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Doped ceria is an important electrolyte for solid oxide fuel cell applications. Molecular dynamics
simulations have been used to investigate the impact of uniaxial strain along the <100> directions and
rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd, and La) on oxygen diffusion. We introduce a new potential
model that is able to describe the thermal expansion and elastic properties of ceria to give excellent
agreement with experimental data. We calculate the activation energy of oxygen migration in the
temperature range 900-1900 K for both unstrained and rare-earth doped ceria systems under tensile strain.
Uniaxial strain has a considerable effect in lowering the activation energies of oxygen migration. A more
pronounced increase in oxygen diffusivities is predicted at the lower end of the temperature range for all the
dopants considered.

he widespread commercial adoption of Solid Oxide Fuel Cells (SOFCs) requires their operation in the

intermediate (500-700°C) temperature range'. This requires ceramic electrodes and electrolytes with

enhanced activity, which effectively translates to higher oxygen diffusivities>. The SOFC community is
investigating numerous candidate oxides for these applications for use in the next generation of intermediate
temperature SOFCs (IT-SOFCs)**®.

Rare-earth doped ceria is an important electrolyte material because of its high oxygen ion diffusivity and
relatively low reduction temperatures® . In essence doping ceria with oxides such as R,O; (here R = rare-earth)
improves the oxygen diffusion due to the formation of oxygen vacancies, which act as vehicles for oxygen
diffusion in the resultant Ce; ,RO, y/, solid solution'. Within the intermediate temperature range, doped ceria
is advantageous in comparison to more conventional fuel cell electrolytes such as yttria stabilised zirconia as it
exhibits up to 2-3 orders of magnitude higher oxygen ion conductivity'*'°.

Another way to increase oxygen diffusion is through strain, for example through the presence of an interface
between dissimilar oxides'’~*°. Atomic scale modelling can provide important insights on the impact of strain and
doping regimes on oxygen transport in SOFC materials*' . Recent atomistic simulation studies were used to
investigate the defect induced chemical expansion in ceria highlighting that it is important to properly model the
elastic properties in doped ceria®”?*.

To accurately describe oxygen transport properties the potential model must adequately describe the thermal
expansion of doped ceria with respect to the rare-earth dopant. Here we have derived a new and transferable
potential model that reproduces experimentally determined thermal expansion and elastic constant values for
ceria with a high degree of accuracy. This has enabled the use of molecular dynamics (MD) calculations within the
present study to provide reliable predictions of how uniaxial strain affects oxygen ion diffusivity as a function of
temperature and rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd and La).

Results and discussion

Model validation. This work makes use of the recently developed Cooper, Rushton and Grimes potential (CRG)
model, which provides an excellent description of CeO, and other fluorite oxides®. Distinct from similar classical
models®**', the CRG model includes many-body effects using a generalised form of the embedded atom
method®™* that allows it to successfully capture the Cauchy-violation®, which is necessary for accurate
reproduction of the elastic constants and consequently, the strain behaviour of fluorite oxides. In addition
Cooper et al* demonstrated that their model is capable of describing several thermo-mechanical properties
such as specific heat and thermal expansion over a wide temperature range, making it suitable for use here. In
particular, the model is able to reproduce the experimentally determined elastic constants of CeO, with high
fidelity (see Table 4 within reference 29). For the present work, the CRG model has been extended to include
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Figure 1 | Lattice parameter as a function of temperature for doped ceria
(Cep.gRo201.9). Solid lines show predictions made using molecular
dynamics and the current potential model. The experimental data of
Pikalova et al*® is plotted for temperatures below 1200 K as dashed lines.

interactions for a number of trivalent rare-earth species typically
used as dopants within CeO,. The derivation of the additional
interactions is described within the Methods section.

