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Supervised learning of microarray data is receiving much attention in recent years. Multiclass cancer diagnosis, based on selected
gene profiles, are used as adjunct of clinical diagnosis. However, supervised diagnosis may hinder patient care, add expense or
confound a result. To avoid this misleading, a multiclass cancer diagnosis with class-selective rejection is proposed. It rejects
some patients from one, some, or all classes in order to ensure a higher reliability while reducing time and expense costs.
Moreover, this classifier takes into account asymmetric penalties dependant on each class and on each wrong or partially
correct decision. It is based on ν-1-SVM coupled with its regularization path and minimizes a general loss function defined
in the class-selective rejection scheme. The state of art multiclass algorithms can be considered as a particular case of the
proposed algorithm where the number of decisions is given by the classes and the loss function is defined by the Bayesian
risk. Two experiments are carried out in the Bayesian and the class selective rejection frameworks. Five genes selected datasets
are used to assess the performance of the proposed method. Results are discussed and accuracies are compared with those
computed by the Naive Bayes, Nearest Neighbor, Linear Perceptron, Multilayer Perceptron, and Support Vector Machines
classifiers.
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1. Introduction

Cancer diagnosis, based on gene expression profiling, have
improved over the past 40 years. Many microarray technolo-
gies studies were developed to analyze the gene expression.
These genes are later used to categorize cancer classes. Two
different classification approaches can be used: class discov-
ery and class prediction. The first is an unsupervised learning
approach that allows to separate samples into clusters based
on similarities in gene expression, without prior knowledge
of sample identity. The second is a supervised approach
which predicts the category of an already defined sample
using its gene expression profiles. Since these classification
problems are described by a large number of genes and
a small number of samples, it is crucial to perform genes
selection before the classification step. One way to identify
informative genes pointed in [1] is the test statistics.

Researches show that the performance of supervised
decisions based on selected gene expression can be com-
parable to the clinical decisions. However, no classification
strategy is absolutely accurate. First, many factors may
effectively decrease the predictive power of a multiclass
problem. For example, findings of [2] imply that information
useful for multiclass tumor classification is encoded in a
complex gene expression and cannot be given by a simple
one. Second, it is not possible to find an optimal classifi-
cation method for all kinds of multiclass problems. Thus,
supervised diagnosis are always considered as an impor-
tant adjunct of traditional diagnostics and never like its
substitute.

Unfortunately, supervised diagnosis can be misleading.
They may hinder patient care (wrong decision on a sick
patient), add expense (wrong decision on a healthy patient)
or confound the results of cancer categories. To overcome
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these limitations, a multi-SVM [3] classifier with class-
selective rejection [4–7] is proposed. Class-selective rejection
consists of rejecting some patients from one, some, or all
classes in order to ensure a higher reliability while reducing
time and expense costs. Moreover, any of the existing
multiclass [8–10] algorithms have taken into consideration
asymmetric penalties on wrong decisions. For example, in a
binary cancer problem, a wrong decision on a sick patient
must cost more than a wrong decision on a healthy patient.
The proposed classifier handles this kind of problems. It
minimizes a general loss function that takes into account
asymmetric penalties dependant on each class and on each
wrong or partially correct decision.

The proposed method divides the multiple class problem
into several unary classification problems and train one ν-
1-SVM [11–13] coupled with its regularization path [14,
15] for each class. The winning class or subset of classes
is determined using a prediction function that takes into
consideration the costs asymmetry. The parameters of all
the ν-1-SVMs are optimized jointly in order to minimize a
loss function. Taking advantage of the regularization path
method, the entire parameters searching space is considered.
Since the searching space is widely extended, the selected
decision rule is more likely to be the optimal one. The state-
of-art multiclass algorithms [8–10] can be considered as a
particular case of the proposed algorithm where the number
of decisions is given by the existing classes and the loss
function is defined by the Bayesian risk.

Two experiments are reported in order to assess the per-
formance of the proposed approach. The first one considers
the proposed algorithm in the Bayesian framework and uses
the selected microarray genes to make results comparable
with existing ones. Performances are compared with those
assessed using Naive Bayes, Nearest Neighbor, Linear Percep-
tron, Multilayer Perceptron, and Support Vector Machines
classifiers, invoked in [1]. The second one shows the ability of
the proposed algorithm solving multiclass cancer diagnosis
in the class-selective rejection scheme. It minimizes an
asymmetric loss function. Experimental results show that,
a cascade of class-selective classifiers with class-selective
rejections can be considered as an improved supervised
diagnosis rule.

