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Transcranial Magnetic Stimulation (TMS) is a form of non-invasive brain stimulation, used
to alter cortical excitability both in research and clinical applications. The intermittent
and continuous Theta Burst Stimulation (iTBS and cTBS) protocols have been shown
to induce opposite after-effects on human cortex excitability. Animal studies have
implicated synaptic plasticity mechanisms long-term potentiation (LTP, for iTBS) and
depression (LTD, for cTBS). However, the neural basis of TMS effects has not yet
been studied in human neuronal cells, in particular at the level of gene expression
and synaptogenesis. To investigate responses to TBS in living human neurons, we
differentiated human SH-SY5Y cells toward a mature neural phenotype, and stimulated
them with iTBS, cTBS, or sham (placebo) TBS. Changes in (a) mRNA expression of a
set of target genes (previously associated with synaptic plasticity), and (b) morphological
parameters of neurite outgrowth following TBS were quantified. We found no general
effects of stimulation condition or time on gene expression, though we did observe a
significantly enhanced expression of plasticity genes NTRK2 and MAPK9 24 h after iTBS
as compared to sham TBS. This specific effect provides unique support for the widely
assumed plasticity mechanisms underlying iTBS effects on human cortex excitability. In
addition to this protocol-specific increase in plasticity gene expression 24 h after iTBS
stimulation, we establish the feasibility of stimulating living human neuron with TBS, and
the importance of moving to more complex human in vitro models to understand the
underlying plasticity mechanisms of TBS stimulation.

Keywords: brain Stimulation, cortical excitability, long term potentiation (LTP), gene expression, SH-SY5Y cells,
theta burst stimulation (TBS)
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INTRODUCTION

Transcranial Magnetic Stimulation (TMS) is a widely used
neuromodulation technique, where electromagnetic pulses can
non-invasively stimulate cortical structures (Barker et al.,
1985; Hallett, 2007). Multiple pulses administered in a certain
frequency (repetitive TMS: rTMS), can have effects on cortical
excitability lasting beyond the period of stimulation (Pascual-
Leone et al., 1994; Huang et al., 2005). In humans, such effects
are often revealed with physiological outcome measures, such
as Motor-Evoked Potentials (MEPs; Rothwell et al., 1999). For
example, the commonly used Theta Burst Stimulation (TBS)
protocols intermittent and continuous TBS (iTBS and cTBS) have
been shown to increase or decrease MEPs for up to 1 h following
stimulation, respectively, (Huang et al., 2005). Still, large inter
and intra subject variability have been associated with the use of
MEP’s as an outcome measure (Schilberg et al., 2017). Several
reports on the difficulty of replicating the assumed iTBS/cTBS
effects have cast doubt on the efficacy of these protocols (Hamada
et al., 2013; Lopez-Alonso et al., 2014; Tse et al., 2018; Thomson
et al., 2019). A method to reliably verify rTMS effects, for example
in an in vivo model, is urgently needed.

A widespread assumption is that such after-effects are
attributable to neuronal plasticity mechanisms, such as long-
term potentiation (LTP) and long-term depression (LTD) (Suppa
et al., 2016). Indeed, administering an N-methyl-D-aspartate
receptor (NMDAR) antagonist to participants prior to iTBS/cTBS
stimulation has been shown to completely abolish the after-effects
on MEP amplitude, relating NMDAR-dependent LTP/LTD to
TBS effects in humans (Huang et al., 2007).

Long-term potentiation is a well-studied form of synaptic
plasticity, often induced ex vivo through high frequency
stimulation directly to individual neurons or groups of neurons
(Bliss and Lomo, 1973). It can be divided into two phases,
early-LTP, which is protein-synthesis independent, and occurs
immediately after stimulation, and late-LTP, which requires
protein synthesis and can lead to structural and functional
changes lasting at least 24 h in vitro (Frey et al., 1993; Abel et al.,
1997; Kandel, 2001; Baltaci et al., 2019). The phenomenon of
late LTP depends heavily on brain-derived neurotrophic factor
(BDNF) binding to its high affinity receptor, tyrosine kinase
receptor B (TrkB), and initiating a series of signaling proteins
leading to changes in expression of plasticity related genes
(Matsuki, 1998; Sermasi and Domenici, 1998; Gottschalk et al.,
1999; Huang et al., 1999).

