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The present study aimed to investigate the effects of miR-338 on morphine tolerance
through the targeting of CXC chemokine receptor-4 (CXCR4) in a rat model of bone can-
cer pain (BCP). Sprague–Dawley (SD) rats were obtained and divided into model saline
(n=10), model morphine (n=50), normal saline (n=10) and normal morphine (healthy rats,
n=10) groups. After BCP rat model establishment, the remaining SD rats (n=40) in the
model saline group were assigned into pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4
shRNA, blank and PBS groups. Luciferase reporter gene assay was used for luciferase ac-
tivity. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to detect
the miR-338 and CXCR4 mRNA and protein expression. The model saline group showed
increased mRNA and protein expressions of CXCR4 but decreased miR-338 compared
with the model saline group, and the model morphine group had increased mRNA and
protein expressions of CXCR4 but decreased miR-338 compared with the model saline
group. The mRNA and protein expressions of miR-338 in the pLV-THM-miR-338 group
increased remarkably while those of the pLV-THM-anti-miR-338 group decreased signifi-
cantly compared with the CXCR4 shRNA, blank and PBS groups. The pLV-THM-miR-338,
pLV-THM-anti-miR-338, CXCR4 shRNA and CXCR4 mRNA groups all had lower mRNA and
protein expressions of CXCR4 than those in the blank and PBS groups. miR-338 exerts
significant influence in the inhibition of morphine tolerance by suppressing CXCR4 in BCP.

Introduction
Bone cancer pain (BCP) is quite complex and a recent systematic review has found that the incidence of
advanced or metastatic disease in patients with cancer pain is 64% [1]. Bone metastases in advanced cancer
frequently cause painful complications, and for 36–50% of cancer patients this pain is severe enough to
compromise their daily lives [2]. The most common causes of BCP are breast cancer and prostate cancer,
with bone absorption and cancers being the primary factors for pain [3]. Clinically, morphine and other
opioids are typically used in BCP treatment; however, prolonged morphine treatment leads to morphine
tolerance, resulting in a reduction in pain-suppression effects, shorter effective time and increased pain
sensitivity in patients, while the specific mechanisms behind morphine tolerance are not yet clear [4].
CXC chemokine receptor-4 (CXCR4) signalling has been shown to contribute to the maintenance and
development of BCP by activating astrocytes and microglia as well as sensitizing neurons [5], and miR-622
and miR-146a were found to be related to CXCR4 expression [6,7].

miRNA is a type of small non-coding RNA molecule, modulating gene expression by targeting mRNA
and triggering decoding inhibition or RNA degradation [8]. As a brain-specific miRNA, miR-338 is
located in the eighth intron of apoptosis-associated tyrosine kinase (AATK) [9], and it is believed
to target pathways in cells proliferation and differentiation [10]. One study showed that miR-338
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overexpression in cancer cells is abnormal [11], and reduces cell metastasis, invasion, proliferation and apoptosis
[12]. miR-338-3p, as a subgroup of miR-338, is also understood to inhabit cancer genes in various cancers [13].
Chemokine receptor is a widely expressed G-protein-coupled receptor, and is related to a number of human diseases
such as HIV and cancers, in a process related to CVCR4 signalling pathway’s disturbance [14]. Chemokine receptor
signals become specific CXCR4 receptor antagonists through the CXCR4 receptor, which may play a significant role
in opioid-induced pain and could affect the prior role of morphine treatment for severe pain [15]. There have been
reports on miRNAs and their regulation of CXCR4 [16], yet literature on miR-338’s targeting of CXCR4 is not widely
available. Thus, this research created a BCP rat model to assess the mechanisms of miR-338 targeting CXCR4 during
the formation of morphine tolerance in BCP.

Materials and methods
Ethical statement
This experiment was performed strictly in accordance with the research outlines on the use of awake animals in pain
studies of the International Association for the Study of Pain (IASP). The experimental methods were approved by the
Ethics Committee on animal testing of The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou
Medical University.

Establishment of BCP models
Sixty clean and healthy female adult Sprague–Dawley (SD) rats weighing 180–210 g in clean state were obtained from
Guangdong Provincial Experimental Animal Center (Animal licence No. SCXK 2008-0002, Guangdong, China). The
rats were intraperitoneally injected with (5 ml/kg) 896 chloral hydrate for anaesthesia. After this, the right knee joints
were shaved and the skin was disinfected with 70% alcohol. Knee joints were fixed using the left hand so that the
surface skin was stretched. Then, needle 7 was used to drill at the knee joints (the edge of skeletal ligament) along
the tibial longitudinal axis to the distal end of tibia for a distance of 1 cm. Needle 5 with microinjector was used to
inject tumour cells (4 × 105) to the tibial bone marrow cavity, after which intraperitoneal injections of gentamicin of
recommended dosage were given for the following consecutive 3 days to prevent infection.