This paper is outlined as follows. Section 2 presents
a description of the model as a gene selection task. It
introduces the multiclass cancer diagnosis problem in the
class-selective rejection scheme. It also proposes a supervised
training algorithm based on ν-1-SVM coupled with its
regularization path. The two experiments are carried out
in Section 3, results are reported, compared and discussed.
Finally, a conclusion is presented in Section 4.

2. Models and Methods

This section describes the multiclass cancer diagnosis based
on microarray data. Feature selection is evoked as a first
process in a gene-based cancer diagnosis. Test statistics are
used as a possible way for informative genes identification
[1]. Once genes selection is processed, a classification

problem should be solved. The multiclass cancer diagnosis
problem, formulated in the general framework of class-
selective rejection, is introduced. A solution based on ν-1-
SVM [11–13] is proposed. First a brief description of ν-1-
SVM and the derivation of its regularization path [14, 15] is
presented. Second, the proposed algorithm [3] is explained.
It allows to determine a multiclass cancer diagnosis that
minimizes an asymmetric loss function in the class-selective
rejection scheme.

2.1. Genes Selection Using Test Statistics. Gene profiles are
successfully applied to supervised cancer diagnosis. Since
cancer diagnosis problems are usually described by a small
set of samples with a large number of genes, feature or
gene selection is an important issue in analyzing multiclass
microarray data. Given a microarray data with N tumor
classes, n tumor samples and g genes per sample, one
should identify a small subset of informative genes that
contribute most to the prediction task. Various feature
selection methods exist in literature. One way pointed in [1]
is to use test statistics for the equality of the class means.
Authors of [1] formulate first the expression levels of a given
gene by a one-way analysis of variance model. Second, the
power of genes in discriminating between tumor types is
determined by a test statistic. The discrimination power is the
value of the test evaluated at the expression level of the gene.
The higher the discrimination power is, the more powerful
the gene is in discriminating between tumor types. Thus,
genes with higher power of discrimination are considered as
informative genes.

Let Yjp be the expression level from the pth sample of the
jth class, the following general model is considered:

Yjp=μj + ε j p for j=1, . . . ,N ; p=1, . . . ,nj with
N∑
j=1

nj=n.

(1)

In the model μj represents the mean expression level of the
gene in class wj , ε j p are independent random variables and
E(ε j p) = 0, V(ε j p) = σ2

j <∞ for j = 1, . . . ,N ; p = 1, . . . ,nj .
For the case of homogeneity of variances, the ANOVA F

or F test [16] is the optimal one testing the means equality
hypothesis. With heterogeneity of variances, the task is
challenging. However, it is known that, with a large number
of genes present, usually in thousands, no practical test is
available to locate the best set of genes. Thus, the authors of
[1] studied six different statistics.

(i) ANOVA F test statistic, the definition of this test is

F =
(n−N)

∑
nj
(
Yj· − Y··

)2

(N − 1)
∑(

nj − 1
)
s2j

, (2)

where Yj· =
∑nj

p=1Yjp/nj and Y·· =
∑N

j=1njYj·/n,

s2j =
∑nj

p=1(Yjp − Yj·)
2
/(nj − 1). For simplicity,

∑
is used to indicate the sum taken over the index
j. Under means equality hypothesis and assuming
variance homogeneity, this test has a distribution of
FN−1,n−N [16].
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(ii) Brown-Forsythe test statistic [17], given by

B =
∑
nj
(
Yj· − Y··

)2

∑(
1− nj/n

)
s2j

. (3)

Under means equality hypothesis, B is distributed
approximately as FN−1,τ where

τ =
[∑

(1− nj/n)s2j
]2

∑(
1− nj/n

)2
s4j /
(
nj − 1

) . (4)

(iii) Welch test statistic [18], defined as

W =
∑
ωj

(
Yj· −

∑
hjYj·

)2

(N − 1) + 2(N − 2)(N + 1)−1∑(
nj − 1

)−1(
1− hj

)2 ,

(5)

with ωj = nj/s
2
j and hj = ωj/

∑
ωj . Under

means equality hypothesis, W has an approximate
distribution of FN−1,τω where

τω = N2 − 1

3
∑(

nj − 1
)−1(

1− hj
)2 . (6)

(iv) Adjusted Welch test statistic [19]. It is similar to
Welch statistic and defined to be

W∗ =
∑
ω∗j
(
Yj· −

∑
h∗j Yj·

)2

(N−1)+2(N−2)(N+1)−1∑(
nj−1

)−1(
1− h∗j

)2 ,

(7)

where ω∗j = nj/(Φ j s
2
j ) with Φ j chosen such that 1 ≤

Φ j ≤ (nj − 1)/(nj − 3) and h∗j = ω∗j /
∑
ω∗j . Under

means equality hypothesis, W∗ has an approximate
distribution of FN−1,τ∗ω where

τ∗ω =
N2 − 1

3
∑(

nj − 1
)−1(

1− h∗j
)2 . (8)

(v) Cochran test statistic [20]. This test statistic is simply
the quantity appearing in the numerator of the Welch
test statistic W , that is,

C =
∑
ωj

(
Yj· −

∑
hjYj·

)2
. (9)

Under means equality hypothesis, C has an approxi-
mate distribution of χ2

N−1.

