
Interaction of catechol O-methyltransferase and
serotonin transporter genes modulates effective
connectivity in a facial emotion-processing circuitry
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Imaging genetic studies showed exaggerated blood oxygenation level-dependent response in limbic structures in carriers
of low activity alleles of serotonin transporter-linked promoter region (5-HTTLPR) as well as catechol O-methyltransferase
(COMT) genes. This was suggested to underlie the vulnerability to mood disorders. To better understand the mechanisms
of vulnerability, it is important to investigate the genetic modulation of frontal-limbic connectivity that underlies
emotional regulation and control. In this study, we have examined the interaction of 5-HTTLPR and COMT genetic markers
on effective connectivity within neural circuitry for emotional facial expressions. A total of 91 healthy Caucasian adults
underwent functional magnetic resonance imaging experiments with a task presenting dynamic emotional facial expressions
of fear, sadness, happiness and anger. The effective connectivity within the facial processing circuitry was assessed
with Granger causality method. We have demonstrated that in fear processing condition, an interaction between 5-HTTLPR (S)
and COMT (met) low activity alleles was associated with reduced reciprocal connectivity within the circuitry including bilateral
fusiform/inferior occipital regions, right superior temporal gyrus/superior temporal sulcus, bilateral inferior/middle prefrontal
cortex and right amygdala. We suggest that the epistatic effect of reduced effective connectivity may underlie an inefficient
emotion regulation that places these individuals at greater risk for depressive disorders.
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Introduction

The last decade has seen the emergence of imaging genetics,
as a research strategy to elucidate relationships between
genotypic markers and neural structures or processes, that
can help to identify pathophysiological processes predispos-
ing to psychiatric disorders.1 One consistent finding is
exaggerated amygdala response to threat-related stimuli in
carriers of low activity short (S) allele of the serotonin
transporter-linked promoter region (5-HTTLPR) gene (see
review2). This genetic modulation of brain response to
emotionally negative signals has been highlighted as a
potential mechanism underlying inefficiency of emotional
processing and susceptibility to depressive disorders.3

Another key genetic variation modulating emotional pro-
cesses is the val158met single nucleotide polymorphism
(SNP) of the gene coding for the catechol O-methyltransfer-
ase (COMT) enzyme that inactivates extraneuronal dopa-
mine. Imaging genetic studies have reported that met carriers
overactivated subcortical limbic regions in response to
negative emotional stimuli.4–6 These results suggest a role
for the met allele in predisposing to greater stress reactivity7

and a negative emotion attentional bias that may confer risk
for affective disorders. Direct evidence for an association
between COMT genotype and major depressive disorder
(MDD) remains equivocal.8 The investigators, however,
emphasized the importance of gene–gene interaction (epis-
tasis) in predisposing toward complex syndromes, such as
MDD, that may occur even in the absence of main effects of
single genes.9,10 This is supported by the evidence of
interactive effects of COMT and 5-HTTLPR genotypes in
predisposing toward development of MDD in individuals with a
history of stressful life events.11

There is little research on interactive effects of the above
genetic markers on neural response. To the best of our
knowledge, the only imaging genetic study to examine the
joint effect of 5-HTTLPR and COMT genotypic variation upon
neural activity in healthy individuals demonstrated additive
effects of low activity 5-HTTLPR and COMT alleles (S and met
alleles, respectively), resulting in exaggerated limbic activity
during the processing of emotionally unpleasant pictures.12

This additive effect was suggested to underlie low resilience to
dysphoric mood states in individuals carrying low activity
alleles of both genes.
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As evidenced by recent studies, the measures of inter-
regional brain connectivity may be more sensitive than the
estimates of regional neural activity based on blood oxygena-
tion level-dependent (BOLD) response.13 The connectivity
between amygdala and anterior prefrontal regions during the
processing of negative emotional stimuli is proposed to
underlie emotional regulation and control.14,15 Importantly,
the studies in depression found reduced connectivity between
the limbic structures and anterior prefrontal regions, which
was suggested to reflect inefficient emotion regulation.16–19

This evidence is supporting a neural model of MDD20 that
emphasized a functional ‘uncoupling’ between anterior limbic
and prefrontal cortical regions that are critically engaged
during emotion regulation.

