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ABSTRACT Low or uneven read depth is a common limitation of genotyping-by-sequencing (GBS) and
restriction site-associated DNA sequencing (RAD-seq), resulting in high missing data rates, heterozygotes
miscalled as homozygotes, and uncertainty of allele copy number in heterozygous polyploids. Bayesian
genotype calling can mitigate these issues, but previously has only been implemented in software that
requires a reference genome or uses priors that may be inappropriate for the population. Here we present
several novel Bayesian algorithms that estimate genotype posterior probabilities, all of which are implemented
in a new R package, polyRAD. Appropriate priors can be specified for mapping populations, populations in
Hardy-Weinberg equilibrium, or structured populations, and in each case can be informed by genotypes at
linked markers. The polyRAD software imports read depth from several existing pipelines, and outputs
continuous or discrete numerical genotypes suitable for analyses such as genome-wide association and
genomic prediction.
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Approximately 70% of vascular plant species are recent polyploids,
yet genomic resources and bioinformatics tools for polyploids typically
lag behind those for diploids (Moghe and Shiu 2014; Renny-Byfield
and Wendel 2014; Bourke et al. 2018b). Reduced representation
DNA sequencing methods, such as genotyping-by-sequencing (GBS)
and restriction site-associated DNA sequencing (RAD-seq), have made
high-density genotyping considerably more accessible and affordable
(Poland and Rife 2012; Davey et al. 2013). However, the two most
popular pipelines for processing GBS and RAD-seq data, Stacks
(Catchen et al. 2013) and TASSEL (Glaubitz et al. 2014), do not out-
put polyploid genotypes. Though pipelines for polyploids are available,
each have limitations that prevent their general application. For
example, the UNEAK pipeline is designed for diploidized polyploids
only (Lu et al. 2013). HaploTag is specialized for self-fertilizing

polyploids (Tinker et al. 2016). FreeBayes and GATK can output poly-
ploid genotypes, but require a reference genome (McKenna et al. 2010;
Garrison andMarth 2012). The software EBG imports read depth from
other pipelines to estimate auto- or allopolyploid genotypes (Blischak
et al. 2018) but requires allele frequency estimations from the parent
species for allopolyploids. The R package updog estimates polyploid
genotypes from read depth, modeling preferential pairing and account-
ing for multiple technical issues that can arise with sequencing data,
and can output posterior mean genotypes reflecting genotype uncer-
tainty (Gerard et al. 2018), but requires excessive amounts of com-
putational time to run. SuperMASSA (Serang et al. 2012) and fitPoly
(Voorrips et al. 2011) were originally designed for calling polyploid
genotypes from fluorescence-based SNP assays and have been adapted
for sequencing data, but fail to call genotypes when low read depth results
in high variance of read depth ratios. Thus, important staple crops such
as wheat, potato, sweet potato, yam, and plantain are underserved by
existing genotyping software, limiting our ability to perform marker-
assisted selection, while yield increases from breeding are not keeping
pace with projected food demands (Ray et al. 2013).