(vi) Kruskal-Wallis test statistic. This is the well-known
nonparametric test given by

H = 12
n(n + 1)

∑ R2
j

n j
− 3(n + 1), (10)

where Rj is the rank sum for the jth class. The ranks
assigned to Yjp are those obtained from ranking the
entire set of Yjp. Assuming each nj ≥ 5, then under
means equality hypothesis, H has an approximate
distribution of χ2

N−1 [21].

These tests performances are evaluated and compared
over different supervised learning methods applied to pub-
licly available microarray datasets. Experimental results show
that the model for gene expression values without assuming
equal variances is more appropriate than that assuming equal
variances. Besides, under heterogeneity of variances, Brown-
Forsythe test statistic, Welch test statistic, adjusted Welch test
statistic, and Cochran test statistic, perform much better than
ANOVA F test statistic and Kruskal-Wallis test statistic.

2.2. Multitumor Classes with Selective Rejection. Once gene
selection is processed, the classification problem should be
solved. Let us define this diagnosis problem in the class-
selective rejection scheme. Assuming that the multiclass
cancer problem deals with N tumor classes noted w1 . . . wN

and that any patient or sample x belongs to one tumor class
and has d informative genes, a decision rule consists in a
partition Z of Rd in I sets Zi corresponding to the different
decision options. In the simple classification scheme, the
options are defined by the N tumor classes. In the class-
selective rejection scheme, the options are defined by the N
tumor classes and the subsets of tumor classes (i.e. assigning
patient x to the subset of tumor classes {w1,w3} means that
x is assigned to cancer categories w1 and w3 with ambiguity).

The problem consists in finding the decision rule Z∗ that
minimizes a given loss function c(Z) defined by

c(Z) =
I∑
i=1

N∑
j=1

ci jPjP
(
Di/wj

)
, (11)

where ci j is the cost of assigning a patient x to the ith decision
option when it belongs to the tumor class wj . The values
of ci j being relative since the aim is to minimize c(Z), the
values can be defined in the interval [0; 1] without loss of
generality. Pj is the a priori probability of tumor class wj and
P(Di/wj) is the probability that patients of the tumor classwj

are assigned to the ith option.

2.3. μ-1-SVM. To solve the multiclass diagnosis problem, an
approach based on ν-1-SVM is proposed. Considering a set
of m samples of a given tumor classes X = {x1, x2, . . . , xm}
drawn from an input space X, ν-1-SVM computes a decision
function f λX (·) and a real number bλ in order to determine
the region Rλ in X such that f λX (x) − bλ ≥ 0 if the sample
x ∈Rλ and f λX (x)− bλ < 0 otherwise. The decision function
f λX (·) is parameterized by λ = νm (with 0 ≤ ν < 1) to
control the number of outliers. It is designed by minimizing
the volume of Rλ under the constraint that all the samples
of X , except the fraction ν of outliers, must lie in Rλ. In
order to determine Rλ, the space of possible functions f λX (·)
is reduced to a Reproducing Kernel Hilbert Space (RKHS)
with kernel functionK(·, ·). LetΦ : X → H be the mapping
defined over the input space X. Let 〈·, ·〉H be a dot product
defined in H . The kernel K(·, ·) over X×X is defined by:

∀
(
xp, xq

)
∈X×X K

(
xp, xq

)
=
〈
Φ
(
xp
)

,Φ
(
xq
)〉

H
.

(12)
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Without loss of generality, K(·, ·) is supposed normalized
such that for any x ∈ X, K(x, x) = 1. Thus, all the mapped
vectors Φ(xp), p = 1, . . . ,m are in a subset of a hypersphere
with radius one and center O. Provided K(·, ·) is always
positive and Φ(X) is a subset of the positive orthant of the
hypersphere. A common choice of K(·, ·) is the Gaussian
RBF kernel K(xp, xq) = exp[−1/2σ2‖xp − xq‖2

X] with σ the
parameter of the Gaussian RBF kernel. ν-1-SVM consists of
separating the mapped samples in H from the center O with
a hyperplane W λ. Finding the hyperplane W λ is equivalent
to find the decision function f λX (·) such that f λX (x) − bλ =
〈wλ,Φ(x)〉H−bλ ≥ 0 for the (1−ν)mmapped samples while
W λ is the hyperplane with maximum margin bλ/‖wλ‖H with
wλ the normal vector of W λ.