In cultured mouse neurons, rTMS has been shown to activate
this BDNF-TrkB signaling pathway (Muller et al., 2011; Wang
et al., 2011; Ma et al., 2013), as well as to induce an immediate
release of calcium from intracellular stores (Grehl et al., 2015;
Banerjee et al., 2017), which is important in the induction of
synaptic plasticity (Hulme et al., 2012). In rats, high and low
frequency rTMS stimulation showed differential activation of the
immediate early genes C-FOS (a general marker for excitatory cell
activity) and EGR1 (a presumed marker of LTP or LTD induction)
(Aydin-Abidin et al., 2008). In addition, iTBS and cTBS showed
dose-dependent and protocol specific effects on the synthesis
of these two proteins (Volz et al., 2013). iTBS and cTBS also

differentially change the synthesis of calcium binding proteins in
rats. The latter is related to modulation of inhibitory interneurons
(Trippe et al., 2009; Benali et al., 2011; Mix et al., 2014, 2015),
which has a functional impact on neuronal electrical activity, with
iTBS, but not cTBS, enhancing spontaneous neuronal firing and
EEG gamma band power (Benali et al., 2011).

In sum, several lines of cellular evidence from animal studies
implicate different aspects of late LTP mechanisms in the after-
effects of rTMS. But such plasticity effects of rTMS at the cellular
and molecular level have mainly been examined in rodent-
based models. Given the rapid development and increasingly
widespread and accepted use of rTMS, particularly TBS, for both
experimental and clinical applications in human volunteers and
patients, it seems crucial to study and understand the cellular
effects of TBS in human neurons. In vitro studies with human
neurons could validate the animal results, and contribute to our
understanding of the mechanisms of action underlying different
TBS protocols that are already, and increasingly, (clinically)
applied worldwide.

To our knowledge, only two previous studies have used human
SH-SY5Y neuroblastoma cells to measure responses to rTMS
in vitro, and both used classical high and low frequency protocols.
One study reported protocol-specific effects of high (9 Hz) and
low (3 Hz) frequency rTMS stimulation on catecholamine levels
and neurotransmitter metabolism (Shaul et al., 2003), and the
other showed increased intracellular cAMP and CREB activation
with high (5 Hz) frequency rTMS (Hellmann et al., 2012).
These studies provide the first evidence of the feasibility of
using SH-SY5Y cells in this type of study. However, to date no
study has used SH-SY5Y cells to investigate neural responses
to TBS protocols.

Here, we developed an in vitro human neuron model
to assess protocol-specific effects of iTBS/cTBS on plasticity
markers of gene expression and neurite outgrowth. We chose to
investigate changes in the BDNF-TrkB signaling cascade, given
its importance in plasticity mechanisms, and because previous
animal studies have shown an rTMS-induced effect on protein
expression in this pathway (Frey et al., 1993; Gottschalk et al.,
1999; Kandel, 2001). We focused on hypothesis-driven gene
expression targets in this pathway, to identify immediate effects
to help tailor future protein or genome-wide screening analysis.
We also wanted to quantify any structural changes to neurite
morphology with commonly used cytoskeletal markers βIII-
Tubulin and MAP2, which may indicate neuroplastic effects.
We differentiated SH-SY5Y cells into a mature neuron-like
phenotype, applied different TBS protocols, and collected cells
immediately, 3 h, 6 h, and 24 h after stimulation. While in
humans TBS effects have been shown to be strongest up to 30 min
after stimulation (Huang et al., 2005), we chose these time points
to capture the plasticity-dependent processes requiring longer
periods of time (Dent et al., 1999; Minichiello, 2009; Yap and
Greenberg, 2018).

We report a protocol-specific effect on expression of genes
in the BDNF-TrkB pathway, with an increase in expression of
NTRK2 and MAPK9 24 h after iTBS stimulation, but no change
in cell count, neurite length, neurite branching, or levels of
neurite proteins. In a separate report, we showed that these TBS
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procedures, using the same in vitro model, did affect excitability
as hypothesized. This suggests that the results reported here did
originate from functionally active cell cultures, that responded to
TBS as hypothesized (Thomson et al., 2020). The current results,
positive as well as negative, thus demonstrate the feasibility and
value of in vitro human neuron studies to unravel plasticity
mechanisms induced by TMS.

METHODS

Cell Culture
SH-SY5Y cells were obtained from ATCC R© (Cat #CRL2266TM,
RRID:CVCL_0019) and were maintained and expanded
according to ATCC R© recommendations. For experiments,
cells were not used above passage 26. Cells were grown in
DMEM/Nut Mix F12 with Glut-L (GibcoTM, Thermo Scientific)
supplemented with 10% heat inactivated fetal bovine serum
(FBS, MERCK), 1% penicillin-streptomycin (P/S), and 1%
L-Glutamate at 37◦C and 5% C02. Experiments were conducted
on differentiated cells plated in round 35 mm dishes at
approximately 2.4 × 104 cells per well. Differentiation was
induced over a period of 13 days; FBS supplementation was
decreased to 3% 3 days prior to the addition of 10 µM retinoic
acid for 10 days (RA; Sigma-Aldrich, R2625). Medium was
replaced every 2 days.