Findings regarding the impact of COMT and 5-HTTLPR
genotypic variations on functional connectivity in healthy
individuals are, however, inconsistent. For example, the
5-HTTLPR S allele has been associated with greater
functional connectivity between the amygdala and rostral
ventromedial prefrontal cortex21 but also decreased
functional connectivity between the amygdala and subgenual
anterior cingulate cortex,14 in response to emotionally
negative visual stimuli. Similarly, COMT met allele carriers
have shown greater functional connectivity between the
right amygdala and ventrolateral prefrontal cortex5 and
right orbitofrontal cortex,22 but also reduced effective con-
nectivity between dorsolateral prefrontal cortex and ventral
striatum.23

The aim of the present study was to examine the joint effect
of COMT and 5-HTTLPR functional polymorphisms upon the
effective connectivity in neural circuitry, supporting facial
emotion processing in healthy volunteers. We employed three
novel approaches:

(1) We examined the interaction, as well as separate effects,
of COMT and 5-HTTLPR genetic variations upon emo-
tion-processing neural circuitry.

(2) We focused on measures of effective connectivity
employing Granger connectivity analysis.24,25 This
approach can identify the direction of informational
flow between neural regions of interest unlike, for
example, psychophysiological interaction, that focuses
mainly on temporal relationships between the BOLD
signal of regions of interest.26 As a data-driven
approach, Granger effective connectivity analysis also
differs from structural equation modeling27 and dynamic
causal modeling,28 that rely on a-priori network model
specifications.29,30

(3) We employed a novel ecologically relevant paradigm that
comprised dynamic facial emotional expressions. Pre-
vious studies have reported that neural regions support-
ing face emotion processing, including the amygdala and
fusiform gyrus, were more strongly activated by dynamic
vs static emotional faces.31 Based on previous findings,
we hypothesized that the carriers of low activity COMT
and 5-HTTLPR genotypes will demonstrate a pattern of
inefficient emotion regulation represented by reduced
Granger effective connectivity from prefrontal cortical to
anterior limbic regions in response to threat-related facial
emotions.

Methods

Participants. A total of 91 right-handed white Caucasian
healthy individuals (45 female; age¼ 32.5±9, range 19–56
years) with no personal or family history of psychiatric
disorder participated in four fMRI experiments. Exclusion
criteria were current or past psychiatric diagnosis as
established by the Structured Clinical Interview for DSM IV
(SCID) screen.32

The study was approved by the Ethics Committee of the
Institute of Psychiatry, King’s College London, UK. Partici-
pants were provided with full details about the experimental
protocol and gave their written informed consent before the
beginning of the experiment.

Genotyping. The polymorphism val158met was considered
for COMT genotyping, in line with the suggestions33 based on
direct comparisons of the effects of single COMT val158met
SNP (rs4680) vs the haplotypes employed in previous
studies.34,35 It was demonstrated that the val158met
polymorphism was more informative for understanding the
effect of COMT on neural activity when compared with the
haplotypes used by the above investigators.34,35 We
emphasize, however, that the findings of the comparison
study33 do not imply that haplotype-based models are
generally inferior to models based on individual SNPs. In
our case, the use of COMT val158met SNP was preferable in
order to avoid unnecessary model complexity when applying
an interaction analysis to the multiple connectivity data.

Regarding the 5-HTTLPR gene, we considered both the
well established difference between the higher expression
5-HTTLPR long (L) allele vs the low expression S allele,36 and
the evidence regarding the impact of the rs25531 G/A SNP
upon functioning of the L allele.37 We reclassified 5-HTTLPR
alleles on the basis of lower and higher levels of expression
similarly to previous reports.38 Thus, LG and S were recoded
as S’, whereas LA and L were recoded as L’.