This yields f λX (·) as the solution of the following convex
quadratic optimization problem:

min
wλ ,bλ,ξp

m∑
p=1

ξp − λbλ +
λ

2

∥∥∥wλ
∥∥∥2

H

subject to
〈
wλ,Φ

(
xp
)〉

H
≥bλ −ξp, ξp≥ ∀p=1, . . . ,m

(13)

where ξp are the slack variables. This optimization problem
is solved by introducing lagrange multipliers αp. As a
consequence to Kuhn-Tücker conditions, wλ is given by

wλ = 1
λ

m∑
p=1

αpΦ
(
xp
)

, (14)

which results in

f λX (·)− bλ = 1
λ

m∑
p=1

αpK
(
xp, ·

)
− bλ. (15)

The dual formulation of (13) is obtained by introducing
Lagrange multipliers as

min
α1,...,αm

1
2λ

m∑
p=1

m∑
q=1

αλpα
λ
qK
(
xp, xq

)

with
m∑
p=1

αλp = λ, 0 ≤ αλp ≤ 1 ∀p = 1, . . . ,m.

(16)

A geometrical interpretation of the solution in the RKHS
is given by Figure 1. f λX (·) and bλ define a hyperplane
W λ orthogonal to f λX (·). The hyperplane W λ separates the
Φ(xp)s from the sphere center, while having bλ/‖wλ‖H

maximum which is equivalent to minimize the portion Sλ

of the hypersphere bounded by W λ that contains the set
{Φ(x) s.t. x ∈Rλ}.

Tuning ν or equivalently λ is a crucial point since it
enables to control the margin error. It is obvious that chang-
ing λ leads to solve the optimization problem formulated in
(16) in order to find the new region Rλ. To obtain great
computational savings and extend the search space of λ,
we proposed to use ν-1-SVM regularization path [14, 15].
Regularization path was first introduced by Hastie et al.

[14] for a binary SVM. Later, Rakotomamojy and Davy [15]
developed the entire regularization path for a ν-1-SVM. The
basic idea of the ν-1-SVM regularization path is that the
parameter vector of a ν-1-SVM is a piecewise linear function
of λ. Thus the principle of the method is to start with large λ,
(i.e., λ = m − ε) and decrease it towards zero, keeping track
of breaks that occur as λ varies.

As λ decreases, ‖wλ‖H increases and hence the distance
between the sphere center and W λ decreases. Samples move
from being outside (non-margin SVs with αλp = 1 in

Figure 1) to inside the portion Sλ (non-SVs with αλp = 0).

By continuity, patients must linger on the hyperplane W λ

(margin SVs with 0 < αλp < 1) while their αλps decrease

from 1 to 0. αλps are piecewise-linear in λ. Break points occur
when a point moves from a position to another one. Since
αλp is piecewise-linear in λ, f λ(·) and bλ are also piecewise-
linear in λ. Thus, after initializing the regularization path
(computing αλp by solving (16) for λ = m− ε), almost all the

αλps are computed by solving linear systems. Only for some

few integer values of λ smaller than m, αλps are computed by
solving (16) according to [15].

Using simple linear interpolation, this algorithm enables
to determine very rapidly the ν-1-SVM corresponding to any
value of λ.

2.4. Multiclass SVM Based on μ-1-SVM. Given N classes
and N trained ν-1-SVMs, one should design a supervised
decision rule Z, moving from unary to multiclass classifier
by assigning samples to a decision option. To determine
the decision rule, first a prediction function should decide
the winning option. A distance measure between x and the
training class set wj , using the ν-1-SVM parameterized by λj ,
is defined as follows:

dλj (x) =
cos
(

̂wλj ,Φ(x)
)

cos
(
θλj
) =

∥∥∥wλj
∥∥∥

H

bλj
cos
(

̂wλj ,Φ(x)
)

,

(17)

where θλj is the angle delimited bywλj and the support vector
as shown in Figure 1. cos(θλj ) is a normalizing factor which
is used to make all the dλj (x) comparable.