Establishment of BCP rat models with morphine tolerance
Sixty rats of BCP models were randomly divided into model saline (physiological saline injection, n=10) and model
morphine (morphine injection, n=50) groups. Another 20 normal rats were randomly divided into normal saline
(healthy rats, n=10) and normal morphine (healthy rats, n=10) groups. Subcutaneous injection of 10 mg/kg mor-
phine was performed on rats in the model morphine and normal morphine groups [17]. The injection was given
twice a day, at 8:00 and 18:00, for seven consecutive days. Subcutaneous injection of normal saline with equal volume
was also performed based on rat body weight. After the injection, ten rats in each group were killed on the 7th day
to detect expressions of miR-338 and CXCR4. The remaining 40 rats in the model morphine group were used for
further experimentation.

Plasmid construction
Three plasmids were adopted for the expression system, namely transfer plasmid pGLV-H1-GFP + Puro, coated
plasmid PG-P1-VSVO and packaging plasmid PG-P2-REV. Recombinant pLV-THM-miR-338 and CXCR4 shRNA
lentiviral vector were synthesized by Shanghai GenePharma Co., Ltd. (Shanghai, China) and verified by sequenc-
ing. The sequence of pLV-THM-miR-338 was 5′-CAACAAAAUCACUGAUGCUGGA-3′ and the plasmid sequence
of CXCR4 shRNA was 5′-AGACTGATGAAGGCCAGGATT-3′. HEK293T cells (0.5 × 104/well) were inoculated in
each well within a 96-well plate, and cultured overnight in 100 μl of Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% FBS. DMEM with 10% FBS and 5 μg/ml polybrene was used to dilute lentivirus in every group into
different gradients on the following day. After removing the cell culture, 100 μl of virus diluent was added to each
well, and three replicated wells were set for each dilution factor. The cells were cultured overnight. The following day,
100 μl of complete medium was added for 48-h culturing, after which the culture was removed. Finally a microscope
was used to count GFP light emitting positive transduction unit (TU), and virus titre was calculated using the formula
TU/ml = [(infected cells/field) × (fields/well)]/volume virus (ml) × dilution factor.
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Grouping of BCP rat models with morphine tolerance and lentivirus
infection
The remaining 40 rat models were randomly divided into the pLV-THM-miR-338, CXCR4 shRNA, blank control and
PBS control groups. Intravenous injection of virus suspension of the same titre or equivalent sterile PBS solution into
the tail was performed on rats in every group. After successful establishment of BCP rat model with morphine toler-
ance, specifically the 7th day after morphine injection, 50% mechanical withdrawal threshold (MWT) was measured.
Finally, 50% MWT of each group was measured on the 7th, 9th and 14th day after injection.

Luciferase reporter gene assay
The mutant and wild-type sequence of 3′-UTR of CXCR4 gene was connected to the dual luciferase reporter gene
vector to construct the recombinant plasmids pmiR-PB-ReportTM Vector-CXCR4-3′-UTR and pmiR-PB-ReportTM

Vector-CXCR4-3′-UTR-Del, which were then divided into pmiR-PB-ReportTM Vector-CXCR4-3′-UTR, miR-338
negative control (NC), pmiR-PB-ReportTM Vector-CXCR4-3′-UTR, miR-338mimics, pmiR-PB-ReportTM

Vector-CXCR4-3′-UTR, miR338 inhibitor, pmiR-PB-ReportTM Vector -CXCR4-3′-UTR-Del, miR338 mimics,
pmiR-PB-ReportTM Vector-CXCR4-3′-UTR-Del, miR-338 inhibitor, pmiR-PB-Report Vector -CXCR4-3′-UTR-Del
and miR338 NC groups. In a 96-well plate, a total of 1.5 × 104 cells were inoculated in every well with 100 μl of
medium and cultured in the incubator with 5% CO2 and saturated humidity at 37◦C for 24 h. The next day, the
medium in every well was replaced with 50 μl of medium, after which 10 μl of anti-serum medium OPTI-MEM
(Thermo Fisher Scientific Inc., Waltham, MA, U.S.A.) was used to dilute miR-338 mimics to 100 nmol/l, 15 μl of
OPTI-MEM to dilute recombinant plasmid CXCR4-WT or CXCR4-Mut to 100 ng and 25 μl of OPTI-MEM to
dilute Lipofectamine 2000 to 0.25 μl. After 5 min, the diluted solution was mixed, gently shaken and placed at room
temperature for 20 min. Then, 50 μl of the mixed liquor was added into the well until the total volume of every well
reached 100 μl. Three replicated wells were set in every group. After being transfected for 6 h, 100 μl of fresh medium
was added. After 48-h transfection, luciferase reporter gene assay kit (Shanghai Beyotime Biotechnology Co. Ltd.,
Shanghai, China) was used for dual luciferase reporter gene assay and relative luciferase activity (hRluc/hLuc) was
compared among the different groups.