DNA was extracted from cheek swabs using standard
procedures (see Supplementary Method in the online
supplement).

The COMT met/met homozygosity was detected in 29
participants and val/val in 20 participants; 41 participants were
heterozygous. After recoding the 5-HTTLPR alleles, as
indicated above, 26 participants were homozygous L’/L’, 22
participants were homozygous S’/S’ and 36 participants were
heterozygous. There was no statistical deviation from Hardy–
Weinberg equilibrium for all polymorphisms. The proportions
of COMT and 5-HTTLPR low activity genotypes were
independent from each other (Spearman correlation between
the number of COMT met alleles and the number of
5-HTTLPR S’ alleles: r¼�0.049, P¼ 0.647). Due to low DNA
yield, the data on COMT did not pass the quality control in one
participant, and, on 5-HTTLPR, in seven participants.

As the missing genotyping values represented only a small
proportion (o5% ) of the whole data, to analyse the genetic
effect on neural response and connectivity, we have
employed the imputation approach, that is, genotyping data
were filled in with the expectation maximization algorithm of
the ‘gc.em’ procedure for R.39
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Neuroimaging paradigm. There were four experimental
runs, one per each of four facial expressions: fear, anger,
sadness or happiness. The active condition stimuli were short
monochromatic movie excerpts generated from the NimStim
series of facial pictures (http://www.macbrain.org/), as
described elsewhere.40 In particular, in each excerpt, the
facial expression changed from neutral to the emotional one
over a period of 1 s. The models were males and females of
Caucasian, African or Asian origin. Gender and racial
distribution were similar in all emotional experiments. In each
of the four emotional experimental runs, there were nine blocks
of 12 movie clips per block. Each block lasted 42 s. Three of
these blocks displayed facial expressions. The other blocks
comprised either baseline (three blocks) or ‘identity morph’
(three blocks) conditions. The baseline blocks comprised
presentation of 1 s movie excerpts containing monochromatic
ovals. The ovals were approximately of the same size as that
of the models’ faces in the facial expression blocks. To control
for the dynamic aspect of the facial expressions in active
condition, each oval contained a smaller dynamic one with
darker borders, concentrically expanding/moving from center
to the perimeter. The third condition (‘identity morphs’) block
contained 1 s movie excerpts in which one model with a non-
emotional, neutral expression changed dynamically to another
identity displaying a neutral expression. We did not include the
analysis of identity morph blocks in the present study, as our
focus was to compare activity and effective connectivity in
facial expression relative to baseline blocks. To ensure that the
participants were attending to the stimuli (in the second half of
each movie excerpt a colored translucent filter (either orange,
blue or yellow) appeared for 300 ms), the participants were
requested to press the button with their right index finger as
soon as they saw the color filter. To avoid habituation, the inter-
stimulus interval between the movie clips was ‘jittered’, varying
from 2000 to 2999 ms, mean¼ 2500 ms. Each experimental
run (in which one of the four facial expression types was
presented) lasted 6 min and 18 s. The participants completed
all four experiments within the same session, with short breaks
between them, during which they stayed in scanner, listening
to the researcher reminding them the instructions through the
intercom. The order of the emotional conditions was
counterbalanced between participants.

Neuroimaging data acquisition. Scanning was performed
on a GE Signa 3 Tesla scanner (Milwaukee, WI, USA). Reliable
image quality was obtained by using a semi-automated quality
control procedure. For BOLD imaging, 189 T2*-weighted
whole-brain volumes were acquired during the experimental
conditions. The EPI data set was acquired parallel to the
intercommissural plane and consisted of 38 slices:
TR¼ 2000 ms, TE¼ 25 ms, flip angle¼ 801, slice thickness¼
2.4 mm, inter-slice gap¼ 1.0 mm, image acquisition matrix
size¼ 642. High-resolution structural images comprised 43
slices with slice thickness/gap 3.0/0.3 mm, TR¼ 3000 ms,
TE¼ 30 ms, flip angle¼ 90 and matrix size¼ 1282.