Using ‖Φ(x)‖ = 1 in (17) leads to the following:

dλj (x) =
〈
wλj ,Φ(x)

〉
H

bλj
=

1/λj
∑nj

p=1α
λj
p K

(
xp, x

)
bλj

. (18)

Since the α
λj
p are obtained by the regularization path for

any value of λj , computing dλj is considered as an easy-
fast task. The distance measure dλj (x) is inspired from [22].
When data are distributed in a unimodal form, the dλj (x) is
a decreasing function with respect to the distance between
a sample x and the data mean. The probability density
function is also a decreasing function with respect to the
distance from the mean. Thus, dλj (x) preserves distribution
order relations. In such case, and under optimality of the
ν-1-SVM classifier, the use of dλj (x) should reach the same
performances as the one obtained using the distribution.
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Non-margin SV

Wλ

O

R = 1 θλ
bλ

||wλ||H

Margin SV

Non-SVs

Sλ

wλ

Figure 1: Training data mapped into the feature space on a portion
Sλ of a hypersphere.

In the simplest case of multiclass problems where the loss
function is defined as the error probability, a patient x is
assigned to the tumor class maximizing dλj (x).

To extend the multiclass prediction process to the class-
selective scheme, a weighted form of the distance measure
is proposed. The weight βj is associated to dλj . βj reflects
an adjusted value of the distance dλj according to the
penalty associated with the tumor classwj . Thus, introducing
weights leads to treat differently each tumor class and helps
solving problems with different costs ci j on the classification
decisions.

Finally, in the general case where the loss function
is considered in the class-selective rejection scheme, the
prediction process can be defined as follows: a blinded
sample x is assigned to the ith option if and only if

N∑
j=1

ci jPjβjd
λj (x) ≤

N∑
j=1

cl jPjβjd
λj (x), ∀l = 1 . . . I , l /= i.

(19)

Thus, in contrast to previous multiclass SVMs, which
construct the maximum margin between classes and locate
the decision hyperplane in the middle of the margin, the
proposed approach resembles more to the robust Bayesian
classifier. The distribution of each tumor class is considered
and the optimal decision is slightly deviated toward the class
with the smaller variance.

The proposed decision rule depends on σ , ν and β vectors
of σj , ν j and βj for j = 1, . . . ,N . Tuning ν j is the most
time expensive task since changing ν j leads to solve the
optimization problem formulated in (16). Moreover, tuning
ν j is a crucial point, it enables to control the margin error. In
fact, it was shown in [11] that this regularization parameter
is an upper bound on the fraction of outliers and a lower
bound on the fraction of the SVs. In [9, 23] a smooth grid
search was supplied in order to choose the optimal values
of ν. The N values ν js were chosen equal to reduce the
computational costs. However, this assumption reduces the
search space of parameters too. To avoid this restriction, the
proposed approach optimizes all the ν j with j = 1, . . . ,N
corresponding to the Nν-1-SVMs using regularization path
and consequently explores the entire parameters space. Thus

the tuned ν j are most likely to be the optimal ones. The
parameter σ are set equals σ1 = σ2 = · · · = σN .

The optimal vector of σj , λj and βj , j = 1, . . . ,N , is the
one which minimizes an estimator of c(Z) using a validation
set. Since the problem is described by a sample set, an
estimator ĉ(Z) of c(Z) given by (11) is used:

ĉ(Z) =
I∑
i=1

N∑
j=1

ci j P̂ j P̂

(
Di

wj

)
, (20)

where P̂ j and P̂(Di/wj) are the empirical estimators of Pj and
P(Di/wj), respectively.

The optimal rule is obtained by tuning λj , βj and σj so
that the estimated loss ĉ(Z) computed on a validation set
is minimum. This is accomplished by employing a global
search for λj and βj and an iterative search over the kernel
parameter. For each given value σ of the parameter kernels,
ν-1-SVMs are trained using the regularization path method
on a training set. Then the minimization of ĉ(Z) over a
validation set is sought by solving an alternate optimization
problem over λj and βj which is easy since all ν-1-SVM
solutions are easily interpolated from the regularization path.
σ is chosen from a previously defined set of real numbers
[σ0, . . . , σs] with s ∈ ℵ. Algorithm 1 elucidates the proposed
approach.

3. Experimental Results

In this section, two experiments are reported in order to
assess the performance of the proposed approach. First, the
cancer diagnosis problem is considered in the traditional
Bayesian framework. Five gene expression datasets and five
supervised algorithms are considered. Each gene dataset was
selected using the six test statistics of [1]. The decisions
are given by the possible set of tumor classes and the loss
function is defined as the probability of error to make results
comparable with those of [1]. Second, in order to show the
advantages of considering the multiclass cancer diagnosis
in class-selective rejection scheme, one gene dataset is
considered and studied with an asymmetric loss function. A
cascade of classifiers with rejection options is used to ensure
a reliable diagnosis. For both experiments, the loss function
was minimized by determining the optimal parameters βj
and λj for j = 1, . . . ,N for a given kernel parameter σ and by
testing different values of σ in the set [2−3, 2−2, 2−1, 20, 21, 22].
Finally, the decision rule which minimizes the loss function
is selected.