Magnetic Stimulation
Cells were placed 1 cm below the center of a Cool-B65 figure of 8
coil (Magventure, Denmark) and stimulated at 100% Maximum
Stimulator Output (MSO) with a MagPro X100 with MagOption
stimulator, realized output 143 A/µS (Magventure, Denmark).
The setup is illustrated in Figure 1A. Each stimulation consisted
of the Huang et al. (2005) published protocol of 50 Hz triplets
repeated in a 5 Hz rhythm. cTBS was a continuous train, while
iTBS was a 2 s train of pulses, with an inter-train interval of 8 s,
both for 600 pulses (Huang et al., 2005).

Cells stimulated with cTBS remained under the coil for an
additional 150 s, and cells in the sham condition were placed
under the coil for 190 s, to ensure that cells in all TBS conditions
(cTBS, iTBS, and sham) were out of the incubator for the same
amount of time. The electrical field induced in the dish, with
the stimulation conditions described above (100% MSO, dish
placed 1 cm below the coil), was simulated using the SimNIBS
toolbox (Thielscher et al., 2015). The cell culture dish mesh was
generously shared by the authors of (Lenz et al., 2016). The
distribution of the electric field (V/m) within the dish from
several viewpoints can be seen in Figures 1B–D. The stimulation
protocol is shown in Figure 1E.

qRT-PCR
Cells were collected immediately, 6 h or 24 h after stimulation.
In humans, the maximal TBS effects are expected in the
first 30 min after stimulation (Huang et al., 2005). However,
we chose to measure at later time points because we were
specifically interested in plasticity-dependent gene expression,
which require hours or even days (Minichiello, 2009). While

the rapid expression of immediate early genes could be effected
by TBS within the first 30 min (Abraham et al., 1991; Jones
et al., 2001), most of the genes of interest in our study
are expressed at later time points following plasticity-inducing
protocols (Yap and Greenberg, 2018). RNA was extracted with
TRIzol (Invitrogen, 15596026) according to the manufacturer’s
instructions. Nanodrop was used to quantify the amount of RNA
in each sample, and cDNA was synthesized using RevertAid
H Minus First Strand cDNA Synthesis Kit (Thermo Scientific,
K1632). RNA was stored at −80◦C, cDNA at −20◦C. Eight
biological replicates were collected per stimulation condition
per time point, derived from at least two undifferentiated cell
batches for differentiation. Due to quality of extracted RNA,
some samples had to be discarded, leaving between four and
eight biological replicates per condition. Each biological replicate
was run in technical duplicates for qRT-PCR. A complete
list of biological replicates and differentiation batches for
each sample can be found in the Supplementary Material
(Supplementary Table 1).

Primers for qPCR were designed using the NCBI gene
reference database and Primer-BLAST (National Library
of Medicine). The following genes were analyzed (see
Supplementary Table 2 for sequences): NTRK2, BCL2, MAPK9,
TUBB3, EGR1, CREB1, and GAPDH, PPiB, and TBP were
used as housekeeping genes (HKGs). Primers, 600 nM, were
mixed with Fast Start Universal Sybr green ROX (Roche,
491385001). Samples were run in 384 well qPCR plates (Roche,
4TI-0382) using the LightCycler R© 480 Real-Time PCR system
(Roche LifeScience). qPCR program details are described in
Supplementary Material (Supplementary Table 3).

Microscopy
Cells were grown on 12 mm round glass cover slips (VWR,
631-1577), coated with 1 µg/mL Laminin (Sigma, L2020) and
100 µg/mL Poly-L-Ornithine (Sigma, P4957), and cultured as
described above.

Fluorescence microscopy was used to visualize morphological
changes 3, 6, and 24 h after stimulation. Again, this is
because these structural changes require longer time windows
to visualize effects. Axonal reorganization has been shown to
require several hours (Pascual-Leone et al., 1994; Rothwell et al.,
1999; Huang et al., 2005; Hallett, 2007; Schilberg et al., 2017)
to begin to show signs of microtubule movement (Dent et al.,
1999). Cells were washed in PBS and fixed for 10 min at
room temperature in 4% paraformaldehyde. Fixed and PBS-
washed cells were blocked in PBS-T (PBS + 0.1% Tween-
20) and 10% donkey serum followed by primary antibody
incubation. Antibodies for marking neurite outgrowth [βIII-
Tubulin (Cell Signaling, Cat #5568S, RRID:AB_10694505)] and
axons [MAP2 (Sigma, Cat #M2320, AB_609904)] were used. Cells
were washed in alternating PBS-T and PBS, and incubated with
secondary antibodies donkey-anti-rabbit Alexa 488 (Invitrogen,
Cat #A-21206 RRID:AB_141708), donkey-anti-mouse Alexa 594
(Invitrogen, Cat #A-21203, RRID:AB_141633), and with DAPI
(CarlRoth, Cat #6843.3). The glass cover slips were then mounted
on glass microscope slides and imaged with an Olympus
BX51WI microscope and Disk Spinning Unit. Pictures were

