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Abstract

Recent research suggested a metabolic implication of osteocalcin (OCN) in e.g. insulin sen-

sitivity or steroid production. We used an untargeted metabolomics approach by analyzing

plasma and urine samples of 931 participants using mass spectrometry to reveal further

metabolic actions of OCN. Several detected relations between OCN and metabolites were

strongly linked to renal function, however, a number of associations remained significant

after adjustment for renal function. Intermediates of proline catabolism were associated with

OCN reflecting the implication in bone metabolism. The association to kynurenine points

towards a pro-inflammatory state with increasing OCN. Inverse relations with intermediates

of branch-chained amino acid metabolism suggest a link to energy metabolism. Finally, uri-

nary surrogate markers of smoking highlight its adverse effect on OCN metabolism. In con-

clusion, the present study provides a read-out of metabolic actions of OCN. However, most

of the associations were weak arguing for a limited role of OCN in whole-body metabolism.

Introduction

Osteocalcin (OCN) is a γ-carboxylated protein of 49 amino acids produced by osteoblasts,

odontoblasts and hypertrophic chondrocytes. It has a central role in the bone remodeling

cycle, affecting bone mineralization, and is considered as a marker of bone formation, but its

function is not yet entirely understood [1]. OCN is released from the bone matrix into the

blood stream following matrix resorption [2] and is freely filtered by the kidneys. Fully γ-car-

boxylated OCN is able to bind calcium and in consequence hydroxylapatite in bone. Next to
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the fully γ-carboxylated form, OCN also exists in forms with reduced amount of carboxylated

glutamate residues.

Apart from bone metabolism, circulating OCN seems to act in a hormone-like manner.

OCN deficient mice showed decreased glucose tolerance and accumulation of body fat [3].

Furthermore, in vitro and in vivo experiments revealed that both the fully carboxylated and the

undercarboxylated OCN, stimulate glucose transport and oxidation as well as insulin sensitiv-

ity in myocytes and adipocytes [3]. A similar effect, namely OCN being a powerful synergist in

management of insulin synthesis and release, was observed in a pharmacological intervention

study in mice treated with OCN combined with a high-fat diet [4]. On the other side, insulin

seems to play an important role in OCN production and bioactivity regulation. Mice lacking

insulin receptors in osteoblasts accumulated body fat and developed insulin resistance similar

to OCN deficient mice [5]. A feed-forward loop between bone and pancreas was thus sug-

gested [5].

Similar effects were also reported in humans. For instance, a study [6] in elderly men dem-

onstrated strong inverse correlations between plasma OCN concentrations and indicators of

altered energy metabolism such as fat mass, body mass index (BMI) or plasma glucose concen-

tration. The serum OCN concentration was further proposed to predict incident type 2 diabe-

tes in middle-aged subjects [7]. Besides the effects on glucose metabolism, an influence of

OCN on the reproductive system, including the regulation of the intracellular 25-hydroxy vita-

min D concentration in mice Leydig cells [8] and positive associations between serum OCN

and serum testosterone concentrations were reported in healthy men as well as in patients suf-

fering from bone diseases [9].

To address possible implications of circulating OCN on human metabolism in a compre-

hensive manner, techniques like metabolomics can be used [10]. This technique allows to

assess the content of small molecules present in biofluids, cells or tissues, which directly reflects

the metabolic state of the organism, and to relate the metabolic profile to the serum OCN con-

centration. We therefore attempted to analyze possible metabolic implications of the serum

OCN concentration in humans using state-of-the-art untargeted mass spectrometry (MS)-

based plasma and urine metabolome data of a non-diabetic sample of the general population.