3.1. Bayesian Framework. Five multiclass gene expression
datasets leukemia72 [24], ovarian [25], NCI [26, 27], lung
cancer [28] and lymphoma [29] were considered. Table 1
describes the five genes datasets. For each dataset, the six
test statistics F, B, W , W∗, C, and H were used to select
informative genes.

The cancer diagnosis problem was considered in the
traditional Bayesian framework. Decisions were given by the
set of possible classes and loss function was defined by the
error risk. This means that in (20) ci j are defined according
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1 θ := ∅
2 C := ∅
3 for σ ← σ0 to σs do
4 /∗Using the Training Set∗/
5 for j ← 1 to N do
6 Train ν-1-SVM on wj , namely solving the QP (16)
7 Derive the regularization path for wj , namely compute the αλj s
8 end
9 /∗Using the Validation Set∗/
10 λ := λ0

11 β := β0

12 repeat

13 dλj (x) := 1
λj

∑nj
p=1α

λj
p K(xp, x)/bλj

14 P̂ j := |wj|/
∑N

j=1|wj| /∗| | = cardinality∗/
15 Assign x to a decision ψi according to (19)
16 P̂(Di/wj) := |{x of wj assigned to ψi}|/|{x/x ∈ wj}|
17 ĉ(Z) :=∑I

i=1

∑N
j=1ci j P̂ j P̂(Di/wj)

18 λ := λnew/∗ construct the new vector according to the
direction of greatest decrease ∗/

19 β := βnew

20 until ĉ(Z)is minimum
21 θ := θ ∪ {σ , λ,β}
22 C := C ∪ {ĉ(Z)}
23 end
24 index := min{C}
25 θoptimal := θindex

Algorithm 1: Multiclass SVM minimizing an asymmetric loss function.

Table 1: Multiclass gene expression datasets.

Dataset Leukemia72 Ovarian NCI Lung
cancer

Lymphoma

No. of gene 6817 7129 9703 918 4026

No. of sample 72 39 60 73 96

No. of class 3 3 9 7 9

Table 2: Loss function cost matrix in the Bayesian framework.

Patient class

1 2 . . N

1 0 1 · · 1

2 1 0 1 ·
Prediction · · · · · ·

· · · · 1

N 1 · · 1 0

to the Table 2. The performance of the proposed method
was measured by evaluating its accuracy rate and it was
compared to results obtained by the five predictors evoked
in [1]: Naive Bayes, Nearest Neighbor, Linear Perceptron,
Multilayer Perceptron Neural Network with five nodes in
the middle layer, and Support Vector Machines with second-
order polynomial kernel.

To compute the generalization accuracy of the proposed
classifier, Leave One Out (LOO) resampling method is used
to divide a gene dataset of n patients into two sets, a set
of n − 1 patients and a test set of 1 blinded patient. This
method involves n separate runs. For each run, the first set
of n − 1 samples is divided using 5 Cross-validation (5-
CV) into a training set and a validation set. Nν-1-SVMs
are trained using the training set for all values of ν j . The
decision is obtained by tuning the parameters βj , λj and
σj for j = 1, . . . ,N so that the loss function computed
on the validation set is minimum. Optimal parameters are
then used to build the decision rule using the whole n − 1
samples. The blinded test set is classified according to this
rule. The overall prediction error is the sum of the patients
misclassified on all n runs.

Table 3 reports errors of the proposed algorithm, the
average value and the median value of the 5 classifiers
prediction errors reported in [1] when 50 informative genes
are used. Table 4 reports values when 100 informative genes
are used. F, B, W , W∗, C, and H represent the six test
statistics.

Experimental results show that, for ovarian, NCI, lung
cancer and lymphoma multiclass genes problems, the pro-
posed approach achieves competitive performances com-
pared to the 5 classifiers reported in [1]. For these datasets,
prediction errors of the proposed approach are less than the
mean and median values of the 5 classifiers prediction errors
reported in [1]. However, for leukemia72, the proposed
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Table 3: Prediction errors of the proposed classifier, mean and median values of the 5 classifiers prediction errors according to [1] with 50
informative selected genes.