WepresentanewRpackage,polyRAD, forgenotypeestimationfrom
readdepth inpolyploidsanddiploids.ThesoftwarepolyRADisdesigned
on the principle originally proposed by Li (2011) that it is not necessary
to call genotypes with complete certainty in order to make useful in-
ferences from sequencing data. Initially, SNP discovery is performed
by other software such as TASSEL (Glaubitz et al. 2014) or Stacks
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(Catchen et al. 2013), with or without a reference genome, then allelic
read depth is imported into polyRAD from those pipelines or the read
counting software TagDigger (Clark and Sacks 2016). In polyRAD,
one or several ploidies can be specified, including any level of auto-
and/or allopolyploidy, allowing inheritance modes to vary across the
genome. Genotype probabilities are estimated by polyRAD under a
Bayesian framework, where priors are based on mapping population
design, Hardy-Weinberg equilibrium (HWE), or population structure,
with or without linkage disequilibrium (LD) and/or self-fertilization.
Multi-allelic loci (haplotypes) are allowed, and are in fact encouraged
because LD within the span of one RAD tag is not informative for
genotype imputation. In addition to exporting the most probable geno-
type for each individual and locus, continuous numerical genotypes can
be exported reflecting the relative probabilities of all possible allele copy
numbers, and can then be used for genome-wide association or
genomic prediction in software such as GAPIT (Lipka et al. 2012),
FarmCPU (Liu et al. 2016b, The PLoS Genetics Staff, 2016), TASSEL
(Bradbury et al. 2007), or rrBLUP (Endelman 2011). Discrete genotypes
can also be exported for polymapR (Bourke et al. 2018a). polyRAD is the
first Bayesian genotype caller to incorporate population structure and
multiple inheritance modes, as well as the first with an option for
mapping population designs other than F1 and F2. It is available at
https://github.com/lvclark/polyRAD and https://CRAN.R-project.org/
package=polyRAD.

METHODS

Overview
polyRAD implements Bayesian genotype estimation, similar to that
proposed and implemented by several other groups (Li 2011; Nielsen
et al. 2011; Garrison and Marth 2012; Korneliussen et al. 2014; Maruki
and Lynch 2017; Gerard et al. 2018; Blischak et al. 2018). In all poly-
RAD pipelines, genotype prior probabilities (P(Gi)) represent, for a
given allele and individual, the probability that i is the true allele copy
number, before taking allelic read depth into account. Genotype prior
probabilities are specified from population parameters, and optionally
from genotypes at linked markers (see Supplementary Methods).

Foragiven individual and locus, consider every sequencingread tobe
a Bernoulli trial, where the read eithermatches a given allele (success) or
some other allele (failure). The probability of success is:

Equation 1: pi ¼ ð12 cÞ � i
k
þ c � p ;

where c is the cross-contamination rate, i is the allele copy number in the
genotype, k is the ploidy, and p is the allele frequency in the population.
The c parameter is important for identifying homozygotes that could
otherwise bemisidentified as heterozygotes. ForGBS andRAD-seq data,
c is estimated by including a negative control in library preparation, i.e.,
of the set of ligation reactions with barcoded adapters, one that has no
genomic DNA added. The sequence read depth for this blank barcode is
then divided by the mean read depth of non-blank barcodes in order to
estimate c. Our model assumes c to be constant across loci, under the
assumption that most errors are due to contamination during library
preparation. In practice we have found c to typically be 1/1000 (un-
published data), and expect it to be more substantial than errors arising
from the sequencing technology, which will tend to produce haplotypes
not found elsewhere in the data set. Therefore, although it is known that
sequencing error can vary from locus to locus depending on sequence
context (Nakamura et al. 2011), polyRAD does not estimate sequence
error on a per-locus basis. Rare loci with very high sequencing error rates
may exhibit underestimated likelihoods of homozygosity.

Gerard et al. (2018) observed overdispersion in the distribution of
sequence read depth, indicating that in reality pi varies from sample to
sample.We have observed the same in our datasets, likely due to factors
such as differing contamination rates among samples, restriction cut
site variation, and differences in size selection among libraries. Therefore,
following Gerard et al. (2018), we model allelic read depth as following a
beta-binomial distribution rather than a binomial distribution. For every
possible allele copy number at a given locus and individual, the following
equation is used to estimate the likelihood of the observed read depth
using the beta-binomial probability mass function:

Equation 2: Lða; bjGiÞ ¼
�
aþ b
a

�
� B½d � pi þ a; d � ð12piÞ þ b�

B½d � pi; d � ð12piÞ� ;

where a is the number of reads for a given allele at a given locus, b is
the number of reads for other alleles at that locus, Gi is the state in
which a locus has i copies of a given allele, B is the beta function, and
d is the overdispersion parameter. The parameter d is set to nine by
default given our observations of overdispersion in empirical data,
and can be increased to model less overdispersion and vice versa.
The function TestOverdispersion is included in polyRAD to assist the
user in determining the optimal value of d. Although overdispersion
is likely to vary from locus to locus, polyRAD uses a single estimate in
order to save computational time. The lower d is, the more influence
genotype prior probabilities have on genotype estimates.