Behavioural test
The BCP rat model was established according to the methods of a previous study [18]. MWT was used for assessment
of behaviour. The rats were placed in a 26 cm × 14 cm × 26 cm transparent glass box, with wire net frame (0.5 cm × 0.5
cm × 22 cm). After placing the rats inside and allowing them to exercise freely or rest for 15–20 min, standardized
von Frey cilia (Stoelting, Philadelphia, PA, U.S.A.) (at a density of 0.18, 0.25, 0.6, 1.3, 3.8, 5.4, 7.6 and 9.7 g) was
respectively used to stimulate the postmedian of the rat foot vertically for 6–8 s. All intensities above were repeated
five times and the second stimulation was performed 2 min after the first, once its reaction had totally disappeared.
It can be drawn from this that rat withdrawal threshold to mechanical stimulation (50% MWT) = the minimum von
Frey fibre strength among more than two paw withdrawal.

Specimen collection and fluorescence microscopy
Rats in each group were anaesthetized with pentobarbitone sodium and underwent thoracotomy, after which cannulae
were used in the CV ascending aorta, delivering 20 ml of 0.9% saline to wash the blood quickly and 20 ml of 0.1 mol/l
PBS (pH = 7.4) with 4% paraformaldehyde for perfusion fixation for 20 min. After perfusion, L5 spinal cord was
placed in fresh fixative at 4◦C for 4–6 h and transferred to 20% and 30% sucrose solution for soaking until it sank
to the bottom. PBS was used to substitute the primary antibody in the NC. After rinsing with PBS, goat-anti-rabbit
IgG-labelled with FITC was used as the corresponding secondary antibody, being incubated at room temperature in
darkness for 2 h. The slices were placed under OLYMPUS IX81 light microscope (Olympus, Tokyo, Japan) and stained
with a fluorescent dye Hoechst 33258 (Sigma–Aldrich Chemical Company, St. Louis, MO, U.S.A.). The coverslip was
placed with cells facing down and was mounted with 50% glycerol, put on its slide, then observed and photographed
under the oil immersion lens of fluorescence microscope (Leica DMIRB).

Quantitative real-time PCR
L3-4 segment tissues of rats, following successful construction of BCP rat model with morphine tolerance and lentiviral
transfection, were dealt and mixed with liquid nitrogen into powder. Total RNA was extracted from the tissues with
Trizol (Gibco Company, Grand Island, NY, U.S.A.) according to the instructions. The concentration and purity of
RNA were detected with UV spectrophotometer. The extracted 1000 ng of RNA samples were used to construct 20 μl
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Table 1 The primer sequences of qRT-PCR

Gene Sequence

mir-338 F: 5′-AACAAUAUCCUGGUGCUGAGUG-3′

R: 5′-CUCAGCACCAGGAUAUUGUUUU-3′

U6snRNA F: 5′-ATTGGAACGATACAGAGAAGATT-3′

R: 5′-GGAACGCTTCACGAATTTG-3′

CXCR4 F: 5′-CTTACTACATTGGGATCAGC-3′

R: 5′-AGTCCTACCACGAGACATAC-3′

GAPDH F: 5′-TCATGGGTGTGAACCATGAGAA-3′

R: 5′-GGCATGGACTGTGGTCATGAG-3′

Note: F, forward; R, reverse.

of reverse transcription system with 4 μl of 5× PrimeScriptTM Buffer, 1 μl of PrimeScriptTM RT Enzyme Mix I, 1 μl
of OligodT Primer (50 uM), 1 μl of Random 6 mers (100 μM) and RNase Free dH2O according to the instructions of
PrimeScriptTM RT Regeant Kit (Takara Biotechnology Ltd., Liaoning, China). Reverse transcription was conducted
at 37◦C for 30 min and then 85◦C for 6 s. SYBR Premix Ex Taq II kit (Takara Biotechnology Ltd., Liaoning, China)
was used for quantitative real-time PCR (qRT-PCR). One microlitre of reverse transcription product was used to
construct 20 μl of reaction system with 10 μl of SYBR Green I Premix Ex Taq II (2×), 0.8 μl of PCR Forward Primer
(10 μM), 0.8 μl of PCR Reverse Primer (10 μM), 0.4 μl of ROX Reference Dye (50×) and 7 μl of dH2O. The reverse
transcription proceeded with initial denaturation at 95◦C for 30 s, then 40 cycles with denaturation at 95◦C for 5 s,
annealing at 56◦C for 30 s and extension at 72◦C for 30 s. Finally, melt expression was performed. Relative expression of
the target gene was calculated using 2−��C

T method. The experiment was repeated three times on every sample. The
internal reference genes of miR-93-5p and Smad5 were U6snRNA and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) respectively. The primer sequences are shown in Table 1.