Material and methods

Study population

The Study of Health in Pomerania (SHIP-TREND) is a population-based study located in

West Pomerania, a rural region in northeast Germany [11]. A stratified (age, sex and city/

county of residence) random sample of 8826 adults aged 20–79 years was drawn from popula-

tion registries. Sample selection was facilitated by centralization of local population registries

in the Federal State of Mecklenburg-West Pomerania. Baseline examinations were conducted

between 2008 and 2012. In total, 4420 subjects chose to participate (50.1% response). All

participants gave written informed consent before taking part in the study. The study was

approved by the ethics committee of the University of Greifswald and conformed to the princi-

ples of the declaration of Helsinki. SHIP data are publically available for scientific and quality

control purposes. Data usage can be applied for via www.community-medicine.de to ensure

compliance with all legislation.

For a subsample of 995 participants without self-reported diabetes, plasma as well as urine

metabolomome data based on MS (see below) were acquired. Participants exhibiting at least

one of the following characteristics were excluded from the study sample (overlap exists): miss-

ing values in exposure or confounder (n = 13), renal failure (estimated glomerular filtration

rate (eGFR) <60 mL/min/1.73m2 n = 7), intake of medication influencing the serum OCN
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concentration (bisphosphonates and combinations, selective estrogen receptor modulators,

parathyroid hormones and analogues or calcitonin, corticosteroids and combinations, stron-

tium ranelate, vitamin D and analogues; n = 16), newly diagnosed diabetes (n = 30) or extreme

parathyroid hormone concentrations (>120 pg/mL; n = 7). Finally 931 participants, compris-

ing 414 men and 517 women, were included in the present study.

Laboratory measurements and phenotypic characterization

Smoking status (current, former or never smokers), daily alcohol consumption and physical

activity (�1 h training a week) were assessed using computer-aided personal interviews. Waist

circumference (WC) was measured to the nearest 0.1 cm using an inelastic tape midway between

the lower rib margin and the iliac crest in the horizontal plane. Hypertension was defined as an

increased blood pressure (BP) (systolic BP of�140 mmHg or diastolic BP of�90 mmHg) or the

use of antihypertensive medication. The intake of oral contraceptives (OC; ATC: G03A) or post-

menopausal hormone therapy (PHT; ATC: G03C, G03D and G03F, N = 31) were defined based

on ATC codes.

Fasting blood samples were taken from the cubital vein of participants in the supine posi-

tion between 7.00 a.m. and 12.00 p.m. In the same time span spot urine samples were taken.

All samples were either analyzed immediately or stored at −80˚C. Serum OCN concentrations

were measured with the IDS-iSYS N-Mid Osteocalcin assay on the IDS-iSYS Multi-Discipline

Automated Analyser (Immunodiagnostic Systems Limited, Frankfurt am Main, Germany)

according to the instructions for use. This assay detects the intact OCN polypeptide (amino

acids 1–49) and the N-terminal-Mid OCN fragment (amino acids 1–43). The measurement

range of the assay was 2–200 ng/mL. The limits of blank and detection were 0.27 ng/mL. The

limit of quantitation was 1.57 ng/mL. As recommended by the manufacturer, three levels of

control material were measured. During the course of the study, the coefficients of variation

were 13.4% at low, 15.0% at medium, and 17.0% at high serum OCN concentrations in the

control material. Serum cystatin C concentrations were measured using a nephelometric assay

(Dimension VISTA, Siemens Healthcare Diagnostics, Eschborn, Germany) with a functional

sensitivity of 0.05 mg/L. The cystatin C-based eGFR was calculated using the CKD-EPI cysta-

tin C equation: eGFR = 133 × min(serum cystatin C / 0.8, 1)-0.499 × max(serum cystatin C / 0.8,

1)-1.328 × 0.996age [× 0.932 if female] [12].

Metabolomics measurements

Non-targeted metabolomics analysis for metabolic profiling was conducted at the Genome

Analysis Center, Helmholtz Zentrum München, Germany. A detailed description of metabo-

lite measurements, annotations and data processing is given in the appendix (S1 Appendix).

Briefly, two separate LC-MS/MS analytical methods were used, as previously published [13], to

obtain broad, untargeted plasma and urine metabolite spectra. After preprocessing, 475 plasma

and 558 urine metabolites remained for the statistical analyses. Some of these metabolites

could not be unambiguously assigned to a chemical identity and are therefore referred to with

the notation “X” and a unique number.