The ability of the extended CRG* model to reproduce the thermal
expansion of doped ceria is illustrated in Figure 1, where lattice
parameter is predicted as a function of temperature for all the
dopants considered and plotted alongside Pikalova et al* data.
Whilst the dopant-oxygen potentials were derived at a fixed com-
position of Ceg gRy 01 9, it can be seen from Figure 2 that the model
is able to predict the lattice parameter of over a wide compositional
range; this figure plots lattice parameter against x for all the dopants
considered at a temperature of 300 K along with experimental
data®*°. The predictions for the change in lattice parameter with
respect to the dopant concentration obtained from the present model
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Figure 2 | Variation in lattice parameter predicted by model for

Ce; xR0, as function of dopant concentration x at T = 300 K.
Molecular dynamics data is plotted with the experimental values***.
Dashed grey line indicates the 300 K lattice parameter predicted by the
model for undoped CeO,.

is in very good agreement with the experimental data* with the
predicted values falling well within the scatter of the experimental
data.

Trivalent doping. The introduction of the rare-earth ions, which are
trivalent, leads to the oxygen deficient Ce; (RO, /> solid solution.
For every two rare-earth dopants introduced into the cation
sublattice one oxygen vacancy is formed via the following process
(given in Kroger-Vink notation®'):

R0 &3 2R+ V430 (1)

The formation of these oxygen vacancies is important as they are the
vehicles for diffusion in the anion sublattice.

The black line in Figure 3 represents the activation energies of
oxygen migration with respect to the dopant ionic radius in
unstrained ceria. From the present results and the given dopant
composition it is calculated that Nd-doped ceria has the lowest
activation energy of oxygen migration. The low activation energy
of migration for Nd-doped ceria is also reflected on the diffusivities
for temperatures in the range 900-1500 K (refer to black line of
Figure 4).

Impact of strain. The dependence of the activation migration
energies (Figure 3) and oxygen diffusivities (Figure 4) on strain
was investigated in order to show any trend relating their
magnitude to dopant size and uniaxial strain. Both Figures 3 and 4
show that for all dopants, a tensile strain brings about a decrease in
the activation energy of migration of between 0.052 and 0.089 eV
(for 2.5% strain) to 0.096-0.182 eV (for 5% strain). Systems
containing smaller dopants (such as Yb) are more sensitive to the
effects of strain as compared to the larger dopants (such as La).
Figure 3 reveals that at uniaxial stains up to 2.5% Nd-doped ceria
has the lowest activation energy of oxygen migration (0.48 eV),
whilst above 3% the minimum in the E, vs ionic radius curve shifts
towards smaller ionic radii. Most notably there is a clear minimum
for Sm-doped ceria for a strain of 4%. As strain increases beyond this
level, however, this minimum becomes less clearly defined as the E,
for the Gd, Sm and Nd dopants becomes increasingly similar with
values of 0.421 eV, 0.417 eV and 0.423 eV respectively, at a strain of
5%.

The importance of strain on rare-earth doped ceria is even more
vividly expressed by the diffusivity values shown in Figure 4. These
change significantly with respect to strain, which is consistent with
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Figure 3 | The dependence of the activation energies of oxygen migration
on the dopant ionic radius and strain for Ce9R0 101.95.
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Figure 4 | The dependence of the oxygen diffusivities on the dopant ionic
radius and strain.

the decrease in activation energy under tensile strain. Previous stud-
ies" have suggested that conductivity may be increased by several
orders of magnitude at strained interfaces between dissimilar oxides.
Based on the results of the present study we calculate that, although
considerable, the increases in oxygen diffusivity due to strain are not
of the same order as these previous results may suggest (although it
should be noted that biaxial conditions would be expected at such
interfaces rather than the uniaxial conditions described here).

With the increase in temperature and concomitant increase in
diffusivity, there is another trend that can be observed: the difference
in diffusivities between dopants is decreased. This can be explained
by the diminishing importance of the association between the
dopants and the migrating oxygen vacancies as the T is increased.
In essence, at high temperatures (above about 1000 K) the activation
energy of migration of oxygen vacancies will be given by the energy
barrier required for motion and will not be dependent upon the
association energy of defect clusters formed between oxygen vacan-
cies and the rare-earth dopants*>**. The association energy relates to
the Coulomb interactions (favouring nearest neighbour cluster con-
figurations) and the relaxation of the ceria lattice (favouring next
nearest neighbour cluster configurations)*. Tensile strain will lead
to the lowering of the association energies of clusters formed between
the rare-earth dopant atoms and oxygen vacancies (whereas under
compressive strain the association energies increase)*. The decrease
of the association energy affects smaller dopants (Yb, Er, Ho, Dy) toa
larger extent than the larger dopants (Nd, La), as they are more
bound under unstrained conditions*. At increased temperatures
there is a “flattening” of oxygen diffusivities in Ce; ;RO y/» (mainly
due to the reduction of the association energies of the intermediate