F B W W∗ C H

Leukemia
Proposed algorithm 4 3 5 5 3 2

Mean 3.4 2.4 2.8 2.8 3.2 3.0

Median 3 2 3 3 3 3

Ovarian
Proposed algorithm 0 0 0 0 0 0

Mean 0.2 0.0 0.0 0.0 0.0 0.0

Median 0 0 0 0 0 0

NCI
Proposed algorithm 31 26 27 27 27 33

Mean 36.0 32.0 27.4 26.0 27.0 35.4

Median 35 29 27 27 27 35

Lung cancer
Proposed algorithm 14 16 16 16 16 15

Mean 17.6 17.0 17.6 17.6 18.0 18.0

Median 17 17 18 18 18 18

Lymphoma
Proposed algorithm 18 16 9 10 9 15

Mean 23.8 19.8 14.0 14.0 12.8 22.0

Median 23 19 12 12 13 20

Table 4: Prediction errors of the proposed classifier, mean and median values of the 5 classifiers prediction errors according to [1] with 100
informative selected genes.

F B W W∗ C H

Leukemia
Proposed algorithm 5 2 3 3 4 6

Mean 3.4 3.0 3.0 3.0 3.2 3.0

Median 3 3 4 3 3 3

Ovarian
Proposed algorithm 0 0 0 0 0 0

Mean 0.2 0.0 0.0 0.0 0.0 0.0

Median 0 0 0 0 0 0

NCI
Proposed algorithm 33 21 26 25 26 36

Mean 33.0 22.6 23.8 25.2 25.2 31.6

Median 33 22 25 26 26 31

Lung cancer
Proposed algorithm 11 10 11 11 11 13

Mean 12.2 12.2 11.4 12.2 12.2 15.8

Median 12 12 11 11 11 14

Lymphoma
Proposed algorithm 16 16 11 10 11 17

Mean 21.8 19.2 13.0 13.8 14.4 18.2

Median 17 16 12 12 12 18

Table 5: Confusion matrix of 50 W∗ lung cancer dataset. Total of
misclassified is equal to 16.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

Predicted
decision

Normal 6 0 0 0 0 0 0

SCLC 0 4 0 0 0 1 0

LCLC 0 0 3 0 0 4 1

SCC 0 0 0 16 0 3 0

AC2 0 0 0 0 4 0 0

AC3 0 1 1 0 1 4 0

AC1 0 0 1 0 2 1 20

Table 6: Confusion Matrix of 50 H lung cancer dataset. Total of
misclassified is equal to 15.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

Predicted
decision

Normal 5 0 0 0 0 0 0

SCLC 0 4 0 0 0 0 0

LCLC 0 0 1 1 0 2 2

SCC 0 0 2 14 0 1 0

AC2 0 0 0 0 7 0 0

AC3 0 0 2 1 0 8 0

AC1 1 1 0 0 0 2 19
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Table 7: Asymmetric cost matrix of the loss function.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

Normal 0 1 1 1 1 1 1

SCLC 1 0 1 1 1 1 1

LCLC 1 1 0 0.9 0.9 1 1

SCC 1 1 0.9 0 0.9 1 0.9

AC2 1 1 0.9 0.9 0 0.9 0.9

Predicted
decision

AC3 1 1 0.9 0.9 0.9 0 0.9

AC1 1 1 0.9 0.9 0.9 0.9 0

{LCLC, SCC, AC3} 1 1 0.6 0.6 0.9 0.2 0.9

All tumors 1 0.2 0.6 0.6 0.2 0.2 0.5

All classes 0.6 0.2 0.6 0.6 0.2 0.6 0.6

Table 8: Confusion matrix of the 50 W∗ lung cancer problem with class-selective rejection using cost matrix defined in Table 7. Total of
misclassified is equal to 10, total of partially and totally rejected samples is equal to 8.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

Normal 6 0 0 0 0 0 0

SCLC 0 3 0 0 0 0 0

LCLC 0 0 3 0 0 4 0

SCC 0 0 0 16 0 2 0

Predicted
decision

AC2 0 0 0 0 4 0 0

AC3 0 0 0 0 1 3 0

AC1 0 0 1 0 1 1 20

{LCLC, SCC, AC3} 0 0 1 0 0 2 0

All tumors 0 2 0 0 1 1 1

All classes 0 0 0 0 0 0 0

algorithm performances are almost in the same range of
those provided by the 5 classifiers reported in [1]. The
proposed approach prediction error is equal, or in the worst
case, slightly higher than the mean and median errors.

Moreover, we can note that focussing on the test statistics
comparison, experimental results confirm those of [1]. B, W
and W∗ can be the most performing tests under variances
heterogeneity assumptions.

3.2. Class-Selective Rejection Framework. In the following,
we present the study of lung cancer problem in the class-
selective rejection scheme. Lung cancer diagnosis problem is
determined by the gene expression profiles of 67 lung tumors
and 6 normal lung specimens from patients whose clinical
course was followed for up to 5 years. The tumors comprised
41 Adenocarcinomas (ACs), 16 squamous cell carcinomas
(SCCs); 5 cell lung cancers (LCLCs) and 5 small cell lung
cancers (SCLCs). ACs are subdivided into three subgroups
21 AC of group 1 tumors, 7 AC of group 2 tumors and 13
AC of group 3 tumors. Thus, the multiclass diagnosis cancer
consists of 7 classes.