Statistical analysis

For descriptive analyses continuous data were expressed as median (25th; 75th quartile) and

nominal data as percentage. For bivariate comparison of men and women, the Mann–Whitney

U test (continuous data) and the χ2 test (nominal data) were used. Associations between OCN

concentrations as exposure and the plasma and urine metabolome as outcome were tested by

linear regression analyses controlling for age, sex, WC and physical activity. Since the first
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results revealed a high number of significantly associated metabolites, including markers of

kidney function, we further adjusted for the eGFR, the intake of OC or PHT as well as smoking

behavior in a second model. The association between the serum OCN concentration and the

eGFR was tested using partial correlation coefficients, controlling for age, sex and WC. To

account for multiple testing, we adjusted the p-values by controlling the false discovery rate

(FDR) at 5% using the Benjamini-Hochberg procedure. This type of correction allows restrict-

ing the occurrence of false-positive findings among all nominal significant findings to a certain

threshold. In our study maximally 5% of the presented findings might be false positives.

Results

General characteristics of the 414 men and 517 women from the study population are dis-

played in Table 1. Men were more often smoker or former smoker and had a higher WC as

well as eGFR than women. Every fourth women reported intake of OC or PHT. Sex differences

in OCN concentrations and bone-associated markers like parathyroid hormone or 25-hydroxy

vitamin D were not found.

We calculated age, sex, WC, and physical activity adjusted linear regression models to assess

the associations between serum OCN and plasma or urine metabolites and revealed 64 and 48

significantly related metabolites in plasma and urine, respectively (Fig 1).

These associations included seven metabolites present in both, plasma and urine, e.g. pro-

lylhydroxyproline (PHP) and C-mannosyltryptophan. In particular the latter one pointed

towards an important role of the kidneys in these relations, as highlighted by a recent metabo-

lomics study [14]. This was further supported by a weak inverse correlation between serum

OCN and the eGFR (r = -0.17; p<0.001). Therefore, we reanalyzed all models after additional

adjustment for the eGFR and further covariates (see methods) and observed an important

drop in the number of associated metabolites (S1 Fig, S1 and S2 Tables).

After the additional adjustment twelve plasma and 17 urine metabolites remained signifi-

cantly associated with OCN. Among them, three metabolites clearly stood out, the proline

metabolites PHP (plasma and urine) and glycylproline (urine) as well as the unknown metabo-

lite X-18927 (urine) (Fig 2 and Table 2). All three metabolites showed a positive association

Table 1. General characteristics of the study population.

Characteristic Men (n = 414) Women (n = 517) p*

Age (years) 50 (39; 61) 51 (40; 59) 0.84

Smoking (%)

never smoker 31.4 50.5 <0.01

former smoker 44.7 28.0

current smoker 23.9 21.5

Physically inactive (%) 27.3 27.5 0.95

Waist circumference (cm) 94 (86; 102) 81 (74; 90) <0.01

Osteocalcin (ng/mL) 17.3 (13.3; 21.8) 17.4 (13.5; 23.2) 0.33

Parathyroid hormone (pg/mL) 31.7 (23.6; 40.9) 31.0 (23.9; 39.1) 0.38

25-hydroxy vitamin D (μg/L) 25.0 (18.2; 32.6) 24.3 (16.6; 32.9) 0.38

eGFR (mL/min/1.73m2) 117.6 (108.1; 125.1) 112.9 (103.9; 121.4) <0.01

Hormone intake (%)** - 24.4

eGFR = estimated glomerular filtration rate based on cystatin C. Continuous data are expressed as median (25th percentile; 75th percentile); nominal data

are given as percentages.

*χ2-test (nominal data) or Mann-Whitney test (interval data) were performed

**Intake of oral contraceptives or hormone replacement therapy.

https://doi.org/10.1371/journal.pone.0184721.t001
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with serum OCN. Interestingly, X-18927 showed a strong correlation with the two proline

derivatives (S2 Fig) and hence might point towards a functional relation.

