = 0.29), implying Spike protein may have a limited role in disease severity.

An interesting and important finding was that all SNVs associated with hospitalization risk were located in 
endoRNase or Nucleocapsid, but not in Spike protein. This observation led us to postulate that while Spike pro-
tein is essential for the transmission of the virus mediated by its binding to the angiotensin converting enzyme 
2 (ACE2)8,9, it may play a diminished role in triggering autoimmune responses that lead to a “cytokine storm”. 
Instead, the presence of new mutants in Nucleocapsid may accelerate replication of the  virus10, and endoRNase 
and Helicase may be responsible for initiating the secondary immune responses.

The results suggest that the viral genomes deposited in the GISAID are useful for filtering out SNVs with 
limited temporal patterns, allowing purpose-driven association analysis with clinical outcome data to have a 
sufficient power to discover phenotype-associated SNVs without sacrificing powers to correct unnecessary com-
parisons/tests. Furthermore, this exercise also supports a hybrid design that integrates GISAID with the purpose-
driven study, given that GISAID includes sequences from the State surveillance program and are representative of 
the Washington study population. Direct access to electronic health records of those COVID-19 patients whose 
sequences have been deposited to GISAID could significantly enhance analytic rigor and findings. In essence, 
such a hybrid design can be viewed as a two-stage design, which has been shown to be highly efficient, and mul-
tiple statistical methodologies have been developed to extract maximum and unbiased association  results11–16.

There are noteworthy limitations to our study including that the of hospitalization risk as a proxy for disease 
severity may lead to misclassification, since inpatients may be hospitalized for reasons other than COVID-19. 
Conversely, some patients with elevated COVID-19 hospitalization risk may not be hospitalized or their hos-
pitalization may not be reported at the time of testing because it occurs later. However, misclassification errors 
tend to dilute association  results17. Thus, the true magnitude of discovered and replicated association with the 
haplotype “caac” of t19839-g28881-g28882-g28883 may be even greater than estimated here if the severity of 
COVID-19 could be clinically adjudicated. Another limitation included incomplete matching of our discovery 
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and replication case–control studies with regard to age, sex and collection time, partly due to challenges fac-
ing research studies relying on the operational database and biospecimen availability during the pandemic. To 
address this issue, we applied the logistic regression model to evaluate viral genetic associations, while adjusting 
for these potential confounding variables.

Successful development and implementation of COVID vaccines are expected to curtail the pandemic, but 
infections among unvaccinated people, and to an as yet unknown extent among the vaccinated, in and outside 
of the USA, is likely to generate new variants in the coming years. While ongoing genomic sequencing efforts 
are continuously monitoring for potential new variants, there is still a need for two-staged approach correlating 
viral sequencing, electronic health records, and vaccine status. Through such a strategy, viral genome sequences 
could be correlated with COVID-19 and vaccine related clinical outcomes, allowing for the real time identifica-
tion of new variants of high consequence.

Materials and methods
Patient biospecimen and data. This study was approved by the Human Subject Review Committee 
at Fred Hutchinson Cancer Research Center (IRB#6007-2043) and by the University of Washington Institu-
tional Review Board (STUDY00000408). The current study includes: (1) a discovery case–control study of 683 
COVID-19 patients (March-August 2020), and (2) a replication case–control study of 964 patients (June 2020–
March 2021) from healthcare organizations in Washington State. All subjects were de-identified, and deidenti-
fied nucleic acid samples were extracted from leftover nasal swabs and were used for viral sequencing. Deidenti-
fied demographic and healthcare-related information were extracted from electronic forms of COVID testing 
requests, including sex, age, and collection times (Table 1).

Treating hospitalization risk as a proxy for severity of Covid19, this study used a case–control design with 
inpatients as cases and outpatients as controls. In the discovery study, we attempted to match inpatients and 
outpatients’ sex and age by frequency as much as possible, subject to the availability of nasal swab samples. All 
viral sequences were deposited to Genebank (accession numbers MW593154-MW593926). The replication study 
included all available patients whose sequences were obtained and deposited to GISAID (https:// www. gisaid. org).

This study also utilized viral genome sequences that have been deposited to GISAID (https:// www. gisaid. org) 
from all Washington laboratories. On the downloaded dataset, we aligned all sequences against the reference 
genome, performing quality control, eliminated 3 samples of poor sequence quality, and removed 5’ and3’ end 
sequences of variable lengths. We used submission dates as a proxy for collection time, and used their classifica-
tion by  Nextstrain18, clade by GISAID (https:// www. gisaid. org) and lineage by  PANGO19.

Samples, RNA extraction, and PCR. Patient samples were obtained and tested according to local and 
CDC guidelines. The University Washington (UW) Virology Division Laboratory is CLIA-certified and CAP-
accredited and was one of the first academic labs in the US to offer clinical testing for SARS-CoV-2. UW Virol-
ogy uses lab-developed RT-PCR tests based on either the CDC N1 and N2 or the WHO E/RdRp primer/probe 
sets, and FDA Emergency Use Authorization tests from Hologic (Panther Fusion), and Roche (Cobas 6800)20–28.