1.0

Dx10%/m%s™
0.4

0.2

0.0

\ \ | | \ \
0 1 2 3 4 5
Strain / %

Figure 5 | Diffusion coefficient oxygen self-diffusion in undoped ceria as
a function of strain at T = 1900 K obtained from the average of
5 X 5 ns duration MD simulations.

dopants: Gd, Sm) and this is nearly independent of the applied tensile
strain.

Oxygen vacancy-dopant binding can only partly explain the
increase in diffusivity under applied strain however, Figure 5 shows
the trend in D for undoped ceria as a function of tensile strain. As for
the doped cases, D values were obtained by performing a straight line
fit to mean squared displacement versus time data. As the diffusion
rate is much lower in the undoped case, the data in Figure 5 was
collected over a longer production time of 5 ns, in order to enable
statistically significant results to be obtained, even though a relatively
high temperature (1900 K) was employed, furthermore the D values
within Figure 5 were averaged over five such runs. For strains below
3% the D value obtained from the simulations was very small and
showed no clear dependence on strain. Above this strain level, how-
ever, D increased from 6.7 X 107'° m?s™! to a maximum of 101.1 X
107" m’s™" as the strain increased from 3.0% to 5.0%. This repre-
sents an increase of ~15 times.

As described above within doped ceria, increases in diffusivity due
to strain can be attributed to a strain induced decrease in dopant-
oxygen vacancy association. The results in Figure 5 are notable as
they suggest that, even in the absence of such dopant-vacancy bind-
ing effects, an applied strain can lead to meaningful increases in
diffusion rates. Assuming that similar mechanisms operate in both
doped and undoped cases, a substantial proportion of the increase in
doped ceria’s diffusivity resulting from strain may be due to effects
other than dopant-vacancy binding, especially at large strains.

The uniaxial strain applied along [001] leads to anisotropic oxygen
diffusion rates. Examination of the oxygen trajectories obtained dur-
ing the data-collection stage of the MD simulations showed that
diffusion occurred via a hopping mechanism. For both strained
and unstrained cases, hops occurred between oxygen sites parallel
to the [100], [010] and [001] directions. Whilst this behaviour per-
sisted as the system was strained, the relative magnitude of the oxy-
gen mean squared displacements along the [001] strain direction,
changed in comparison to the [100] and [010] directions (which
remain symmetrically equivalent even in the strained systems).
This is demonstrated in Figure 6, in which the ratio of Djgo1) (the
oxygen diffusion coefficient along strained direction) to the average
of the diffusion coefficients perpendicular to the applied strain
(Dr100; & Dyo10)) are plotted as a function of strain for three dopants.
The dopants Yb, Gd and La were chosen as these span the entire
range of dopant radii examined; with Yb being the smallest, La the
largest and Gd having a radius intermediate between the two.
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Figure 6 | Oxygen diffusion coefficient along strain direction (Djo9;)) divided by that perpendicular to applied strain plotted as a function of strain.
Isotropic diffusion occurs when this ratio is 1.0. When Djg011/Dy100]&(010] < 1.0 diffusion is higher in ab plane whilst values greater than unity

indicate preferential diffusion along the direction of strain (¢ axis).

Within the uncertainty of the simulation results, Figure 6 shows
that when & = 0 diffusion is isotropic as Digo1}/Davg [100] & [010] = 1.0.
When strain increases, however, all three dopants initially show a
decrease in this ratio, which then through a minimum before increas-
ing again. For the Yb and La systems, Djgo1}/Davg [100] & [o10] < 1.0 for
all temperatures considered in the strain range 0-4%. When the D
ratio is below unity this indicates that diffusivity was higher in the
plane perpendicular to the applied strain. Within the Yb and La
doped systems, when strain was above 4%, the ratio switched to
become larger than 1.0 at all simulation temperatures. This suggests
a change in behaviour whereby diffusivity becomes higher parallel to
the strained direction (along the simulation box ¢ axis) rather than in
the ab plane as seen for low and intermediate strains.