Western blotting
After the hearts of rats were perfused with 20 ml of normal saline, L5 segment of the spinal cord was removed
and placed in a 2 ml centrifuge tube treated with diethyl pyrocarbonate (DEPC) solution. After this 100 μl of
radio-immunoprecipitation assay (RIPA) cell lysis buffer (ShineGene Molecular Biotechnology, Shanghai, China)
was added to the electric homogenate. The samples were then put on ice statically for 30 min after which the to-
tal cell proteins were extracted according to the instructions. BCA protein assay kit (Beyotime Biotechnology Co.,
Shanghai, China) was used to quantify the extracted protein. SDS/PAGE board was prepared and the sample vol-
ume was calculated on the basis of the protein concentration. The sample was mixed with sample buffer (1:1) and
put into boiling water for 5 min. Under conditions of 80 and 100 V, 5% concentrated gel and 12% separate gel were
used for electrophoresis. The gelatin was cut, marked by cutting the corners off to make a ‘sandwich’ structure and
arranged for electroporation in refrigerator at 4◦C with a constant current of 200 mA for 2 h. The samples were sealed
for 1 h at room temperature with the addition of 5% skimmed milk powder, after which the membrane was washed
with TBS tween (TBST) for 10 min with three repetitions and immersed in 1:1000 rabbit anti-CXCR4 monoclonal
antibody (ab92698 and Abcam, U.S.A.) and 1:4000 rabbit-anti-human β-actin polyclonal antibody (ab129348, Ab-
cam Inc., Cambridge, MA, U.S.A.) respectively for incubation at 4◦C overnight. The following day, the membrane
was washed for 10 min with three repetitions and put in horseradish peroxidase (HRP)-marked sheep-anti-rabbit
IgG (Sigma–Aldrich Chemical Company, St. Louis, MO, U.S.A.) for incubation at room temperature for 1 h. The
membrane was then developed with ECL kit and scanned with gel imaging system. The bands obtained were anal-
ysed with ImageJ software. The relative expression of CXCR4 in each group was compared, with β-actin serving as
internal control.

Statistical analysis
Statistical analyses were conducted using SPSS20.0 software. All measurement data were expressed by means and
standard deviations. One-way ANOVA was used to compare behaviour indices and mRNA expressions of miR-338
and CXCR4 of rats at specific time points among different groups. Variance analysis of repeated measurement data
was used for comparison within one group. P<0.05 was considered as statistically significant.
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Figure 1. Comparisons of MWT detected by behavioural test among four groups

Results
Comparisons of MWT detected by behavioural test among four groups
On the 1st, 3rd, 5th and 7th day, after administering morphine to the rat for 1 h, the behavioural test demonstrated that
50% MWT of the rats showed no significant difference in the model saline and normal saline groups. On the 1st and
3rd day, after morphine injection, 50% MWT in the model morphine and normal morphine groups increased con-
siderably, and significant difference was found compared with measurements before injection (both P<0.05), while
comparisons among groups were not statistically different on the 1st and 3rd day (all P>0.05). On the 5th and 7th
day, the 50% MWT in the model morphine and normal morphine groups decreased notably, and significant differ-
ence was found compared with those of the 1st and 3rd day (both P<0.05). Moreover, on the 5th day, the comparison
between test results before injection and after injection was statistically different (both P<0.05), but on the 7th day,
50% MWT was back to the same level as before morphine injection, which was considered not statistically different
(P>0.05). On the 1st, 3rd and 5th day, 50% MWT in the model morphine group was significantly higher than that in
the model saline group (P<0.05) and 50% MWT in the normal morphine group was significantly higher than that in
normal saline group (P<0.05). On the 7th day, there was no significant difference in 50% MWT between the normal
morphine and normal saline groups, nor between the model morphine and model saline group (both P>0.05) (Figure
1). The above-mentioned results showed the successful establishment of BCP rat model with morphine tolerance.

Comparisons of miR-338 and CXCR4 mRNA and protein expression
among four groups
In order to confirm the roles of miR-338 and CXCR4 in BCP rat with morphine tolerance, ten rats taken from the
normal saline, normal morphine, model saline and model morphine groups were killed after the successful estab-
lishment of BCP rat with morphine tolerance (on the 7th day after injection with morphine). L3-4 segments of the
spines were removed to detect expression changes of miR-338 and CXCR4. The result showed that CXCR4 mRNA
expression in the model saline and model morphine groups was higher than those of the normal saline and normal
morphine groups respectively (both P<0.05, Figure 2A). Also, miR-338 mRNA expression in the model saline and
model morphine groups was lower than those of the normal saline group and the normal morphine group respec-
tively (both P<0.05, Figure 2A). According to the Western blotting (P<0.05, Figure 2B), this trend was consistent
with the result of qRT-PCR (P<0.05).