From the priors and likelihoods, a posterior probability can then be
estimated for each possible allele copy number for each individual and
allele using Bayes’ theorem (Shiryaev 2011):

Equation 3: PðGija; bÞ ¼ Lða; bjGiÞ � PðGiÞ
Pk
i¼0

Lða; bjGiÞ � PðGiÞ
;

where all terms are as previously described.
Bayesiangenotypeestimationallowscorrectionofgenotypingerrors in

diploids and polyploids, i.e., when an individual is truly heterozygous but
only one allele was sequenced, or when an individual appears heterozy-
gous due to sequencing error or contamination but is truly homozygous.
It also enables estimation of allele dosage in heterozygous polyploid
genotypes. Moreover, genotype posterior probabilities are more influ-
enced by priors when read depth is low, and by genotype likelihoods
derived from allelic read depth when read depth is high. When read
depth is zero for a given individual and locus, genotype posterior
probabilities are equal to priors, and thus missing and non-missing
data are handled within one coherent paradigm. It is therefore not
necessary to impute missing genotypes in a second step if the priors
are sufficiently informative.

For export to other software, as well as iteration within the polyRAD
pipelines, a given allele’s posterior mean genotype (pmg) is a mean of the
number of copies of that allele, with the posterior genotype probabilities
(Equation 3) serving as weights, as in Guan and Stephens (2008). Thus,
for an individual and allele, pmg is calculated as:

Equation 4: pmg ¼
Xk
i¼0

PðGija; bÞ � i ;

where all terms are as previously described. Additional details and
equations for specification of prior genotype probabilities and estimation
ofotherparametersareprovided inSupplementaryMaterials.Aflowchart
of how this Bayesian genotypic estimation is implemented into polyRAD
is displayed in Figure 1. In brief, for mapping populations, genotype
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priors are specified based on parental genotypes and progeny allele
frequencies, and all parameters are estimated once. For diversity panels,
genotype priors are adjusted and parameters re-estimated itera-
tively until allele frequencies converge. Source code is available
at https://github.com/lvclark/polyRAD, archived at Zenodo (doi:
10.5281/zenodo.1143744).

Example use
Executable examples are provided in the vignette and manual distrib-
utedwith polyRAD.Herewe provide an additional brief example. Box 1
illustrates the use of polyRAD on a diversity panel of a generic tetraploid
species with a reference genome. Tools from the Bioconductor package
VariantAnnotation (Obenchain et al. 2014) are used by the polyRAD
function VCF2RADdata for import of a VCF file to the polyRAD-
specific “RADdata” format. SNP filtering criteria are specified with the
min.ind.with.reads andmin.ind.with.minor.allele arguments to indicate
the minimum number of individuals that must have more than zero

reads of a locus, and the minimum number of individuals that must
have reads of the minor allele, respectively. The possiblePloidies argu-
ment indicates that the inheritance mode could be allotetraploid
(c(2,2)) or autotetraploid (4). Any ploidy may be specified with
possiblePloidies, for example 8 for auto-octoploid, with the only limitation
that all subgenomes in an allopolyploid must have the same ploidy. By
default,VCF2RADdata groups SNP alleles into haplotypes that appear
to have come from the same RAD tag, the size of which is specified by
tagsize, in basepairs. Negative controls are indicated with SetBlank-
Taxa, and the contamination rate is estimated with EstimateContami-
nationRate. The function IteratePopStructLD is then used for
genotype estimation, taking both population structure and LD
into account. The probabilistic principal components analysis
method from the Bioconductor package pcaMethods (Stacklies et al.
2007) is used internally by IteratePopStructLD in order to estimate
population structure. The LDdist argument indicates the distance in
basepairs within which to search for alleles at other loci that can help