fMRI data analysis

a. The BOLD response to each emotional condition was
analyzed with XBAM v4 (Institute of Psychiatry, London,

UK), which is based on permutation testing that allows a
mixed effects approach to analysis,41 see also http://
brainmap.it.

b. To identify the neural circuit responding to any of the four
emotional conditions (general emotion-processing circuit),
a binary map was produced where the BOLD responses to
all four emotional expressions overlapped. This was
necessary—in order to investigate the genetic effects on
the same neural circuit across different emotional condi-
tions.

c. Effective connectivity was examined based on Granger
causality analysis that provides estimates of the direction of
information flow between the nodes of the neural circuit.
This information flow is estimated by the analysis of
temporal precedence and could be either uni- or bi-
directional (reciprocal). We have used cluster Granger
analysis,30 which is an extension of the original con-
cept.24,25 To deal with the high dimensionality of fMRI data,
the cluster Granger analysis is employing principal compo-
nent analysis, thus accounting for multiple time-series
within each region of interest , rather than being related to
the peak voxel or to the average time-series of the voxels
within the region of interest. Cluster Granger analysis is
using canonical correlations, which is also different from the
recently introduced multivariate Granger analysis.42

d. To compare the strength in effective connectivity between
individuals with different genotypes, we applied the
measure of the ‘total-degree’. This measure, in analogy
to graph theory,43 was defined as the total number of
significant Granger-causalities in the general emotion-
processing circuit. For instance, if Granger analyses in a
given individual had detected 36 statistically significant
Granger-causalities between the regions of interest, their
total-degree was 36. When comparing genotypes, we
looked at the statistical difference in total-degrees bet-
ween the groups of individuals with different genetic
polymorphisms.

Results

General emotion-processing circuit. Activation maps
pertaining to processing of each of four emotional
conditions showed the regions that were either emotion-
general or relatively specific to each emotion (Table 1). The
emotion-general map, where the clusters overlapped across
all four conditions, included six neural regions: bilateral
fusiform/inferior occipital regions (FOG, BA 19, 37, 18), right
superior temporal gyrus/superior temporal sulcus (RSTG, BA
21, 22 and 39), bilateral inferior/middle prefrontal cortex (IFG,
BA 9, 44, 45) and right amygdala (RAMG), Figure 1. The
regions that were differentially activated in each condition, in
addition to the general emotion-processing circuit, are shown
in Supplementary Table S1.

Effects of genotypic variation in 5-HTTLPR and COMT
genes upon BOLD response in the general emotion-
processing circuit. There were no significant effects of
either 5-HTTLPR or COMT genetic polymorphisms on BOLD
signal in any of the six regions within the general emotion-
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processing circuit in any emotional condition. In the condition
with fearful expressions only, the BOLD signal in RAMG was
higher in low activity polymorphism carriers, although the
difference did not reach significance: COMT met/met4val/
val, P¼ 0.13 and 5-HTTLPR S’S’4L’L’, P¼ 0.26.

Effective connectivity in the general emotion-processing
circuit. In each emotional condition, all Granger connectivity
pathways in the general emotion-processing circuit were
statistically significant in both directions between neural
regions (Supplementary Table S2), with no significant
directionality difference except for one connection: in the
fear condition the connectivity from the RSTG to right FOG
was stronger than other way round (McNemar w2¼ 10.3,
df¼ 1, FDR-corrected P-value¼ 0.038). However, in this link
the effective connectivity in both directions remained highly
significant. The effective connectivity in the entire general
emotion-processing circuit was significant in each emotional
condition (all Pp3E-09), Figure 2.

Genetic effects upon effective connectivity in the
general emotion-processing circuit. There was a
significant negative relationship between the number of S’
alleles of 5-HTTLPR and total effective connectivity in the
fearful condition only (r¼�0.26, P¼ 0.012), but not in the
conditions with sad, angry or happy faces. This S’-related
progressive reduction of effective connectivity was seen in
the contrasts between L’/L’ and L’/S’ genotypes
(difference¼ 5.5; W¼ 792, P¼ 0.004), and between L’/L’
and S’/S’ genotypes (difference¼ 5.9; W¼ 399, P¼ 0.020).