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 October 2020 | Volume 13 | Article 528396

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-13-528396 October 13, 2020 Time: 17:29 # 4

Thomson et al. TMS-Induced Changes in vitro

FIGURE 1 | Experiment Setup. (A) Position of the cell culture dish 1cm below the center of the coil. (B–D) Simulation of the induced electric field (V/m) within the cell
culture dish. SimNIBS (Thielscher et al., 2015) was used to calculate the electric field induced within the cell culture dish, during TMS stimulation at 100% MSO. The
simulation parameters (cell culture dish model and conductivity values) were generously shared by Lenz et al. (2016). (B) A cross section of the cell culture dish,
showing the gradient of induced electric field within the dish. The electric field is strongest at the top of the dish, closest to the coil. Coil orientation shown beside.
(C) Shows the bottom surface of the cell culture dish (furthest away from the coil, where the cells are plated) and (D) Is a tilted view of the dish from the top surface.
(E) Stimulation protocols used for stimulation, iTBS has been shown to increase cortical excitability (measured in Motor evoked potentials), and cTBS to decrease it
for up to 1 h following stimulation (Huang et al., 2005).

taken using the 20X objective lens. Further details on primary
and secondary antibodies and microscope settings are listed in
the Supplementary Material (Supplementary Tables 4, 5). This
experiment was repeated twice, with 4 images of each replicate
analyzed. In total, 8 images per stimulation condition time
point were included; with each image containing on average
163± 73 cells.

Analysis
Gene Expression
A standard curve was used to calculate relative concentrations
of gene expression per gene. An average of technical duplicates
was made, and normalized to the average of the 3 HKGs
(GAPDH, PPiB, and TBP). Data were analyzed with LightCycler
480 software version 1.5.1.62 (Roche Life Sciences) and Microsoft
Excel, and graphs were made in Prism 5 (GraphPad Software,
United States, RRID: SCR_002798).

Microscopy
Images were processed and analyzed with Fiji (ImageJ version
1.52i, RRID:SCR_002285; Schindelin et al., 2012). Cells

in each picture were counted with the analyze particle
tool, using the DAPI stain for the cell nuclei. Fluorescence
intensity (immunoreactivity of βIII-Tubulin) was quantified
by measuring the total 488 channel intensity in each image.
This was then divided by the total fluorescence intensity
in the 350 channel, to give a corrected fluorescence for
the number of cells in the image. Neurite length and
branching were quantified by tracing outgrowths in the
488 (βIII-Tubulin) channel. Neurite length was measured
with the segmented line tool, at 20x magnification and
quantifying 20 cells per image. From each cell only the primary
neurite length was counted. The NeuronJ plugin (Meijering
et al., 2004) was used to quantify neurite branching. For
each image, all neurites were semi-automatically traced,
and manually labeled as either primary, secondary, or
tertiary extensions. The number of branches (secondary
or tertiary extensions) were divided by the total number
of neurons (counted with DAPI), to give the number
of branches per neuron in each image. Graphs were
made with Prism 5 (GraphPad Software, United States,
RRID:SCR_002798).
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Statistical Analysis
Statistical analysis was done using IBM SPSS 24 (SPSS for
Windows version 24.0. Armonk, NY, United States: IBM Corp).
SH-SY5Y differentiation was verified through independent
samples t-tests comparing undifferentiated and differentiated
cells. Biological replicates were used for statistical analysis. For
gene expression analysis, a 2-way ANOVA was used to first
test HKGs for an effect of stimulation condition or time on
expression. None of the genes showed any significant effects
(complete results in Supplementary Data 1.3). Since there was
no significant effect of stimulation condition on expression
of any genes at the immediate time point (complete results
under Supplementary Data 1.1 and Supplementary Figure 1
in Supplementary Material), these levels were averaged across
stimulation conditions, and used to calculate % immediate
expression levels for the 6 and 24-h time points.

Due to the small number of biological replicates and unequal
variances across samples, non-parametric Kruskal–Wallis testes
were done for condition and time separately. However, using
these non-parametric statistical tests did not allow for testing
of interaction effects. We had expected gene expression effects
to be strongest at one of the time points, therefore we
performed hypothesis-driven analyses for the 6 h and 24 h time
points separately, using the Kruskal–Wallis test for a significant
difference in gene expression between stimulation conditions.
Reported gene expression and microscopy results are presented
as mean± standard error of the mean. Bonferroni correction was
used for post hoc comparisons. Figures show bar graphs of the
mean, error bars are standard error of the mean.