Figure 1 Overview of polyRAD algorithms for genotype estimation. Genotype posterior probabilities are estimated iteratively until allele frequencies
converge, except in the case of mapping populations, where allele frequencies are only estimated once. Purple boxes indicate inputs to the pipeline (read
depth, contamination rate, and optionally, genomic positions of loci). Blue boxes indicate estimated parameters (allele frequencies, genotype likelihoods
and prior and posterior probabilities, linkage between alleles, and probability of sampling each allele). Green boxes indicate alternative methodologies for
genotype prior probability estimation (mapping, HWE, and population structure). Priors for the HWE and population structure models can be adjusted for
self-fertilization according to De Silva et al. (2005). Orange boxes indicate sample · allele matrices indicating approximate allele copy number. Dashed
arrows indicate steps that happen only once at the beginning or end of the pipeline, whereas solid arrows indicate iterative steps. Circular arrows highlight
cycles of iteration. Equations 1-4 are provided in the main manuscript, and Equations 5-19 are provided in Supplemental Materials.
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predict copy number of a given allele. Once genotype posterior prob-
abilities are estimated, other parameters are cleared frommemory using
the StripDown function. Continuous numerical genotypes are then
formatted for GAPIT (Lipka et al. 2012) using the ExportGAPIT
function. Alternative functions are listed in Table 1. A very similar
script could be used for a species without a reference genome, with
IteratePopStruct in place of IteratePopStructLD, and a different im-
port function for the appropriate non-reference pipeline.

Box 1. Example R script using polyRAD. Read depth is
imported from a VCF file, genotypes are estimated
using population structure and LD, and continuous
numerical genotypes are formatted for GAPIT.
library(polyRAD)
library(VariantAnnotation)
# prepare the VCF file for import
myvcf ,- “somegenotypes.vcf”
myvcfbg ,- bgzip(myvcf)
indexTabix(myvcfbz, format = “vcf”)
# import VCF into a RADdata object
myRAD ,- VCF2RADdata(myvcfbg,

tagsize = 64,
min.ind.with.reads = 300,
min.ind.with.minor.allele = 15,
possiblePloidies = list(c(2,2), 4))

# estimate contamination rate
myRAD,- SetBlankTaxa(myRAD,c(“blank1”,“blank2”))
myRAD ,- EstimateContaminationRate(myRAD)
# genotype estimation with pop. structure pipeline
myRAD ,- IteratePopStructLD(myRAD, LDdist = 5e4)
# free up memory
myRAD ,- StripDown(myRAD)
# export for GAPIT
myGM_GD ,- ExportGAPIT(myRAD)