Similarly, for the COMT gene, there was a significant

negative correlation between the number of met alleles and

total effective connectivity in the fearful condition only

(r¼�0.27, P¼ 0.009). There were significant differences

between val/val vs val/met carriers (difference¼ 4.8;

W¼ 567, P¼ 0.027) and val/val vs met/met carriers

(difference¼ 6.2; W¼ 441, P¼ 0.002).
We next conducted an ANOVA with the following binary

regressors: COMT (val/val vs either val/met or met/met),

Table 1 Activation regions detected in different emotional conditions and the overlap regions

Number
of voxels

Maxima

Talairach
x,y,za

Corrected
P

Fearful faces vs ovalsb

Bilateral temporo-occipito-cerebellar region BA 19, 37 545 32,�70,�16 0.0002
�36,�70,�23 0.0002

Right MFG region, BA 6, 10 431 7,63,10 0.0002
Left IFG/middle frontal region, BA 6, 46 160 �43,33,13 0.0007
Right ventral striatum, amygdala 33 22,4,�13 0.001

Angry faces vs ovalsb

Bilateral temporo-occipito-cerebellar region BA 36 1000 36,�41,�20 0.0002
�32,�67,�20 0.0002

Bilateral IFG/middle prefrontal region, BA 6, 9 388 40,15,26 0.0002
�43,0,30 0.0005

Right ventral striatum, amygdala 48 18,4,�13 0.0005

Happy faces vs ovalsb

Bilateral temporo-occipito-cerebellar region, BA 19, 37 778 40,�67,�13 0.0003
�40,�70,�20 0.0003

Bilateral middle frontal/precentral region, BA 9,46 624 43,30,13 0.0003
�40,4,33 0.0003

Left STG/STS region, BA 22 51 �51,�44,3 0.001
Right parahippocampal region, amygdala 26 25,0,�13 0.001

Sad faces vs ovalsb

Bilateral IFG/precentral region, BA 6,45 1114 32,7,26 0.0002
�36,26,7 0.0002

Bilateral temporo-occipito-cerebellar region 851 36,�41,�20 0.0002
�36,�41,�23 0.0002

Right parahippocampal region, amygdala 47 22,0,�10 0.0007
Right STG/insula region, BA 13 37 36,�44,26 0.002

Overlap regions: general emotion-processing circuit
Bilateral fusiform/occipital regions, BA 18, 19, 37 169 26,�60,�17 N/A

�37,�64,�20
Right STG/STS, BA 21,22 44 45,�41,7 N/A
Bilateral inferior/middle PFC, BA 9,44, 45 34 41,19,27 N/A

�37,7,30
Right parahippocampal region/amygdala 5 19,�4,�10 N/A

aCoordinates represent the voxel with maximum cluster activation in contrasts between emotional faces and ovals, and the voxel with minimum square distances to
the other voxels of the cluster in overlap map.
bContrasts between emotional faces and ovals were thresholded with voxel P¼0.05 and cluster P¼0.01.
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5-HTTLPR (L’/L’ vs either L’/S’ or S’/S’) and COMT x
5-HTTLPR, with total degree connectivity in fear condi-
tion as a dependent variable. The interaction model was

statistically significant (F¼ 7.1, df¼ 3,87, P¼ 0.0003, ad-
justed R2¼ 17%). The interaction effect was stronger than an
additive one (F¼ 4.2, df¼ 1, P¼ 0.045).

The effective connectivity in general emotion-processing
circuit was lower only in val/met or met/met carriers who at the
same time were either L’/S’ or S’/S’ carriers (mean total-
degree¼ 27.6), compared with participants who were homo-
zygous for either val or L’ or were homozygous for both val and
L’ (mean total-degree¼ 34.9; difference¼ 7.3; W¼ 1575,
P¼ 7E-06 (Figure 3).