CXCR4 confirmed as a target gene of miR-338
Biomedical database and TargetScan (target point analysing tool) were employed, and the gene structures were anal-
ysed by gene complementation theory, verifying that CXCR4 was one of the target genes of miR-338 in bone cancer
cells with the pre-experiment, and also that miRNA-338 seems to play a biological role by identifying and combining
with CXCR4 mRNA. In order to further confirm that CXCR4 is a direct target gene of miR-338, CXCR4-3′-UTR-WT,
CXCR4-3′-UTR-Mut and miR-338 mimics were co-transfected with miRNA-NC as an NC. The fluorescence value
of each well was detected after 48 h. It was found that after miR-338 mimics, 3′-UTR and mutant fluorescent enzyme
reporter plasmid had co-transfected rat bone cancer cells, compared with the NC group, miR-338 and wild-type plas-
mid showed decreased Renilla fluorescence enzyme activity, and as a result lower activity ratio of Renilla fluorescence
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Figure 2. Comparisons of mRNA and protein expressions of miR-338 and CXCR4 among four groups

(A) Comparisons of mRNA expressionsof miR-338 and CXCR4 detected by qRT-PCR among each group. (B) CXCR4 protein electrophoresis

image and CXCR4 protein cartogram detected by Western blotting in each group; *P<0.05, compared with the normal saline group; #P<0.05,

compared with the model saline group.

Figure 3. Comparisons of fluorescein activity in rat bone cancer cells after transfection of wild-type and mutant

CXCR4-3′-UTR plasmids among four groups

(A) The sequences for combined site of miR-338 and CXCR4-3′-UTR region. (B) Luciferase assay results; *P<0.05, compared with other

groups.

enzyme to firefly luciferase activity (P<0.05). There was no significant difference in the effect of miR-338 on mutant
plasmid (P=0.404), as shown in Figure 3.

Comparisons of MWT detected by behavioural test after lentivirus
infection among four groups
After the successful establishment of BCP rat model with morphine tolerance, the remaining 40 rats were randomly
divided into pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4 shRNA, blank control and PBS control groups,
and intravenous injection of virus suspension of the same titre or equivalent sterile PBS solution was performed. On
the 7th, 9th, 11th and 14th day after injection, 50% MWT was measured in each group and the results are shown in
Table 2. There was no significant difference in 50% MWT between the blank control and PBS control groups. In the
pLV-THM-miR-338, pLV-THM-anti-miR-338 and CXCR4 shRNA groups, 50% MWT began to rise from the 9th day,
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Table 2 The comparisons of 50% MWT of BCP rats with morphine tolerance on the 7th, 9th, 11th and 14th day after
injection of virus suspension

Group 7th day 9th day 11th day 14th day

pLV-THM-miR-338 group 4.14 +− 0.71*† 7.80 +− 0.82*†‡ 8.84 +− 0.92*†‡§ 4.77 +− 0.75*†§

pLV-THM-anti-miR-338 group 3.85 +− 0.67*† 6.38 +− 0.79*†‡ 8.01 +− 0.88*†‡§ 4.09 +− 0.76*†§

CXCR4 shRNA group 4.03 +− 0.88*† 7.71 +− 0.96*†‡ 8.69 +− 0.87*†‡§ 4.74 +− 0.89*†§

Blank control group 5.48 +− 0.44 5.56 +− 0.48 5.69 +− 0.57 5.81 +− 0.48

PBS control group 5.52 +− 0.39 5.63 +− 0.54 5.74 +− 0.52 5.86 +− 0.43

Note: *P<0.05, compared with the blank control group; †P<0.05, compared with the PBS control group; ‡P<0.05, compared with the 7th day; §P<0.05,
compared with the 9th day.

Figure 4. Virus infection level observed in rat spinal cord sections on the 14th day after virus injection among four groups

Figure 5. Comparisons of expressions of miR-338 and CXCR4 after lentivirus infection

(A) mRNA expressions of CXCR4 and miR-338 in L3-4 spinal cord tissues detected by qRT-PCR in each group on the 14th day after virus

suspension injection in BCP rats undergoing morphine tolerance. (B) Protein electrophoresis and protein changes of CXCR4 of L3-4 spinal

cord tissues detected by Western blotting on the 14th day after virus suspension injection in BCP rats; *P<0.05, compared with the blank

control group; #P<0.05, compared with the PBS control group; P<0.05, compared with the pLV-THM-miR-338 group; &P<0.05, compared

with the pLV-THM-anti-miR-338 group.