Testing
To test the accuracy of polyRAD,we used datasets from three previously
studied populations: 1) RAD-seq data and GoldenGate SNP genotypes
from a diversity panel (n = 565) of the outcrossing, diploidized allote-
traploid grassMiscanthus sinensis (Clark et al. 2014), 2) RAD-seq data
and GoldenGate SNP genotypes from a bi-parental F1 mapping pop-
ulation (n = 275) of M. sinensis (Liu et al. 2016a), and 3) SNP array
genotypes from a biparental F1 mapping population of autotetraploid
potato (n = 238) (da Silva et al. 2017). Allelic read depth at simulated
RAD-seq markers was generated from the GoldenGate or SNP array
genotypes, with overall locus depth drawn from a gamma distribution
to resemble depth of actual RAD-seqmarkers (shape = 2 and scale = 5).
The read depth for an individual genotype was also sampled from a
gamma distribution, with the shape equal to the locus depth divided by
10, and scale = 10. The read depth for each allele was then sampled from
the beta-binomial distribution as described in Equation 2, with d = 9
and c = 0.001. TheM. sinensis diversity panel included 395 GoldenGate
markers, plus real RAD-seq data for those same individuals across
3290 tag locations within 20 kb of any GoldenGatemarkers, called with
the TASSELGBS v2 pipeline (Glaubitz et al. 2014) using theM. sinensis
v7.1 reference genome (DOE-JGI, http://phytozome.jgi.doe.gov/). Ad-
ditionally, to test the effect of ploidy within the M. sinensis diversity
panel, tetraploidy was simulated by summing GoldenGate genotypes
and RAD-seq read depth of each individual with the individual with the
most similar read depth to it out of the ten individuals most closely
related to it. The M. sinensis mapping population included 241 Gold-
enGate markers genotyped across 83 individuals, plus 3062 RAD-seq
markers called with the UNEAK pipeline (Lu et al. 2013) across those
83 individuals plus an additional 192 individuals. The potato mapping
population included genotypes at 2538 markers. Additional simula-
tions using data from diversity panels of soybean (Song et al. 2015),
apple (Chagné et al. 2012), and potato (Hamilton et al. 2011) are
presented in Figs. S1-S4. In each population, the simulated and real
RAD-seq data were used for genotype calling with polyRAD, EBG

n Table 1 Overview of main polyRAD functions

Import functions

VCF2RADdata Imports any VCF with an allelic read depth (AD) field, such as those exported by TASSEL-GBSv2
or GATK.

readTagDigger Imports CSV file of read depth output by TagDigger.
readStacks Reads catalog and matches files from Stacks.
readTASSELGBSv2 Reads SAM and TagTaxaDist files from TASSEL-GBSv2.
readHMC Reads files output by UNEAK.

Genotype estimation functions

PipelineMapping2Parents For mapping populations with any number of generations of backcrossing, intermating, and/
or selfing.

IterateHWE For diversity panels without population structure.a

IterateHWE_LD For diversity panels with LD and without population structure.a

IteratePopStruct For diversity panels with population structure.a

IteratePopStructLD For diversity panels with population structure and LD.a

Export functions

ExportGAPIT Format genotypes for the GD and GM arguments of GAPIT or FarmCPU.
Export_rrBLUP_Amat Format genotypes for the A.mat function in rrBLUP.
Export_rrBLUP_GWAS Format genotypes for the GWAS function in rrBLUP.
Export_TASSEL_Numeric Write file formatted for TASSEL with continuous numeric genotypes.
Export_polymapR Format genotypes for the polymapR package.
GetWeightedMeanGenotypes Create a matrix of continuous numeric genotypes.
GetProbableGenotypes Create a matrix of discrete genotypes, indicating the most probable genotype for each individual