Discussion

Our findings demonstrated significantly reduced reciprocal
effective connectivity in the facial emotion-processing circuit
in the carriers of low activity 5-HTTLPR S’ and COMT met
alleles, relative to those with high activity homozygotes 5-
HTTLPR L’L’ and COMT val/val. Furthermore, there was a
significant interaction between 5-HTTLPR and COMT poly-
morphisms upon effective connectivity in the face emotion-
processing circuit. Effective connectivity was lower in val/met
or met/met carriers who at the same time were either L’/S’ or
S’/S’ carriers, compared with individuals who were homo-
zygous for either val or L’ alleles, or had both val and L’
homozygotes. The above effects were observed in a fear
condition, in the circuit comprising bilateral fusiform/occipital
regions, bilateral inferior prefrontal cortex, right superior
temporal gyrus/superior temporal sulcus and the right
amygdala.

The combined effect of 5-HTTLPR and COMT polymorph-
isms has been studied previously, albeit only with regard to
the BOLD response to emotional pictures.12 Our results
concur, with the proposal of the above study,12 that the joint
effect of low activity 5-HTTLPR and COMT polymorphisms
confers inefficient emotion processing. The novelty of our
findings is that the interactive effect of 5-HTTLPR and
COMT polymorphisms upon effective connectivity provides
an insight into the genetically determined differences in
emotion regulation, rather than emotion processing per se.
We emphasize that above polymorphisms modulated

Figure 3 Effective connectivity in the general emotion-processing circuit: fearful
faces condition. Bars represent the mean total-degree and error bars their 95%
confidence intervals based on Student’s t-distribution. The effective connectivity in
individuals lacking at least one of the homozygotes L’L’ or Val/Val (bar IV) is
reduced, compared with those carrying any other combinations of alleles (bars I–III).

Figure 2 General emotion-processing circuit: fearful faces condition. Schematic
depiction of inter-regional connections within the general emotion-processing circuit.
Left side of the slice corresponds to the left side of the brain. LIFG, left inferior frontal
gyrus; RIFG, right inferior frontal gyrus; RAMG, right amygdala; RSTG, right
superior temporal gyrus; LFOG, left fusiform/occipital gyrus; RFOG, right fusiform/
occipital gyrus.

Figure 1 Activation regions detected in different emotional conditions. Axial
slices at z¼�10 (top), þ 10 (middle) and þ 30 (bottom) Showing brain regions with
significant BOLD response to the facial emotional stimuli. The regions commonly
activated by each emotional expression (general emotion-processing circuit) are
shown in red. These include: bilateral fusiform/inferior occipital regions (FOG. BA
19; 37; 18), right superior temporal gyrus/superior temporal sulcus (RSTG. BA 21;
22 and 39) bilateral inferior/middle prefrontal cortex (IFG. BA 9; 44; 45) and right
amygdala (RAMG). The regions that were additionally activated by particular
emotional expressions are shown in yellow. Left side of the slice corresponds to the
left side of the brain.
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connectivity in a distributed neural circuit, rather than
connectivity between a-priori selected prefrontal regions and
amygdala. Importantly, although this circuit has been deter-
mined empirically, it is fully consistent with existing neural
models for face processing.44,45

Our results are in line with the findings of decreased
connectivity (uncoupling) between anterior prefrontal cortical
regions and amygdala in healthy carriers of low activity alleles
of 5-HTTLPR in response to emotionally aversive stimuli.14