Besides the proline derivatives, serum OCN was positively associated with plasma concentra-

tions of 2-aminoheptanoate, kynurenine, citrulline, phenylalanyltryptophan, N-acteylcarnosine,

and two metabolites of unknown identity (Table 2). Inverse associations were restricted to plasma

Fig 1. Corrected p-values (false discovery rate; FDR) from linear regression analyses with osteocalcin concentration as

exposure and plasma (left upper panel) or urine (right lower panel) metabolites as outcomes. Models were adjusted for

age, sex, waist circumference and physical activity. The upper right panel contains results for metabolites present in both fluids.

Within each panel the dotted lines denote the significance threshold of FDR<0.05. Metabolites are colored if they are significantly

associated in plasma (blue), urine (orange) or in both (red), respectively. Metabolites marked with a diamond exceed the plotting

range. Metabolites highlighted by increased point size and darker colors persisted significant even after further adjustment for

hormone intake, estimated glomerular filtration rate and smoking behavior. Corresponding beta estimates and FDR-values can be

found in supplemental Tables 1 and 2. Metabolites numbered with 1 to 7 are named in the lower left panel. Triangles indicate the

direction of the association in plasma or urine, with▲ indicating positive associations.

https://doi.org/10.1371/journal.pone.0184721.g001
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concentrations of 3-hydroxyisobutyrate, 3-methyl-2-oxobutyrate, pipecolate and one unknown

metabolite (X—12104). With respect to urine, 1-methylurate (1-MU) and four unknown metab-

olites showed a positive association with serum OCN. Additionally, serum OCN was inversely

associated with urine concentrations of tiglyl carnitine, riboflavin (vitamin B2), the xenobiotics

S-(3-hydroxypropyl)mercapturic acid (HPMA) and hydroxycotinine as well as five unknown

metabolites.

The exclusion of participants with 25-hydroxy vitamin D levels below 10μg/L did not affect

the presented results (S3 Fig).

Discussion

The present study investigated metabolic effects of OCN based on a multi-fluid non-targeted

metabolomics approach in an epidemiological setting. Overall, the serum OCN concentration

was significantly related with metabolites involved in bone and energy metabolism as well as

in detoxification of xenobiotics.

The unexpectedly huge number of associated metabolites in the first analyses indicated

some hidden confounding. Indeed, closer inspection of the associated metabolites indicated a

potential role of renal function in the associations of the serum OCN concentration with

plasma or urine metabolites, e.g. C-mannosyltrypophan [14]. Former investigations already

showed that the clearance of OCN, by metabolism or excretion, is depending on renal function

as OCN is freely filtered (molecular size of 5-6kDa) [15]. Consequently, the additional adjust-

ment for renal function (eGFR) led to a reduction in the number of significant findings, which

might be considered as independent of renal function.

The interplay between bone, OCN and metabolism

The most pronounced association with serum OCN was found for PHP in plasma and urine.

PHP is a collagen-derived peptide and against this background PHP was discussed as potential

new, fast-responding marker for alterations in bone status or metabolism [16]. A study among

postmenopausal women [16] confirmed highly significant correlations of serum OCN with

urinary PHP as well as of both markers with other markers of bone turnover or dual X-ray

absorptiometry (DXA). These results are not surprising as during bone turnover both the

collagenous and the non-collagenous parts of the organic matrix are resorbed and newly

Fig 2. Boxplots for the four most significantly associated metabolites according to quartiles of serum

osteocalcin concentration.

https://doi.org/10.1371/journal.pone.0184721.g002
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synthesized, releasing degradation intermediates like PHP. The association of the serum OCN

concentration with PHP is further supported by the observed positive association between

serum OCN and the urinary glycylproline concentration. Glycylproline is a dipeptide and part

of the primary structure of collagen. This finding is most likely due to the concurrent release

of both OCN and glycylproline during bone remodeling. For X-18927, an unknown metabo-

lite, no further information is currently available. However, the strong correlation of X-18927

with PHP and glycylproline suggests a functional link between these three metabolites.