reached its highest point on the 11th day and returned to the same condition as prior to lentivirus injection on the 14th
day. On the 7th, 9th, 11th and 14th day after injection, 50% MWTs in the pLV-THM-miR-338 and CXCR4 shRNA
groups were significantly higher than those of the other four groups (all P<0.05), but an opposite result was observed
in the pLV-THM-anti-miR-338 group. There was no significant difference in 50% MWT between the blank control
and PBS control groups (P>0.05). On the 14th day, after behavioural test, rats in each group were killed and L5 seg-
ment of the spines were removed, frozen and placed under fluorescent microscope to observe virus infection (Figure
4). When transfection efficacy reached an average of 80%, in the pLV-THM-miR-338, pLV-THM-anti-miR-338 and
CXCR4 shRNA groups, the titres of lentivirus were 4.8 × 108 TU/ml, 5.5 × 108 TU/ml and 6.9 × 106 TU/ml respec-
tively. The miR-338 and CXCR4 mRNA expressions in L3-4 spinal tissues were detected with qRT-PCR on the 14th
day (Figure 5A). CXCR4 protein expression change was measured with Western blotting and immunohistochem-
istry (Figure 5B), with results showing that miR-338 expression of the pLV-THM-miR-338 group was significantly
higher than those of the CXCR4 shRNA, blank control and PBS control groups, while miR-338 expression of the
pLV-THM-anti-miR-338 group was remarkably lower that those three groups (all P<0.05). There was no significant
difference in miR-338 expression among the CXCR4 shRNA, blank control and PBS control groups (all P>0.05).
Expressions of CXCR4 mRNA and protein in the pLV-THM-miR-338 group, pLV-THM-anti-miR-338 and CXCR4
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shRNA groups were lower than those of other groups (all P<0.05). There was no significant difference in CXCR4
mRNA and protein expressions between the blank control and PBS control groups (both P>0.05).

Discussion
Cancer is one of the most serious threats to human survival, and 50–80% of cancer patients feel moderate or severe
pain, especially those with advanced cancer [19]. Common tumours transfer easily to the bones, resulting in BCP.
The patient’s body builds morphine tolerance after long-term morphine use, which reduces the analgesic effects [20].
Therefore, this present study aimed to explore the mechanism of miR-338’s regulation on CXCR4 in development
of morphine tolerance in rats with BCP by establishing a BCP rat model with chronic morphine tolerance. It was
found that miR-338 and CXCR4 played important roles in morphine tolerance in BCP and that miR-338 can inhibit
CXCR4 to delay the formation of morphine tolerance in BCP.

The study found that after building morphine tolerance in BCP rat model, miR-338 showed significantly lower
expression, suggesting that miR-338 may be related to the formation of BCP. miRNAs are active in cell proliferation,
differentiation, apoptosis and metastasis, and they are often located at fragile sites and genomic regions of deletion and
amplification observed in cancer. They can be oncogenic or tumour suppressive depending upon their downstream
targets [21]. miR-338 is located in chromosome 17q25 of AATK gene and plays vital roles in promoting cells apopto-
sis, neuron differentiation and neurite extension At G0/G1 stage, miR-338 can inhibit cells’ proliferation, metastasis
and invasion [22]. Since pain and morphine tolerance have similar signalling pathways, miRNA may also be involved
in the development of morphine tolerance, and neurons in the dorsal horn of the spinal cord may also be key in pain
conduction and development of morphine tolerance [23]. While miR-338 is a kind of brain-specific miRNA [10]
also expressed in spinal cord [24], it is safe to infer that miR-338 is related to development of morphine tolerance.
Researches show that miR-338 expression was down-regulated in liver cancer and oral squamous cell carcinoma,
and this reduced level of miR-338 was closely related to malignant activities like cancer metastasis that can cause
BCP [25-27]; thus we can infer that miR-338 expression may also be down-regulated. According to Liang et al. [28],
synthesized precursor miRNA can significantly reduce the expression of CXCR4, thus reducing the CXCR4/SDF-1
pathway-mediated tumour invasion and metastasis, suggesting that miRNA can be used as an upstream factor of
CXCR4 pathway in the regulation of tumour metastasis. Furthermore, past studies have indicated that miR-338 can
affect cancer invasion and metastasis by reducing CXCR4 expression [29], so as to slow the development of BCP.

Our study also found that after generating morphine tolerance in BCP rat model, CXCR4 expression signifi-
cantly increased, suggesting its importance in morphine tolerance development. CXCR4, also known as ‘fusin’, is
a well-researched chemokine receptor [30]. Morphine use can lead to the increased expressions of the inflammatory
factors, and pro-inflammatory factors have a tendency to increase pain sensitivity, namely, to suppress and signif-
icantly reduce the effect of acute opioid analgesic, and chemotactic factor CXCR4 has the same pro-inflammatory
effect [15,31]. CXCR4 is mainly expressed in neuronal cell membrane of spinal dorsal horn, and its activation can
generate downstream intracellular signalling pathways to neuron activation, a primary cause of hyperalgesia, indi-
cating that CXCR4 is closely related to morphine tolerance [32]. Research displayed that CXCR4 signalling pathway
blocking can reduce inflammation, reduce pain and delay the development of morphine tolerance. After morphine
injection, CXCR4 expression in other studies increased, in line with the results of this research [15,33]. Furthermore,
the present study confirmed that CXCR4 is a direct downstream target gene of miR-338, suggesting it plays a bio-
logical role by identifying and binding CXCR4 mRNA, providing a new insight into the development of morphine
tolerance.