RESULTS

SH-SY5Y Differentiation
Differentiation status of SH-SY5Y cells was verified through
visual inspection of increased neurite length, and confirmed by
a significant increase in TrkB expression (NTRK2) at day 10 of
differentiation [t(7) = 8.657, p < 0.0001], as reported previously
(Ehrhard et al., 1993; Jahn et al., 2017; see Figure 2). Expression
of all genes of interest was verified at day 10 of differentiation
(Figures 2G,H). Complete results of t-tests are reported in
Supplementary Material (Supplementary Data 1.2). Neurite
outgrowth increased from day 0 to day 10 of differentiation
(37.9± 2.8 µm and 112.3± 11.8 µm, respectively; t(26) = 6.163,
p < 0.0001; see Figure 2I).

Effects of Stimulation Condition on Gene
Expression
We were interested in gene expression changes in the BDNF-
TrkB signaling cascade, specifically in downstream targets related
to plasticity. Therefore, we focused on the following genes
involved in this pathway: Mitogen-Activated Protein Kinase
9 (MAPK9, GeneID: 5601), Neurotrophic Regulator Tyrosine
Kinase 2 (NTRK2, GeneID: 4915), B-cell lymphoma 2 (BCL2,
Gene ID: 596), Tubulin Beta Class III (TUBB3, Gene ID: 10381),
and cAMP Responsive Element Binding Protein 1 (CREB1, Gene

ID: 1385). We also included Early Growth Response 1 (EGR1,
Gene ID: 1958), which is considered an immediate early gene.

We found no significant effect of stimulation condition or time
on several of the genes tested; BCL2 [Condition H(2) = 0.125,
p = 0.940, Time H(1) = 2.626, p = 0.105]; TUBB3 [Condition
H(2) = 1.060, p= 0.589, TimeH(1) = 1.298, p= 0.255]; andCREB1
[ConditionH(2) = 0.651, p = 0.722, TimeH(1) = 0.006, p = 0.936].

We found no significant effect of condition on EGR1
expression [H(2) = 1.926, p = 0.382], but an effect of time
[H(1) = 9.195, p = 0.002], with a decrease in the expression (%
immediate) at 24 h (54.5 ± 5.6%) compared to 6 h (77.4 ± 5.0%;
Figure 3A). Similarly for MAPK9 we find no significant effect
of condition [H(2) = 1.043, p = 0.594) but an effect of time
(H(1) = 4.152, p = 0.042], as well as for NTRK2 expression
[ConditionH(2) = 0.905, p = 0.636, TimeH(1) = 4.022, p = 0.045].

BCL2 Expression
There was no effect of stimulation condition at 6 h [H(2) = 1.024,
p = 0.985]. However, at 24 h, we observed a borderline statistically
significant effect of stimulation condition on BCL2 expression
[H(2) = 5.981, p = 0.050]; i.e., we observed an increase in
BCL2 expression in cells which had been stimulated with iTBS
(119.8 ± 18.7%) compared to cTBS (95.0 ± 10.1%) and sham
(77.2 ± 3.2%), however, none of the post hoc comparisons were
significant (p > 0.05; Figure 3B).

NTRK2 Expression
We find no effect of stimulation condition at 6 h [H(2) = 2.12,
p = 0.346]. At 24 h we find a statistically significant effect
of stimulation condition on NTRK2 expression [H(2) = 8.010,
p = 0.018]. We observed an increase in expression in cells
which have been iTBS stimulated compared to sham stimulated
cells (139.7 ± 30.85% and 83.8 ± 5.2%, respectively; p = 0.036;
Figure 3C).

MAPK9 Expression
Again, we find no effect of stimulation condition at 6 h
[H(2) = 0.030, p = 0.985]. When analyzing the 24 h time
point separately, we observed a statistically significant effect
of stimulation condition [H(2) = 8.640, p = 0.013]. MAPK9
expression levels were significantly higher in iTBS stimulated
cells, compared to sham stimulated cells (127.9 ± 13.4% and
89.0± 5.3%, respectively; p = 0.017; Figure 3D).

Effect of Stimulation Condition on
Neuron Morphology
Cell Count
We found no significant effect of condition [H(2) = 0.815,
p = 0.665] or time [H(2) = 3.37, p = 0.185] on cell
count (Figure 4A).

βIII-Tubulin Immunoreactivity
There was no significant effect of stimulation condition on total
fluorescence intensity of βIII-Tubulin [H(2) = 1.19, p = 0.55].
There was, however, a significant effect of time [H(2) = 6.61,
p = 0.037], with an increase at 24 h (1.23 ± 0.05) compared to
6 h (1.17± 0.05) and 3 h (1.09± 0.007; Figure 4B).
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FIGURE 2 | SH-SY5Y cell differentiation. Cells were marked for nucleus DAPI (blue), MAP2 (red), and βIII-Tubulin (green) in an undifferentiated state (A–C) or after
10 days of differentiation (D–F). A selection of neurons in the image were chosen to split by channel (βIII-Tubulin or MAP2), identified by the white box in C and F.
(A) Selection of undifferentiated cells, βIII-Tubulin. (B) Selection of undifferentiated cells, MAP2. (C) Full image undifferentiated cells, merge of βIII-Tubulin and MAP2.
(D) Selection of 10 days differentiated cells, βIII-Tubulin. (E) Selection of 10 days differentiated cells, MAP2. (F) Full image of 10 days differentiated cells; merge of
βIII-Tubulin and MAP2. (G) RT-qPCR analysis was used to assess the expression of the indicated genes in differentiated and undifferentiated cells. (H) Significant
increase in NTRK2 expression at day 10 of differentiation. (I) Significant increase in primary neurite outgrowth at day 10 of differentiation. Values represent
mean ± SEM (∗P < 0.05, ∗∗∗∗P < 0.001, and Student’s t-test).