Other detected metabolites, for example kynurenine, seem to be linked to OCN and bone

metabolism in a rather indirect manner. Kynurenine is a degradation product of tryptophan

and was positively associated with OCN in the present study. The Hordaland Health Study [17]

Table 2. Plasma and urine metabolites significantly associated with the serum osteocalcin concentration.

Metabolite Class N β (95%-CI)* FDR

Plasma

2-aminoheptanoate Lipid 879 0.164 (0.076; 0.252) 2.55E-02

3-hydroxyisobutyrate Amino Acid 905 -0.207 (-0.308; -0.106) 1.54E-02

3-methyl-2-oxobutyrate Amino Acid 910 -0.091 (-0.143; -0.039) 3.02E-02

pipecolate Amino Acid 900 -0.192 (-0.289; -0.095) 1.81E-02

kynurenine Amino Acid 908 0.092 (0.041; 0.143) 2.85E-02

citrulline Amino Acid 909 0.096 (0.044; 0.149) 2.55E-02

prolylhydroxyproline Amino Acid 909 0.706 (0.629; 0.784) 1.20E-58

phenylalanyltryptophan Peptide 852 0.147 (0.062; 0.231) 3.02E-02

N-acetylcarnosine Peptide 701 0.162 (0.078; 0.246) 1.93E-02

X—11378 Unknown 908 0.168 (0.071; 0.265) 3.02E-02

X—12104 Unknown 758 -0.136 (-0.213; -0.059) 3.02E-02

X—16394 Unknown 907 0.097 (0.040; 0.154) 3.51E-02

Urine

tiglyl carnitine Amino Acid 921 -0.151 (-0.223; -0.078) 4.83E-03

prolylhydroxyproline Amino Acid 921 0.603 (0.537; 0.668) 2.31E-60

riboflavin (Vitamin B2) Cof. and Vit. 900 -0.305 (-0.487; -0.122) 4.12E-02

glycylproline Peptide 912 0.508 (0.424; 0.591) 3.02E-28

HPMA Xenobiotics 845 -0.284 (-0.451; -0.116) 3.73E-02

hydroxycotinine Xenobiotics 448 -1.228 (-1.887; -0.569) 1.57E-02

1-methylurate Xenobiotics 908 0.316 (0.134; 0.498) 2.93E-02

X—02249 Unknown 900 0.373 (0.180; 0.566) 1.15E-02

X—12095 Unknown 918 -0.155 (-0.242; -0.067) 2.41E-02

X—12170 Unknown 917 -0.134 (-0.205; -0.064) 1.15E-02

X—12689 Unknown 919 -0.207 (-0.293; -0.121) 3.81E-04

X—13840 Unknown 609 -0.592 (-0.919; -0.265) 2.10E-02

X—12511 Unknown 921 0.280 (0.144; 0.417) 4.83E-03

X—17306 Unknown 751 -0.343 (-0.550; -0.136) 4.13E-02

X—17308 Unknown 917 0.203 (0.117; 0.290) 4.70E-04

X—18927 Unknown 819 0.596 (0.507; 0.685) 1.55E-33

X—21201 Unknown 666 -0.265 (-0.428; -0.102) 4.85E-02

95%-CI = 95% confidence interval; FDR = false discovery rate to correct for multiple testing; HPMA = S-(3-hydroxypropyl)mercapturic acid; Cof. and Vits. =

Cofactors and Vitamins.

*linear regression models adjusted for age, sex, waist circumference, physical activity, estimated glomerular filtration rate, intake of oral contraceptive or

hormone replacement therapy and smoking behavior.

https://doi.org/10.1371/journal.pone.0184721.t002

Metabolic characterization of serum osteocalcin

PLOS ONE | https://doi.org/10.1371/journal.pone.0184721 September 18, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0184721.t002
https://doi.org/10.1371/journal.pone.0184721


discovered a relation between tryptophan metabolism and bone mineral density (BMD)

whereby kynurenine showed a positive association to BMD in middle-aged women and men

and older women. However, an in vitro study revealed opposite findings by reporting that tryp-

tophan increased OCN expression in bone mesenchymal stem cells (BMMSC) and mediates

increased proliferation of BMMSC, while kynurenine had no influence on OCN expression and

exerts inhibitory effects on BMMSC proliferation [18]. The associations between tryptophan

metabolism and BMD or OCN may further be modulated by inflammation. The key step of

tryptophan degradation is catalyzed by an enzyme called indoleamin 2,3-dioxygenase 1 (IDO1).