Based on a successful construction of BCP rat model, the present study of chronic morphine tolerance found that
miR-338 and CXCR4 played key roles in BCP morphine tolerance development. Furthermore, miR-338 through
targeted regulation of CXCR4 expression affected and delayed the development of morphine tolerance in BCP. Further
studies are required, however, to fully understand the specific mechanisms of miR-338 targeting of CXCR4.

Author contribution
All authors contributed in the conception of the work, conducting the study, revising the draft and approving the final version of
the manuscript.

Competing interests
The authors declare that there are no competing interests associated with the manuscript.

8 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution Licence 4.0 (CC BY).



Bioscience Reports (2017) 37 BSR20160517
DOI: 10.1042/BSR20160517

Funding
No funding was declared by the authors of this manuscript.

Abbreviations
AATK, apoptosis-associated tyrosine kinase; BCP, bone cancer pain; CVCR4, cxc chemokine receptor-4; CXCR4, CXC
chemokine receptor-4; dh20, distilled water; DMEM, Dulbecco’s modified Eagle’s medium; L5, the fifth lumbar; MWT, mechani-
cal withdrawal threshold; NC, negative control; qRT-PCR, quantitative real-time PCR; SD, Sprague–Dawley; SDF-1, stromal cell
derived factor 1; SYBR, Synergy Brand; VSVO, Vector state-vector observation; WT, wild type.

References
1 Currie, G.L., Delaney, A., Bennett, M.I., Dickenson, A.H., Egan, K.J., Vesterinen, H.M. et al. (2013) Animal models of bone cancer pain: systematic

review and meta-analyses. Pain 154, 917–926
2 Lan, L.S., Ping, Y.J., Na, W.L., Miao, J., Cheng, Q.Q., Ni, M.Z. et al. (2010) Down-regulation of toll-like receptor 4 gene expression by short interfering

RNA attenuates bone cancer pain in a rat model. Mol. Pain 6, 2
3 Jimenez-Andrade, J.M., Mantyh, W.G., Bloom, A.P., Ferng, A.S., Geffre, C.P. and Mantyh, P.W. (2010) Bone cancer pain. Ann. N.Y. Acad. Sci. 1198,

173–181
4 King, T., Vardanyan, A., Majuta, L., Melemedjian, O., Nagle, R., Cress, A.E. et al. (2007) Morphine treatment accelerates sarcoma-induced bone pain,

bone loss, and spontaneous fracture in a murine model of bone cancer. Pain 132, 154–168
5 Shen, W., Hu, X.M., Liu, Y.N., Han, Y., Chen, L.P., Wang, C.C. et al. (2014) CXCL12 in astrocytes contributes to bone cancer pain through

CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J. Neuroinflammation 11, 75
6 Liu, H., Liu, Y., Liu, W., Zhang, W. and Xu, J. (2015) EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma. Nat.

Commun. 6, 8494
7 Quaranta, M.T., Olivetta, E., Sanchez, M., Spinello, I., Paolillo, R., Arenaccio, C. et al. (2015) miR-146a controls CXCR4 expression in a pathway that

involves PLZF and can be used to inhibit HIV-1 infection of CD4(+) T lymphocytes. Virology 478, 27–38
8 Huang, X.H., Wang, Q., Chen, J.S., Fu, X.H., Chen, X.L., Chen, L.Z. et al. (2009) Bead-based microarray analysis of microRNA expression in

hepatocellular carcinoma: miR-338 is downregulated. Hepatol. Res. 39, 786–794
9 Huang, X.H., Chen, J.S., Wang, Q., Chen, X.L., Wen, L., Chen, L.Z. et al. (2011) miR-338-3p suppresses invasion of liver cancer cell by targeting

smoothened. J. Pathol. 225, 463–472
10 Besse, A., Sana, J., Lakomy, R., Kren, L., Fadrus, P., Smrcka, M. et al. (2016) MiR-338-5p sensitizes glioblastoma cells to radiation through regulation

of genes involved in DNA damage response. Tumour Biol. 37, 7719–7727
11 Du, L., Schageman, J.J., Irnov, Girard, L., Hammond, S.M., Minna, J.D. et al. (2010) MicroRNA expression distinguishes SCLC from NSCLC lung tumor

cells and suggests a possible pathological relationship between SCLCs and NSCLCs. J. Exp. Clin. Cancer Res. 29, 75
12 Niehaus, J.Z., Good, M., Jackson, L.E., Ozolek, J.A., Silverman, G.A. and Luke, C.J. (2015) Human SERPINB12 is an abundant intracellular serpin

expressed in most surface and glandular epithelia. J. Histochem. Cytochem. 63, 854–865
13 Shan, Y., Li, X., You, B., Shi, S., Zhang, Q. and You, Y. (2015) MicroRNA-338 inhibits migration and proliferation by targeting hypoxia-induced factor

1alpha in nasopharyngeal carcinoma. Oncol. Rep. 34, 1943–1952
14 Busillo, J.M., Armando, S., Sengupta, R., Meucci, O., Bouvier, M. and Benovic, J.L. (2010) Site-specific phosphorylation of CXCR4 is dynamically

regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol. Chem. 285, 7805–7817
15 Wilson, N.M., Jung, H., Ripsch, M.S., Miller, R.J. and White, F.A. (2011) CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav.