Neurite Outgrowth
There was no significant effect of stimulation condition on
primary neurite length [H(2) = 0.336, p = 0.85]. There is a
significant effect of time [H(2) = 22.320, p < 0.001]. Neurites
were longer at 3 h (66.56 ± 2.35 µm) compared to 6 h
(49.82± 2.00 µm) and 24 h (47.92± 2.48 µm; Figure 4C).

Neurite Branching
There was no significant effect of stimulation condition on
neurite branching [H(2) = 1.580, p = 0.45]. There is a significant
effect of time [H(2) = 13.901, p = 0.001]. There were more
branches per neuron at 3 h (0.031 ± 0.0044) compared to at 6 h
(0.018± 0.0023), and 24 h (0.012± 0.0026; Figure 4D).

DISCUSSION

To date, the molecular and cellular mechanisms underlying TMS
have been mainly studied in living rodents or animal brain slices
(Suppa et al., 2016; Cirillo et al., 2017). Here, we set out to

investigate TMS induced plasticity mechanisms in an in vitro
human neuron-like model, through stimulating differentiated
SH-SY5Y neuroblastoma cells with either iTBS, cTBS, or
sham stimulation. Previous animal and human TBS studies
have suggested that iTBS/cTBS may rely on activity-dependent
plasticity mechanisms of LTP/LTD (Huang et al., 2007; Teo
et al., 2007; Wankerl et al., 2010; Hoppenrath and Funke,
2013; Volz et al., 2013). To investigate these changes in living
human neurons, we focused on molecular (in particular genes
related to BDNF/TrkB signaling) and morphological markers
of plasticity. The induced electric field within the cell culture
dish was modeled using the SimNIBS toolbox (Thielscher et al.,
2015), not with the aim of comparing stimulation strength to that
usually achieved with TMS in a human brain, but only to confirm
that stimulation was capable of depolarizing neurons. Our high-
intensity stimulation parameters were based on other rTMS
animal and cell culture studies (Hellmann et al., 2012; Li et al.,
2017), with the primary goal of ensuring sufficient depolarization
to induce excitations in our cells. Indeed, this was successful,
as in another report (Thomson et al., 2020) we could show that
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FIGURE 3 | Gene Expression results 6 and 24 hours following stimulation. Values are normalized by the average of 3 Housekeeping Genes (GAPDH, TBP, and PPiB)
and divided by the average immediate expression. Bars shown are % immediate time point expression. (A) Expression of EGR1. (B) Expression of BCL2.
(C) Expression of NTRK2. (D) Expression of MAPK9. Significant bonferroni-corrected post hoc tests are indicated with a *(P < 0.05), n = 4–8, see Supplementary
Material for exact replicate numbers per condition.

these procedures/parameters affected excitability in identically
treated cell cultures as hypothesized: demonstrating after-effects
in opposite directions for iTBS and cTBS as previously observed
in animal and human in vivo studies (Suppa et al., 2016).

We found that, compared to sham stimulation, iTBS increased
the expression of NTRK2 and MAPK9 after 24 h. MAPK9, also
known as JNK2, has been shown in mice to be important in
hippocampal synaptic plasticity (Chen et al., 2005; Seo et al.,
2012). MAPK9 knockout mice had impaired late but not early
LTP, suggesting that MAPK9 may be instrumental in the switch
from early to late LTP (Wankerl et al., 2010). This switch is
important, as late LTP is responsible for plasticity effects lasting
at least 24 h, requiring protein synthesis and structural changes
(Frey et al., 1993; Abel et al., 1997; Yin et al., 2016). In humans,
several studies have shown that repeating iTBS (Tse et al., 2018) or
cTBS (Goldsworthy et al., 2015) at spaced intervals consolidates
LTP/LTD-like effects, providing evidence for late-LTP or late-
LTD mechanisms only after repeated iTBS/cTBS sessions. Our
results showing an increase in MAPK9 mRNA expression at
24 h following iTBS could indicate this critical shift from early
to late LTP mechanisms. Measuring MAPK9 mRNA expression
after repeated iTBS of SH-SY5Y cells could further support the
evidence from human studies, that repeating iTBS sessions results
in late-LTP mechanisms in humans.