The enzyme activity seemed to be increased by inflammation, especially by IFN-γ [17]. In in
vitro experiments the blockage of IDO led to decreased osteoblastogenesis and IDO1 knockout

(IDO-/-) mice showed osteopenia with decreased amounts of osteoblasts and increased amounts

of osteoclasts [19]. Possibly, even subclinical inflammation could be able to increase kynurenine

concentrations by changing expression of IDO1 and reduce BMD by inducing bone resorption.

Increased bone resorption, in turn, could be a potential promoter of increased serum OCN.

Citrulline, which was positively associated with OCN, is a non-proteinogenic amino acid

that is either ingested or produced endogenously. It is a side product during arginine degrada-

tion in the synthesis of nitric oxide (NO). NO is an important signaling molecule in almost

every tissue, including bone [20] and in vitro studies indicated a reliance of NO availability for

proliferation of osteoblast-like cells [21]. NO also improves blood circulation [22], which may

enhance bone nutrition and oxygen supply. Additionally, several previous studies demonstrated

a correlation between bone health and cardiovascular disease [23]. Up to now, the mechanisms

behind this interplay are not fully understood. The relation between OCN and NO might pro-

vide a possible explanation and the basis for future research. Another possible explanation for

the association between plasma citrulline and OCN might be found in energy metabolism. As

mentioned above, OCN seems to have protective effects towards development of diabetes and

the metabolic syndrome. Citrulline treatment in vitro, using hepatic cell lines [24], or in vivo, in

rodent models fed a high-fat diet, improved insulin sensitivity and decreased circulating insulin

concentrations [25]. Citrulline also seems to be a predictor for the metabolic syndrome [26] and

a mice model simulating type 1 diabetes mellitus showed increased plasma citrulline concentra-

tions [27]. Altogether the anti-diabetic effects of OCN and citrulline seem congruent with each

other. However, whether the involved mechanisms are interlinking with each other is specula-

tive. Previous studies revealed that OCN is influencing K+
V-channels [28] and GPRC6A [29] in

pancreatic islet cells, but the exact role of citrulline in energy metabolism remains unclear.

OCN and surrogates of lifestyle

In the present study, we observed a negative relation between OCN and urinary riboflavin,

known as vitamin B2, a metabolite that cannot be synthesized endogenously. A previous study

investigating more than 5300 elderly subjects proposed that a higher dietary riboflavin intake

leads to slightly higher BMD in the femoral neck and lumbar spine but not to a reduced frac-

ture risk [30] which is in contrast to our findings. However, the inverse associations observed

here might be due to individual capacities of vitamin B2 uptake from the intestine or successful

reabsorption within the kidneys which would finally lead to a decreased vitamin B2 excretion.

Unfortunately, plasma concentrations of vitamin B2 were not assessed in the present study

and hence we can only speculate about the endogenous availability of vitamin B2.

OCN was also inversely associated with urinary hydroxycotinine, a metabolite derived from

tobacco metabolism [31]. Moreover, OCN was also linked to S-(3-hydroxypropyl)mercapturic

acid (HPMA) another metabolite related to smoking. HPMA, as intermediate in acrolein

metabolism, is a toxic and carcinogenic agent common in tobacco, food and the environment
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[32]. A Turkish study discovered decreased serum OCN concentrations in pregnant smoking

women as well as in umbilical blood of their newborns. Interestingly, the effect on newborns is

even demonstrable among mothers passively exposed to smoke [33] but an explanation is still

outstanding. With respect to bone health, previous studies showed that smoking is a risk factor

for osteoporosis [34] and is related to impaired BMD in older men [35] and premenopausal

women [36]. Several mechanisms were proposed [34] which might explain the association

between smoking and impaired BMD. Cigarette smoking impairs collagen synthesis and alters

the circulating amount of several growth factors. Moreover, smoking influences the produc-

tion and secretion of sexual, calciotropic and adrenocortical hormones. Altered concentrations

of these hormones are also known to be related to an impaired BMD.