Immun. 25, 565–573
16 Wang, J.Y., Li, X.F., Li, P.Z., Zhang, X., Xu, Y. and Jin, X. (2016) MicroRNA-23b regulates nasopharyngeal carcinoma cell proliferation and metastasis by

targeting E-cadherin. Mol. Med. Rep. 14, 537–543
17 Yan, X., Huang, X. and Huang, D. (2010) NMDA receptor and NOS in morphine tolerance in mice with bone cancer. Zhong Nan Da Xue Xue Bao Yi Xue

Ban 35, 458–463
18 Kim, S.H. and Chung, J.M. (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50,

355–363
19 Prommer, E.E. (2015) Pharmacological management of cancer-related pain. Cancer Control 22, 412–425
20 Niu, Z., Ma, J., Chu, H., Zhao, Y., Feng, W. and Cheng, Y. (2012) Melanocortin 4 receptor antagonists attenuates morphine antinociceptive tolerance,

astroglial activation and cytokines expression in the spinal cord of rat. Neurosci. Lett. 529, 112–117
21 Yong, F.L., Law, C.W. and Wang, C.W. (2013) Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of

colorectal cancer. BMC Cancer 13, 280
22 Chen, X., Pan, M., Han, L., Lu, H., Hao, X. and Dong, Q. (2013) miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through

targeting PREX2a. FEBS Lett. 587, 3729–3737
23 Tapocik, J.D., Ceniccola, K., Mayo, C.L., Schwandt, M.L., Solomon, M., Wang, B.D. et al. (2016) MicroRNAs are involved in the development of

morphine-induced analgesic tolerance and regulate functionally relevant changes in Serpini1. Front. Mol. Neurosci. 9, 20
24 Kos, A., Klein-Gunnewiek, T., Meinhardt, J., Loohuis, N.F., van Bokhoven, H., Kaplan, B.B. et al. (2016) MicroRNA-338 attenuates cortical neuronal

outgrowth by modulating the expression of axon guidance genes. Mol. Neurobiol. 1–14, doi:10.1007/s12035-016-9925-z
25 Lu, Y.Y., Sweredoski, M.J., Huss, D., Lansford, R., Hess, S. and Tirrell, D.A. (2014) Prometastatic GPCR CD97 is a direct target of tumor suppressor

microRNA-126. ACS Chem. Biol. 9, 334–338

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution Licence 4.0 (CC BY).

9



Bioscience Reports (2017) 37 BSR20160517
DOI: 10.1042/BSR20160517

26 Liu, C., Wang, Z., Wang, Y. and Gu, W. (2015) MiR-338 suppresses the growth and metastasis of OSCC cells by targeting NRP1. Mol. Cell. Biochem.
398, 115–122

27 Mantyh, P. (2013) Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain 154, S54–S62
28 Liang, Z., Wu, H., Reddy, S., Zhu, A., Wang, S., Blevins, D. et al. (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4

with an artificial microRNA. Biochem. Biophys. Res. Commun. 363, 542–546
29 Yu, T., Wu, Y., Huang, Y., Yan, C., Liu, Y., Wang, Z. et al. (2012) RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and

apoptosis. Mol. Ther. 20, 398–407
30 Chatterjee, S., Behnam Azad, B. and Nimmagadda, S. (2014) The intricate role of CXCR4 in cancer. Adv. Cancer Res. 124, 31–82
31 de Oliveira, K.B., Guembarovski, R.L., Guembarovski, A.M., da Silva do Amaral Herrera, A.C., Sobrinho, W.J., Ariza, C.B. et al. (2013) CXCL12, CXCR4

and IFNgamma genes expression: implications for proinflammatory microenvironment of breast cancer. Clin. Exp. Med. 13, 211–219
32 Bai, L., Wang, X., Li, Z., Kong, C., Zhao, Y., Qian, J.L. et al. (2016) Upregulation of chemokine CXCL12 in the Dorsal Root Ganglia and spinal cord

contributes to the development and maintenance of neuropathic pain following spared nerve injury in rats. Neurosci. Bull. 32, 27–40
33 Wei, F., Moore, D.C., Wei, L., Li, Y., Zhang, G., Wei, X. et al. (2012) Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway.

Arthritis Res. Ther. 14, R177

10 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
Licence 4.0 (CC BY).