Some previous studies have reported increased cortico–
limbic connectivity in 5-HTTLPR S allele carriers21,46 and
COMT met/met homozygotes.5,22 We believe that our results
do not contradict earlier results, given that it has previously
been shown that connectivity between the brain regions
depends on the precise prefrontal cortical regions examined.
For example, one study14 demonstrated both increased
connectivity between ventro-medial prefrontal cortex and
amygdala and decreased connectivity between subgenual
ACC and amygdala in the S allele carriers vs L allele
homozygotes of 5-HTTLPR. We note here that the prefrontal
cortical regions of the emotional circuit identified in our study
were located dorsally and laterally to the ventro-medial
regions of prefrontal cortex of other studies.5,21,22,46 Our
finding that low activity alleles of both 5-HTTLPR and COMT
genes (that is, alleles that are thought to confer risk for
emotional disorders) are associated with reduced connectivity
within a distributed face emotion-processing network are
consistent with findings of reduced connectivity between
prefrontal and ventral limbic regions in individuals with
MDD,16–19,29 or pathological anxiety,47 including PTSD48

and social anxiety disorder.49

What are the implications of the reduced connectivity within
the emotion-processing circuit? The converging evidence
from animal research,50,51 neuroimaging data on healthy
individuals14,15,52 and the above studies in patients with
depression and anxiety disorders indicate that reduced
prefrontal-limbic connectivity may underlie inefficient emotion
regulation during the processing of negative stimuli. We
suggest that our findings of reduced connectivity within the
emotion-processing neural circuit may be a necessary,
although not sufficient component pathophysiological process
in MDD. Indeed, the MDD is known to be associated with
cellular and structural abnormalities in prefrontal53 and
temporal54 cortices and/or abnormal reductions in prefrontal
cortical activity.55

We briefly consider here the issue of directionality as
examined with the Granger connectivity analysis. Neuroima-
ging genetic studies that have explored functional connectiv-
ity, found genetic modulation of connectivity between medial
prefrontal and limbic regions.14,21 This was suggested to
indicate a modulation of top-down effect on emotion regula-
tion. However, the assumption has not been formally tested,
as functional connectivity is of correlational rather than a
causal character. Using Granger effective connectivity, we
specifically tested the potentially top-down relationships
within the emotion-processing circuit.

Our data demonstrated that the frontal regions did not
simply impact on limbic areas in a top-down manner, but
there was a rather more complex functional organization that
involved reciprocal feed-forward and feedback relationships.

This included reduced bi-directional connectivity between
the prefrontal cortex and amygdala in individuals with low
activity COMT and 5HTTLPR alleles. We suggest that the
finding of reduced bi-directionality does not contradict the
notion of reduced top-down emotion regulation in low activity
carriers as it includes both top-down and bottom-up mechan-
isms. Thus, our data add a new aspect (that is, feedback
mechanisms) to the frontal-limbic relationships.

Therefore, our results are in an agreement with the above
studies that were based on correlational methods.

In contrast to the above studies that were testing a coupling
between the two a-priori defined regions, we were able to
study effective connectivity within the facial emotion-proces-
sing circuit that was established empirically. Our findings add
to the existing knowledge by showing that the observed
reduced connectivity is not just a correlational in nature but
involves both top-down and feedback projections.

We emphasize that finding of bi-directional relationship
within cortico–limbic network is in agreement with existing
experimental literature,56–58 supporting ‘longitudinal’ rather
than a rigidly hierarchical network models. It has been
shown59 that cortico–striato–pallido–thalamo–cortical circui-
try was arranged as a series of circuits (closed loops).

The recent studies based on Granger connectivity have
also demonstrated resting state60,61 or task-dependent62 uni-
and bidirectional effective connectivity.

Another important issue that deserves consideration is the
emotion-specificity of the genetic effect.

In our study, all emotional expressions, that is, angry, sad,
fearful and happy faces activated emotion-processing circuit;
however, the genetic effect on connectivity within this circuit
was observed in the fearful condition only. As both angry and
fearful facial expressions represent threat-related cues, it is
important to consider the possible reasons for lack of the
genetic effect in angry faces condition.