The anisotropy of oxygen diffusion is a little different in the Gd
doped system: the lower temperature curves (900 and 1100 K) do not
show the distinct transition from ab plane diffusion to ¢ axis dif-
fusion. In particular the 900 K D ratio remains below 1.0 even at 5.0%
strain, whilst the 1100 K curve is only slightly positive at 5% strain
meaning the diffusion is effectively isotropic at this strain and tem-
perature. Above 1100 K, Gd shows similar anisotropy to the Yb and
La doped systems.

In summary, the present study has considered the impact of uni-
axial strain and doping on oxygen diffusion in rare-earth doped
CeO, using dynamic atomic scale computer simulation techniques.
The potential model presented reproduces the thermal expansion
coefficients and the variation of the lattice parameter with respect
to the dopant concentration. As the temperature increases the dif-
ference in diffusivities between the rare-earth dopants is decreased
and this can be traced back to the diminishing importance of the
association between the dopants and the migrating oxygen vacancies.
By examining undoped ceria we identify also a complementary
enhancement of the diffusivity due to the impact of the imposed
strain on the diffusion processes.

Methods

Model. Within this paper, the effect of uniaxial strain on doped ceria compositions
was examined using MD simulations. The details of the simulation method are now
given. MD allows the trajectories of an atomic configuration to be predicted with time
by considering the forces between them*. As a result the description of the
interatomic forces is key to the method’s success.

Whilst the CRG model includes many-bodied, electrostatic and pairwise compo-
nents within its description of the O-O and Ce-O interactions, the dopant-oxygen
interactions presented here, are somewhat simpler, including only long-range elec-
trostatic and short-range pair-potential contributions. This latter short-range pair
contribution (Vo) was described using the Born-Mayer potential form*, such that
a pair of ions, i and j, separated by a distance of r;; have an energy given by:

ri
Vshurt(rlj) = Ax/i exp <_ pi) (2)

of

The parameters A,g and p,g are used to tailor the short-range potential to specific
pairs of interacting species o and f.

The interactions between the trivalent dopants and oxygen ions have been derived
specifically for this work using an empirical fitting procedure. The A,g, p,p and Cyg
parameters for each R**-O* interaction were obtained using an iterative procedure
whereby the Nelder-Mead simplex minimisation algorithm® was used to gradually
adjust potential parameters in order to improve the match between the thermal
expansion data of Pikalova et al.*® and the MD lattice parameters given by the
potentials. At each iteration lattice parameters were obtained by equilibrating an 8 X
8 X 8 Cey R0 ¢ super-cell for 10 ps in the NPT ensemble at temperatures of 300,
600 and 1200 K. By averaging cell size over the final 2.5 ps of these runs it was possible
to obtain an objective measure of how well the MD predictions matched Pikalova et
al* experimental data at each iteration of the simplex algorithm over the wide
temperature range employed. Using this method a potential set was obtained that
gives an excellent level of agreement with the experimental thermal expansion curves
(a comparison between model predictions and experimental data is given in the
results section), and potential parameters are given in Table 1.

Electrostatic interactions were calculated using the Particle-Particle Particle-Mesh
(PPPM) solver based on the method of Hockney and Eastwood™ and implemented
within the LAMMPS simulation code®"*2. In line with the partial charges employed by
the CRG model®, trivalent dopant ions were assigned charges of +1.6656e and Ce
and O had charges of +2.2208e and —1.1104e respectively. A short-range potential
cut-off of 11A was used throughout. In addition the MD calculations employed
periodic boundary conditions.

All simulation boxes were based on an 8 X 8 X 8 CeO, super-cell. To obtain the
desired dopant concentration trivalent dopant ions are substituted on to Ce sites at
random with an oxygen vacancy introduced for every two dopant ions, by the random
removal of an oxygen atom from the simulation cell (see equation 1). For the x = 0.1
cells this results in a cell containing the following atom totals: R** X 204, Ce X 1884
and O X 3994 (ie. V& X 102).