and allele.
a
The rate of self-fertilization can be specified for self-compatible plant species.
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Figure 2 Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in a diversity panel of 565 diploid Miscanthus sinensis. The
benefits of incorporating population structure into the genotyping model and using continuous rather than discrete genotypes are illustrated.
Genotypes were coded on a scale of 0 to 2. Root mean squared error (RMSE) was calculated between actual genotypes and genotypes
ascertained from simulated RAD-seq reads at 395 SNP markers (lower RMSE = higher accuracy). Each point represents one SNP. Median read
depth is indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes output by the polyRAD PopStruct LD
method is shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is shown on the y-axis. The
dashed line indicates the ordinary least-squares regression with slope and intercept estimates, with standard errors. The “norm” model was used
with updog. (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero reads, by
genotyping or imputation method and genotype type.
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Figure 3 Genotyping error of EBG, fitPoly, updog, polyRAD, and rrBLUP in a simulated tetraploid diversity panel derived from genotypes of
565 diploid Miscanthus sinensis. The benefits of incorporating population structure into the genotyping model and using continuous rather
than discrete genotypes are illustrated. Genotypes were coded on a scale of 0 to 4. Root mean squared error (RMSE) was calculated between
actual genotypes and genotypes ascertained from simulated RAD-seq reads at 395 SNP markers (lower RMSE = higher accuracy). Each point
represents one SNP. Median read depth is indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes
output by the polyRAD PopStruct LD method is shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or
discrete) is shown on the y-axis. The dashed line indicates the ordinary least-squares regression with slope and intercept estimates, with
standard errors. The “norm” model was used with updog. (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE
calculated using only genotypes with zero reads, by genotyping or imputation method and genotype type. LinkImpute was not included
given that it works for diploids only.
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Figure 4 Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in an F1 mapping population of 83 diploid Miscanthus
sinensis. The benefits of incorporating linkage into the genotyping model and using continuous rather than discrete genotypes are illustrated.
Genotypes were coded on a scale of 0 to 2. Root mean squared error (RMSE) was calculated between actual genotypes and genotypes
ascertained from simulated RAD-seq reads at 241 SNP markers (lower RMSE = higher accuracy). Each point represents one SNP. Median read
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(Blischak et al. 2018), updog (Gerard et al. 2018), and fitPoly (Voorrips
et al. 2011), andmissing genotypes from the EBG output were imputed
with LinkImpute (Money et al. 2015) and/or rrBLUP (Endelman
2011) as appropriate. To estimate the accuracy of genotype calling
and imputation, the root mean squared error (RMSE) was calculated
between numeric genotypes (ranging from zero to the ploidy) at each
simulated RAD-seq marker and at the GoldenGate or SNP array
marker from which it was derived.

Data Availability
Data and scripts for analysis are available at https://doi.org/10.13012/
B2IDB-9729830_V2. Supplementary text, equations, and figures have
been deposited at Figshare: https://doi.org/10.25387/g3.7370999.

RESULTS AND DISCUSSION

Accuracy of polyRAD
In the M. sinensis diversity panel, polyRAD showed improved geno-
type accuracy over the HWE, disequilibrium, and GATK methods
implemented in EBG, as well as fitPoly, particularly at low read depths
(Figures 2A and 3A). polyRAD also showed amodest improvement in
accuracy across all read depths as compared to updog (Figures 2A and
3A) while needing approximately two orders of magnitude less pro-
cessing time than updog. Under the HWE model in polyRAD with
discrete genotypes output, errors in genotypes with more than zero
reads were similar to those from the HWEmodel of EBG in both diploid
and tetraploid systems (Figures 2A and 3A). However, when priors in
polyRAD were based on population structure, errors decreased, par-
ticularly in tetraploids and at low read depth (Figures 2A and 3A). In
diploids and tetraploids respectively using the polyRAD population
structure model with discrete genotypes, error (RMSE) was reduced
by 14.6% (SE 1.0%) and 23.5% (SE 0.6%) relative to the GATKmodel,
by 10.5% (SE 0.9%) and 11.8% (SE 0.5%) relative to the EBG HWE
model, by 26.0% (SE 1.2%) and 25.6% (SE 0.6%) relative fitPoly, and
by 8.0% (SE 1.0%) and 18.0% (SE 0.7%) relative to discrete genotype
output by the updog “norm” model. Given the known population
structure in M. sinensis (Clark et al. 2014), it is unsurprising that a
population structure-aware genotyping method would be more
accurate than those based on HWE or otherwise not accounting
for population structure. For genotypes with zero reads, imputation
was most accurate when it accounted for population structure, using
either polyRAD or rrBLUP (Figure 2B and 3B). Although modeling
LD did not improve accuracy in M. sinensis (Figures 2 and 3),
likely due to low LD as a result of outcrossing (Slavov et al. 2014),
modeling LD did improve accuracy in wild soybean, apple, and a
simulated inbreeding allohexaploid (Figures S1, S2, and S3, and
Supporting Results). In a diversity panel of tetraploid potato, accuracy
was improved by modeling population structure but not LD (Figures
S4 and Supporting Results).