Similarly, NTRK2, the gene that codes for the high affinity
BDNF-receptor TrkB, is thought to be a critical regulator
of hippocampal LTP (Minichiello, 2009). Mice lacking TrkB

receptors showed reduced TBS-induced LTP, indicating the
importance of this receptor in regulating synaptic plasticity
(Minichiello et al., 1999). An increase in NTRK2 mRNA
expression indicates that the BDNF-TrkB signaling cascade may
be upregulated 24 h after iTBS. This supports the assumption
that iTBS promotes LTP-like plasticity, specifically through up-
regulation of the BDNF-TrkB pathway.

We also found a slight effect of condition at 24 h following
stimulation in expression of BCL2. This indicates an effect of TBS
on the expression of this gene, but since no post hoc comparisons
were significant, we cannot conclude that this expression is
protocol-specific. This expression of BCL2 is similar to the
expression of MAPK9 and NTRK2, with iTBS stimulated cells
showing increased expression compared to sham stimulated cells.
BCL2 is an integral outer mitochondrial membrane protein, and
an important regulator of apoptosis (Huang et al., 1998). Its
expression is strongly induced by BDNF-TrkB signaling, and
has been shown to affect plasticity mechanisms (Licznerski and
Jonas, 2018). In other words, the increase in BCL2 expression
that we report may be related to enhanced plasticity and
neuroprotective mechanisms 24 h after TBS. More specific
apoptosis assays would be required to confirm this. Altogether,
our gene expression findings support the hypothesis that the iTBS
protocol enhances plasticity mechanisms induced by BDNF-
TrkB signaling, confirming evidence from animal experiments.
We also found a time effect for the expression of EGR1, an
important neuronal immediate early gene, functioning as a
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FIGURE 4 | Morphological outcome parameters over time for each stimulation condition. (A) Cell count. (B) Total fluorescence in the βIII-Tubulin channel (488),
normalized to the DAPI channel (350). (C) Primary neurite length. (D) Neurite branching. N = 8 images per stimulation condition.

transcriptional regulator for genes involved in differentiation
and neuroplastic changes (Gallo et al., 2018). This increase in
EGR1 expression is critical for the induction of LTP, as an
initial increase in EGR1 expression within 10 min to 2 h after
stimulation is required for protein-synthesis dependent late-
LTP mechanisms (Abraham et al., 1991; Jones et al., 2001;
Koldamova et al., 2014). In other words, an increase in EGR1
expression immediately after stimulation supports TBS-induced
plasticity mechanisms.

To examine possible effects of TBS on neuronal morphology,
we used immunocytochemistry to visualize neurite outgrowths
(βIII-Tubulin) and axons (MAP2). These are widely used as
mature, neural cytoskeletal markers in studies of SH-SY5Y cells
(Encinas et al., 2000; Christensen et al., 2011; Cui et al., 2017;
Jahn et al., 2017; De Simone et al., 2018; Kapalczynska et al.,
2018). βIII-Tubulin is an important protein of the microtubule
cytoskeleton, expressed primarily in neurons and is critical for
axonal guidance and maintenance in mammals (Tischfield et al.,
2010). We found, on average 30% (±10%) of neurons expressed
βIII-Tubulin, 11.3% (±4.6%) MAP2 and 9.8% (±3.5%) expressed
both markers. Representational images of neuron morphology
after each stimulation condition, and each time point, can be seen
in Supplementary Material (Supplementary Figure 2). Using
qPCR as described above, we found no change in the mRNA
expression of TUBB3, the gene coding for βIII-Tubulin protein,
which aligns with our βIII-Tubulin immunoreactivity findings.
We did observe a small decrease of axonal length and branches
per neuron over time, but without an effect of stimulation
condition. This might be related to manipulation of the cell
cultures during the stimulation paradigm. Whether TBS induces

structural plasticity changes should be further investigated over
longer time periods.

In contrast to previous animal studies showing protocol
specific changes in plasticity markers following TBS (Trippe et al.,
2009; Volz et al., 2013; Labedi et al., 2014), we did not see
any effects of cTBS on gene expression or neuron morphology.
Additionally, the effects on gene expression that we did see were
subtle, and in just two plasticity genes. Importantly, however,
the protocol-specific effects reported in these animal studies were
found in different cortical areas, therefore it is difficult to compare
these results to cell culture which contain a single functional
cell type in a single spatial organization. Animal models or
slice cultures also contain a functionally relevant organization of
different neuron types, such as a mix of inhibitory interneurons
and excitatory pyramidal neurons. This neuronal organization
might be important, as these studies suggest that iTBS/cTBS
is related to differential effects on cortical inhibition (affecting
the inhibitory interneurons) (Benali et al., 2011; Hoppenrath
and Funke, 2013; Volz et al., 2013). Indeed, as computational
modeling has shown, the TMS-induced electric field depends
critically on the complex microscopic and macroscopic anatomy
of the human cortex (Guidi et al., 1989; Maccabee et al., 1993;
Goetz and Deng, 2017). In light of this requirement for complex
neuronal organization, our null results become more important,
as they might begin to inform us on the minimal level of neuronal
organization complexity required for TBS effects on expression
of certain genes.