Nasopharyngeal swabs were collected in either viral transport medium (VTM) or phosphate-buffered saline 
(PBS). Total nucleic acid was extracted from 200 µl of VTM/PBS sample and eluted into 50 µl of buffer using 
MagNA Pure 96 DNA and viral NA SV Kit on MagNA Pure 96 instrument (Roche). Nucleic acids were then 
used for genotyping.

Amplicon‑based sequencing for discovery samples. A commercially available ScisGo®-COVID-19 
kit (Scisco Genetics Inc., Seattle WA) employing an amplicon-based sequencing by synthesis approach was used 
to determine sequences from SARS-CoV-2 positive samples obtained from the local testing site. The approach 
mirrors a system previously developed for HLA and KIR  typing29,30 using a two-stage amplicon-based PCR for 
locus amplification and sample barcoding and substituting two primer sets, each independently yielding non-
overlapping SARS-CoV-2 amplicon sequences of ~ 400 bp. The combined derivative data spans the complete 
SARS-CoV-2 genome including de novo sequencing of all primer binding sites excepting the two primers at the 
extreme 5’ and 3’ ends. Briefly, after conversion of total nucleic acid into cDNA using the Invitrogen SuperScript 
IV First Strand Synthesis System (Thermo Fisher, Bothell, WA) the samples were sequentially applied to stage 1 
(S1) and stage 2 (S2) PCR amplification according the manufacturer supplied protocol. After amplification, the 
reactions were combined, purified, and applied to a MiSeq using Illumina Version 2 chemistry with 500-cycle, 
paired-end sequencing (Illumina, San Diego, CA). Data assembly and analysis was performed using Sciscloud™ 
(Scisco Genetics Inc., Seattle WA) computational tools adapted specifically to assemble SARS-CoV-2 genomic 
sequences derivative from the ScisGo®-COVID-19 kit. Access to all software for data transfer and analysis was 
included as a component of the kit and made available through a web browser. All discovery cohort samples were 
sequenced using the ScisGo® approach and are accessible in genbank under accession numbers MW593154-
MW593926. All other samples from UW Virology were sequenced using either metagenomic or amplicon-based 
approaches using the Illumina COVIDseq Test (Illumina, San Diego, CA) and the Swift Biosciences’ Normalase 
amplicon SARS-CoV-2 panel (Swift Biosciences, Ann Arbor, MI) as previously  described31.

All biospecimen collections and processing were detailed in the Human Subject Research protocol, and have 
been reviewed and approved by the Human Subject Research Committee. With respect to statistical analyses 
(below), we used robust and reproducible statistical procedures that have been well-documented in the statistical 
literature and have been implemented in commonly accepted statistical software packages in R.

A non‑parametric logistic regression model. To model dynamic expansions and contractions of indi-
vidual SNVs over time, we applied a non-parametric logistic regression model, a member of the generalized 

https://www.gisaid.org
https://www.gisaid.org
https://www.gisaid.org
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additive model (GAM), regressing a binary SNV indicators over collection  times32–34. After fitting the model, 
we obtained p-value that quantifies the non-linear dynamics of the mutation proportion and computed the fit-
ted values as locally weight-averaged mutation proportion daily throughout the year. The maximum proportion 
in the last three month, denoted as Pmax, was computed to indicate if the mutation proportion had expanded 
and reached a substantial level in the end of the study period. To correct multiple comparisons, the false posi-
tive error rates (q-values) were computed from p-values. An SNV was selected if the q-value threshold (< 0.01) 
indicated statistically significant dynamics and if the Pmax threshold (> 10%) suggested a substantial expansion.

Imputing missing nucleotides. Due to the nature of sequencing technologies, a small fraction of nucleo-
tides were untyped, and were coded as “n”. Given high linkage disequilibrium across all SNVs, we assembled a 
panel of polymorphic nucleotides that had no missing values and had not been selected into SNVs of interest, 
and treated them as an “imputation base”. Fusing one SNV with those in the imputation base, we computed their 
haplotype frequencies, and used their haplotype frequencies to compute posterior probabilities to impute miss-
ing nucleotides, in the same way as imputing single nucleotide  polymorphisms35.

Logistic regression and statistics. Treating a binary indicator of 1 and 0 for inpatient and outpatient, 
respectively, as an outcome, the logistic regression model regresses on SNVs or their haplotypes, to generate 
association statistics: estimated coefficient, standard error, Z-score, p-value and q-value. For SNVs with zero 
frequencies in either outpatients or inpatients, we performed Fisher’s exact test, instead of logistic regression 
model. Fisher exact test produced the exact p-values. Confounders (age, sex, collection time) were included into 
the logistic regression model as an adjusted analysis.

Data availability
All sequence data analyzed here are publicly available at GSIAD (https:// www. gisaid. org/) and Genebank (https:// 
www. ncbi. nlm. nih. gov/ genba nk).
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