Although angry faces clearly provide information about the
presence of threat, it has been found that the fearful facial
expressions (as signaling more ambiguous threat) have been
consistently associated with the strongest amygdala activa-
tion. This is in accord with the conceptualization of amygdala
as a component of vigilance system responding to ambiguous
situations of biological relevance.63 This was evident in a
study combining fMRI with skin conductance recording,64

where the fearful (but not angry) faces elicited activation in
amygdala-dependent arousal system for fight/flight, which is
recognizable fear network. Given a crucial role of serotonin in
modulation of the brain processes underlying responses to
potential environmental threats, it is conceivable that the
processing of fearful faces would be modulated by the
serotonin neurotransmission. Indeed, the processing of
fearful but not angry faces has been consistently associated
with the serotonin metabolism (see review).65 In support of our
results, the recognition of fearful but not angry faces was
modulated by the 5-HTTLPR S vs L.66 There is little evidence
of a differential effect of dopaminergic transmission on angry
vs fearful faces processing. The investigators report the
COMT effect on fear processing in general, for example, the
COMT met homozygosity was associated with the lack of
ability to extinguish conditioned fear, whereas 5-HTTLPR S
homozygosity underlied a potentiation of startle reactions.67
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The authors concluded that that the combination of a
5-HTTLPR S allele and COMT met-homozygosity conferred
an enhanced risk for acquiring fear that resisted extinction.

These data support our findings of a gene–gene effect of
COMT and 5-HTTLPR genotypes on fear processing.

Limitations. The absence of an effect of low activity 5-
HTTLPR and COMT polymorphisms on BOLD signal in
limbic regions needs consideration. The effect of 5-HTTLPR
on BOLD signal in the amygdala has been replicated in most
of the studies,2 although not all of them had sufficient
power—as indicated in a meta-analysis.68 The effect of
COMT val/met polymorphisms on amygdala activation has
not been consistently replicated, for example, it was reported
by some4 but not other investigators.5 The authors
highlighted an importance of baseline stimuli that was not
controlled for in some previous studies. Thus, an
exaggerated BOLD signal in amygdala to emotional vs
neutral stimuli could have been accounted for by significantly
greater amygdala response to the baseline, that is, fixation
cross, perceived as an ambiguous signal by S-allele
carriers.69,70 However, a recent study that directly tested
the effect of a fixation cross on BOLD response71 did not
replicate the findings of greater activation to fixation cross
relative to the neutral faces.

Dynamic facial stimuli used in our study represent relatively
new type of experimental stimuli. Although they provide for
closest possible analogy to the socially occurring events,
developing an adequate baseline condition proved to be a
challenging task. There is little knowledge regarding the
perceptual effect of the baseline condition—moving ovals—
which may come across as emotionally ambiguous signals.
This may have resulted in a greater amygdala activity in
S- and met-allele carriers such that the net BOLD signal changes
to emotional faces vs baseline condition was not significantly
exaggerated in these individuals. Thus, this should be tested
in further research. Alternatively, the absence of a genetic
effect on BOLD response in amygdala should not be regarded
as a false negative, but rather genuine, statistically plausible
negative result. Indeed, a proportion of studies with negative
results is expected even if there is a true relationship between
COMT (or 5-HTTLPR) and the BOLD response in amygdala to
aversive signals. For instance if the statistical power of
neuroimaging genetic studies was as high as 90%, still, 1 out
of 10 studies should not detect the effect. Therefore, we
suggest that the negative results have to be reported in order
to avoid the publication bias, which distorts the real state of
neuroimaging research.

We emphasize that the main focus of this study was on
effective connectivity within the emotion-processing circuit,
the measure of which (Granger causality) is based on
temporal precedence and thus is not directly related to
magnitude of the BOLD effect.

As mentioned above, due to some missing data, we have
used the imputation method. To exclude any false positive
results due to the imputation, we re-analyzed the data using
the data only pertaining to the 84 individuals with full
genotyping information. The interaction remained significant:
F¼ 6.4, df¼ 3.79; P¼ 0.0006, adjusted R2¼ 16%.

Conclusion

Our results indicate that the interaction of 5-HTTLPR and
COMT low activity alleles may be associated with reduced
reciprocal connectivity within the emotion-processing circuit
that includes frontal, temporal, occipital regions and right
amygdala. This epistatic effect may underlie an inefficient
emotion regulation in these individuals that increases the risk
to MDD.
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