In order to examine its on oxygen migration it was necessary to apply tensile strains
of between 0-0.05 to the CeO,. For each combination of dopant and temperature,
strained systems were generated for each 0.005 strain increment within this range.

Table 1 | Potential parameters for trivalent dopant ions

Interaction A.p/eV pug//c\

Dy - (@) 36337.500 0.1901925
Er - @) 35500.000 0.1873276
Gd - @) 37562.031 0.1937708
Ho - @) 36533.123 0.1886265
La - @) 36197.135 0.2069536
Nd - @) 37723.987 0.1994694
Sm - (@) 37224.275 0.1963756
Yb - (@) 33313.636 0.1854758
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Before applying these strains each system’s unstrained equilibrium dimensions were
determined.

Systems were initially equilibrated in the NVT ensemble for 2.5 ps (using a
Berendsen thermostat™ to quickly establish the desired temperature) before Nosé-
Hoover NPT dynamics were employed over 100 ps in order that the simulation box
could relax to the size appropriate to the applied simulation temperature with no
applied strain® . This relaxation procedure was performed with no applied pressure
(i.e. the barostat pressure was 0GPa).

The zero strain condition obtained in this manner established the starting point for
the strain ramping method, which is now described. Strain was imparted to the
system by stretching the simulation box along the [001] direction such that after a
1 ns molecular dynamics simulation, a strain of 0.05 (5%) had been achieved. The
length of the simulation box aligned along [001] was updated every 100 fs such that a
true strain rate of 0.05 ns~' was obtained.

Extending the system along the [001] direction results in a decrease in the system
dimensions along the [100] and [010] directions (reflecting the system’s Poisson’s
ratio). In order to accurately capture this effect, the simulation barostat was used to
hold the [001] axis length at the value determined by the strain ramp whilst still
allowing the other box dimensions and angles to vary in order to maintain a system
pressure of 0 GPa. In this way the response of the system to the applied strain arising
due to its Poisson’s ratio was captured, as the x and y simulation box dimensions
decreased as a result of the extension in z due to the tensile strain.

At each 0.005 strain increment encountered along the strain-ramp, the state of the
system was stored, so that it could be used as the starting point for further simulations.
On completion of the ramping method these snapshots were further equilibrated for
1 ns under NPT conditions, (with the [001] aligned cell length still being kept fixed).
In this way the relaxed cell dimensions for each combination of dopant, temperature
and strain increment were established.

Each data-point in the results given below has been averaged over seven distinct
dopant configurations meaning that any bias introduced due to any individual
dopant configuration is reduced. As a result, six simulation boxes, in addition to that
obtained from the strain-ramp, were produced with different, random, dopant con-
figurations. These were each scaled to give the box dimensions established during the
strain-ramp but before performing the NPT equilibration described above. The seven
simulation boxes then underwent a final equilibration and data-collection step, which
is now described. The equilibration stage consisted of 20 ps of NVT dynamics, which
was followed by 1 ns of NVE dynamics during which the system averages used in the
results sections were obtained.

Definitions. The activation energies of oxygen migration (or energy barriers) for the
thermally activated oxygen diffusion is an important descriptor indicating how low
the temperature the electrolyte can effectively function at. In the framework of
transition state theory”’, the oxygen ion exchange rate with vacancies, v, along the
migration paths can be described by the Boltzmann relationship as,

—E,
v:voexp<kB—T> (3)

where E, denotes the activation energy of migration and v is a constant. The oxygen
vacancy diffusivity, Dy, is connected to the mean square displacement <R>> of the
oxygen vacancies via the Einstein relation,

(R¥)=6D,t ()

D, exponentially depends on E, similar to the formalism in eqn (3).
A way to quantify the interaction of point defects within the lattice is by the
calculation of their association (or binding energies), E,, defined by

Ep= § Eisolated defects 7Edcfe[t cluster (5)

A positive binding energy implies that the defect cluster is more energetically
favourable as compared to the constituent isolated defects.
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