Authors in [28] observed that AC of group 3 tumors
shared strong expression of genes with LCLC and SCC
tumors. Thus, poorly differentiated AC is difficult to dis-
tinguish from LCLC or SCC. Confusion matrices (Tables 5
and 6) computed in the Bayesian framework, with 50W∗

and 50H prove well these claims. It can be noticed that
8 of the 16 misclassified 50W∗ patients and 8 of the 15
misclassified 50H patients correspond to confusion between
these three subcategories. Therefore, one may define a new
decision option as a subset of these three classes to reduce
error.

Moreover, same researches affirm that distinction
between patients with nonsmall cell lung tumors (SCC, AC
and LCLC) and those with small cell tumors or SCLC is
extremely important, since they are treated very differently.
Thus, a confusion or wrong decision among patients of
nonsmall cell lung tumors should cost less than a confusion
between nonsmall and small lung cells tumors. Besides, one
may provide an extra decision option that includes all the
subcategories of tumors to avoid this kind of confusion.
Finally, another natural decision option can be the set of all
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Table 9: Confusion matrix of the cascade classifier (50W∗ with rejection and 50 H classifier). Total of misclassified is equal to 13.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1

Predicted
decision

Normal 6 0 0 0 0 0 0

SCLC 0 4 0 0 0 0 0

LCLC 0 0 3 0 0 4 1

SCC 0 0 0 16 0 2 0

AC2 0 0 0 0 5 0 0

AC3 0 1 1 0 1 6 0

AC1 0 0 1 0 1 1 20

classes, which means that the classifier has totally withhold
taking a solution.

Given all these information, the loss function can be
empirically defined according to the asymmetric cost matrix
given in Table 7. Solving 50W∗ lung cancer problem in
this scheme leads to the confusion matrix presented in
Table 8. As a comparison with Table 5, one may mainly note
that the number of misclassified patients decreases from 16
to 10 and 8 withhold decisions or rejected patients. This
partial rejection contributes to avoid confusion between
nonsmall and small lung cells tumors and reduces errors
due to indistinctness among LCLC, SCC and AC3. Besides,
according to the example under study, no patient is totally
rejected. It is an expected result since initially (Table 5) there
was no confusion between normal and tumor samples.

To take a decision concerning the rejected patients,
we may refer to clinical analysis. It is worth to note that
for partially rejected patients, clinical analysis will be less
expensive in terms of time and money than those on
completely blinded patients. Moreover, a supervised solution
can be also proposed. It aims to use genes selected from
another test statistic in order to assign rejected patients to
one of the possible classes. According to Tables 3 and 4,
prediction errors computed on same patients using genes
selected by different test statistics may decrease since errors of
two different test statistics do not occur on the same patients.
Thus, we chose 50H lung cancer dataset to reclassify the
8 rejected patients of Table 8. Five of them were correctly
classified while three remained misclassified. Results are
reported in Table 9. The number of misclassified patients
decreases to 13 which is less than all the prediction errors
obtained with 50 informative genes (lung cancer problem
prediction errors of Table 3). In fact, many factors play an
important role in the cascade classifiers system such as the
asymmetric costs matrix which has been chosen empirically,
the choice of test statistics, the number of classifiers in a
cascade system,. . . . Such concerns are under study.

4. Conclusion

Cancer diagnosis using genes involve a gene selection task
and a supervised classification procedure. This paper tackles
the classification step. It considers the problem of gene-based
multiclass cancer diagnosis in the general framework of

class-selective rejection. It gives a general formulation of the
problem and proposes a possible solution based on ν-1-SVM
coupled with its regularization path. The proposed classifier
minimizes any asymmetric loss function. Experimental
results show that, in the particular case where decisions
are given by the possible classes and the loss function
is set equal to the error rate, the proposed algorithm,
compared with the state of art multiclass algorithms, can
be considered as a competitive one. In the class-selective
rejection, the proposed classifier ensures higher reliability
and reduces time and expense costs by introducing partial
and total rejection. Furthermore, results prove that a cascade
of classifiers with class-selective rejections can be considered
as a good way to get improved supervised diagnosis. To get
the most reliable diagnosis, the confusion matrix defining
the loss function should be carefully chosen. Finding the
optimal loss function according to performance constraints
is an promising approach [30] which is actually under
investigation.
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