Beside the xenobiotic hydroxycotinine, the urinary concentration of 1-MU was positively

related with OCN. 1-MU is a metabolite of caffeine or theophylline and therefore detectable in

coffee or tea drinkers [37]. Coffee consumption seems to have multiple effects on bone metab-

olism. Long-term coffee consumption was associated with a slightly impaired BMD among

Swedish women, but not with an increased fracture rate [38]. An in vivo investigation in

rodents showed that caffeine also seems to increase osteoclast numbers [39]. These data are

consistent with the present result, considering that higher circulating OCN concentrations

may be related to a reduced BMD in elderly subjects [40, 41].

OCN associations distinct from bone metabolism

The inverse relation between OCN and pipecolate cannot be explained directly, but via its

source lysine [42]. Lysine seems to boost osteoblast proliferation but an immediate influence

of lysine on OCN could not be detected [43]. Apart from that, lysine is an activator of

GPRC6A, the OCN receptor [44]. Decreased plasma concentrations of pipecolate might thus

indicate diminished lysine degradation which in turn might provoke an attenuated induction

of GPRC6A and hence higher OCN concentrations. However, plasma lysine concentration

was not related to the serum OCN concentration in the present study and further studies are

required to elucidate a possible mechanism behind this association.

Besides pipecolate, serum OCN was inversely related to intermediates of valine degradation,

namely 3-hydroxyisobutyrate (3HIB) and 3-methyl-2-oxobutyrate (3M2O), pointing towards

an implication on energy metabolism and glucose turnover. 3HIB was shown to promote trans-

endothelial fatty acid (FA) transport and subsequent accumulation of fat in muscle tissue favor-

ing local insulin resistance [45]. OCN deficient mice demonstrated decreased glucose tolerance

and accumulation of body fat [3], which can also be provoked by insulin resistance. Neverthe-

less, OCN seems to have rather global effects on energy metabolism by influencing pancreatic

beta cells via the GPRC6A [29] receptor and inhibiting K+
V-channels [28]. These channels are

inhibited by ATP in times of sufficient glucose supply and therefore essential for the regulation

of insulin release. Further research is necessary to investigate whether the systemic effects of

OCN and the local effects of 3HIB are functionally related. 3M2O is located further upstream in

the valine degradation pathway than 3HIB. This strengthens the indication towards a possible

functional relation between serum OCN and valine degradation.

Strengths and limitations

Our study has strengths and some potential limitations. Metabolomics is a powerful tool for

clinical research, since it is able to compress influences from genetics, environment, health

behavior and interventions in intermediate phenotypes, which consist of final downstream

products of various pathways. Since our findings depend on study region and measurement

procedures they should be regarded as hypothesis generating. Replication in other cohorts and
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pharmacological intervention studies are needed to confirm our results and to obtain possible

causal relations. Furthermore, epidemiological studies, especially cross-sectional analyses, are

generally not suitable to prove causal relations.

Conclusion

We firstly investigated the interrelations between serum OCN and the plasma and urine meta-

bolome by untargeted MS data in a large study. The discovered metabolites were, as expected,

mostly related to bone and energy metabolism with several metabolites assignable to both

fields. However, most of the metabolites were previously unknown to be related to OCN. Alto-

gether our results highlight the role of OCN in bone metabolism and support, although in a

limited way, an influence of OCN on whole-body metabolism. Further experimental work is

necessary to investigate the interaction between OCN and the discovered metabolites, espe-

cially those related to energy homeostasis.
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