In addition, animal studies often use different
stimulation parameters, for example repeating the
established Huang et al., 2005 TBS protocol up to five times
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(Trippe et al., 2009; Volz et al., 2013; Labedi et al., 2014). This
greater number of stimulation pulses in these animal studies
could also explain why we did not replicate any of the protocol
specific changes described in the animal literature. On the other
hand, as mentioned, in another set of experiments (Thomson
et al., 2020) we did successfully use calcium imaging to reveal
the hypothesized TBS effects in our cell cultures, suggesting that
our TBS protocols were at least sufficiently strong to induce
excitability changes.

We opted to use SH-SY5Y neuroblastoma cells, a human-
derived cell line widely used as an in vitro model of human
neurons. These cells express a variety of neural markers, and can
be further differentiated to a more mature neuronal phenotype,
having longer neurite outgrowths, increased expression of mature
neuron markers, and the formation of mature synapses (Biedler
et al., 1978; Encinas et al., 2000; Jahn et al., 2017). Differentiated
SH-SY5Y cells have also been shown to produce action potentials
(Toselli et al., 1996; Tosetti et al., 1998; Brown et al., 2005; Jahn
et al., 2017), and are therefore functionally active neural cells. We
have also recently demonstrated TBS protocol-specific functional
effects on SH-SY5Y cells using calcium imaging (Thomson
et al., 2020). They are a widely used model for a range of
research applications such as Parkinson’s disease (Xicoy et al.,
2017), pathogenesis of viruses (Christensen et al., 2011), drug
efficacy and toxicity (Henkel et al., 2008; Forster et al., 2016; De
Simone et al., 2018), and as a 3D cell culture (Cui et al., 2017;
Kapalczynska et al., 2018). These cells can also be used in the
study of human neuron plasticity and synapse formation (Jahn
et al., 2017) for example in the context of examining treatment
targets of depression (Leskiewicz et al., 2013; Xu et al., 2019).
They are also relatively easy to handle, making them a good
candidate to investigate plasticity mechanisms following rTMS.

However, as these cells were derived from malignant
tumors (Biedler et al., 1978), cultures may contain two
morphologically distant phenotypes, neuroblast-like and
epithelial-like (Kovalevich and Langford, 2013). While
differentiation protocols aim to establish the most neuron-
like phenotype among all cells (Encinas et al., 2000; Shipley et al.,
2016; Jahn et al., 2017), there are often inconsistencies among
the proportion of phenotypes within each culture. Experimental
conditions may also influence the consistency of differentiation
or cellular phenotypes in our cultures. For example, removing the
cells from the incubator for stimulation, and having a prolonged
incubation for the 24-h time point may have contributed to the
time effects seen in the EGR1 expression, primary neurite length,
and βIII-Tubulin fluorescence intensity.

We chose to measure changes in gene expression, specifically
in the BDNF-TrkB signaling cascade, shown to be important in
LTP-dependent plasticity mechanisms (Minichiello et al., 1999;
Minichiello, 2009, 2014). However, investigation of relevant
changes at the protein level following stimulation are also
important. For example, future studies could expand on our
findings by focusing on protein phosphorylation in the BDNF-
TrkB signaling cascade, or investigating whether these plasticity
mechanisms are NMDA-receptor dependent. We have taken
first steps toward investigating TBS-induced changes in human
neurons in vitro, but more studies are needed to better

understand the underlying mechanisms of TBS. Future studies
in more advanced human neuron models such as (patient-
specific) neuronal cultures derived from induced pluripotent
stem cells (iPSC’s; Takahashi and Yamanaka, 2006) or cerebral
organoids (Lancaster and Knoblich, 2014), could help improve
our understanding of individual differences in responsiveness to
stimulation protocols.

CONCLUSION

The molecular mechanisms of rTMS remain largely
undiscovered, and most of the evidence for plasticity effects
following stimulation comes from animal models. In this study,
we stimulated living human neurons (SH-SY5Y cells) with iTBS
and cTBS protocols, and investigated changes in gene expression
and morphology. We found evidence for a protocol specific
increase in the expression of plasticity genes in the BDNF-TrkB
pathway at 24 h following iTBS, relative to sham. In this human
neuron model, we show the feasibility of studying rTMS effects
in vitro, and we identify several gene expression changes that
support iTBS-induced plasticity. These findings pave the way
to develop more complex in vitro models, such as neuronal
cultures from patient-derived iPSCs, in order to better examine
the molecular effects of TBS, which in turn is necessary to further
optimize the stimulation parameters for human rTMS.
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