In diploid M. sinensis and tetraploid potato F1 mapping popula-
tions, polyRAD outperformed the GATK method, fitPoly, and updog,
particularly when linked markers were used for informing the priors
in polyRAD (Figures 4A and 5A). In diploids and tetraploids respec-
tively using genotypes with non-zero read depth, error (RMSE) using

the polyRAD linkage model with discrete genotypes was reduced by
31.6% (SE 2.2%) and 48.0% (SE 0.4%) with respect to the GATKmodel,
and 1.5% (SE 3.1%) and 17.1% (SE 0.6%) with respect to the updog
“f1”model with discrete genotypes. For diploids, error was reduced by
39.8% (SE 2.5%) using polyRAD with respect to fitPoly, while for
tetraploids fitPoly failed for all markers. For imputation, polyRAD
using the linkage model performed similarly to LinkImpute and rrBLUP
(Figures 4B and 5B). Although only F1 populations are presented here,
many other population types are supported in polyRAD.

Genotyping error was also reduced 10–15% inmost cases by export-
ing genotypes as continuous numerical variables (posterior mean
genotypes), rather than discrete values (Figures 2-5). For example, in
a diploid, a true heterozygote (numeric value of 1) with reads only for
the reference allele might erroneously be called as zero (homozygous
for the reference allele) if only the most probable genotype is exported.
However, the genotype could be called 0.4 if continuous genotypes are
allowed, indicating that there is a 60% chance of it being a homozy-
gote and 40% chance of it being a heterozygote, and thereby reducing
the error from 1.0 to 0.6. Similarly in polyploids, continuous numer-
ical genotypes can correct for errors in allele copy number estimation
of heterozygotes.

Downstream applications and implications for
sequencing strategies
The genotyping methods implemented in polyRAD will have the most
benefit formarkeranalysiswhere1) theaccuracyof individual genotypes
is important, and 2) genotypes can be treated as continuous rather than
discrete variables. The use of continuous vs. discrete genotypes has been
demonstrated to increase power for genome-wide association studies
(GWAS) (Grandke et al. 2016) and genomic prediction (Oliveira et al.
2018) in polyploids. More generally, we anticipate that analyses that
seek to quantify marker-trait associations in a population of individu-
als, including GWAS, quantitative trait locus mapping, and genomic
prediction methods involving variable selection, will especially benefit
from polyRAD. By reducing genotyping error, polyRAD will increase
the power of these methods to detect true associations. Analyses that
will benefit less from polyRAD genotyping are those where an average
is taken across many genotypes in order to estimate a statistic, such as
allele frequencies in a population or overall relatedness of individuals
(including kinship-based methods of genomic prediction), because
genotyping errors generally are not biased toward one allele or the other
and tend to balance out over many individuals and loci (Buerkle and
Gompert 2013; Dodds et al. 2015).

The advantages of polyRADfor accurate genotyping at low sequence
read depth alter the economics of sequence-based genotyping, enabling
researchers topurchase fewer sequencing lanes,multiplexmore samples
per lane, and/or retain more markers during filtering. In particular, for
protocols using restriction enzymes where read depth varies consider-
ably from locus to locus depending on fragment size (Beissinger et al.
2013; Davey et al. 2013; Andrews et al. 2016), there are diminishing
returns on increasing the per-sample read depth, because some loci
receive far more reads than are needed for accurate genotyping while
other loci remain poor quality. Using population structure and link-
age between loci, polyRAD uses information from high-depth markers

depth is indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes output by the polyRAD mapping method
with linkage is shown on the x-axis, and the RMSE of other methods and types of genotypes (continuous or discrete) is shown on the y-axis. The
dashed line indicates the ordinary least-squares regression with slope and intercept estimates, with standard errors. The “f1”model was used with
updog. (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes with zero reads, by
genotyping or imputation method and genotype type.
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to improve genotyping accuracy of low-depth markers, helping to
maximize the useful information that is obtained from sequencing
data. This advance is expected to improve breeding efficiency and
economics.
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