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Abstract: A high-performance magnesium oxychloride cement (MOC) composite composed of silica
sand, diatomite powder, and doped with graphene nanoplatelets was prepared and characterized.
Diatomite was used as a 10 vol.% replacement for silica sand. The dosage of graphene was 0.5 wt.%
of the sum of the MgO and MgCl2·6H2O masses. The broad product characterization included
high-resolution transmission electron microscopy, X-ray diffraction, X-ray fluorescence, scanning
electron microscopy and energy dispersive spectroscopy analyses. The macrostructural parameters,
pore size distribution, mechanical resistance, stiffness, hygric and thermal parameters of the composites
matured for 28-days were also the subject of investigation. The combination of diatomite and graphene
nanoplatelets greatly reduced the porosity and average pore size in comparison with the reference
material composed of MOC and silica sand. In the developed composites, well stable and mechanically
resistant phase 5 was the only precipitated compound. Therefore, the developed composite shows
high compactness, strength, and low water imbibition which ensure high application potential of this
novel type of material in the construction industry.

Keywords: composites; magnesium oxychloride; sorel cement; graphene; diatomite

1. Introduction

The overall amount of greenhouse gas (GHG) emissions released during the production of
Portland cement (PC) accounts for 5–7% of all global emissions [1]. Predictions show, that by 2050,
this amount will be 1.7–2.3 times bigger, if the production of PC is to continue at the same rate as it
is going nowadays [2]. The released amount of CO2 and other GHG can be mainly attributed to the
combustion of fuels whereby the necessary sintering temperature (~1450 ◦C) is reached. During the
sintering itself, a large amount of CO2 is released because of the decomposition of limestone [3,4].
This growing amount of released GHG emissions trend is behind the increasing interest in finding
an alternative to PC which is more ecologically sustainable. This approach offers the possibility of
partially replace PC or its components by eco-friendly materials. As a partial replacement, waste
materials such as ceramic or porcelain waste, fly ash, tire rubber and others are mostly studied [5–8].
Another possibility is to develop an ecologically sustainable material based on raw materials whose
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calcining temperature is lower than that of calcite. In this search reactive magnesia-based materials
show great promise.

Magnesium oxychloride cement (MOC), discovered in 1867 [9], is an alternative reactive
magnesia-based cement [10]. Generally, it can be described as a compound of the system
MgO-MgCl2-H2O and there are four known phases of this sort of material which differ depending
on the stoichiometric ratio between magnesium oxide, magnesium chloride and water. At ambient
temperature, Phase 3 (3Mg(OH)2·MgCl2·8H2O) and Phase 5 (5Mg(OH)2·MgCl2·8H2O) are formed.
At temperatures above 100 ◦C, Phase 2 (2Mg(OH)2·MgCl2·4H2O and 2Mg(OH)2·MgCl2·5H2O) and
Phase 9 (9Mg(OH)2·MgCl2·4H2O) are present [11–15]. MOC has several unique properties and in
some aspects such as resistance to abrasion, fire resistance, low thermal conductivity and mechanical
properties, it can be superior to the commonly used Portland cement [16–22].

Graphene and other graphene derivatives belong to the group of carbon-based
nanomaterials [23–25]. Graphene-based materials are two-dimensional sheets of carbon with a
honeycomb structure [26]. These materials show unique electronic [27,28], optical [29–31], thermal [32–34]
and mechanical properties [35–37] which make them applicable in many ways. The use of graphene
in construction materials as an additive has been previously studied, with the results showing its
positive impact on mechanical, thermal and electric properties and also the overall durability of the
material [38–40].

Another distinct advantage in comparison to PC is the bonding ability to the wide range of
fillers, due to its unique microstructure. It is known, that fillers such as silica glass [41], fuel ash [42],
sawdust [42,43], asbestos waste [43] and many others, can be used in MOC-based composites
while improving the properties of the final material, or at least not impacting them negatively in
a meaningful way, in comparison to PC. This fact further improves the ecological aspects of MOC
production. While PC can also use some waste materials as fillers (as mentioned in the first paragraph),
comparatively, both the amount of the filler as well as filler themselves are significantly more restricted
compared to MOC. However, the usage of larger filler content is not without its drawbacks. As an
example, while the usage of fly ash in MOC as a way of disposing of unwanted waste material is
desired from ecological point of view, it has to be carefully considered. It is well-known that the
addition of fly ash to MOC reduces especially the compressive strength [44]. This effect is a function of
fly ash content, so the material with a very high percentage of fly ash needs to be used in applications,
where the lack of compressive strength is not a hindrance.

Diatomite can be described as a mineral formed in the process of sedimentation of the fragments
of the carapace of diatom algae. It is a pale-colored, lightweight material mainly composed of the
phase SiO2·nH2O, so it can be described as a silica-bearing material [44–46]. The material is abundant
in various areas of the world and has been studied and characterized previously in the literature.
It can be applied as a substrate for the synthesis of carbon-based nanomaterials [47] or as a material
for the removal of heavy metals from water [48–50]. The low bulk density, high absorptive capacity,
high surface area, and relatively low abrasion of diatomite make the material applicable as a partial
filler replacement in construction materials. The use of diatomite as a partial replacement of Portland
cement in cement admixtures has been previously described in the literature, showing the effect of
diatomite on the mechanical properties, such as compressive strength, flexural strength, Young’s
modulus, and water absorption [51–54].

In this paper, a composite material based on MOC and silica sand with graphene additive and
diatomite powder was prepared and characterized using various analytical methods. Such material
composition is unique and based on our analysis no similar material has been reported in the literature
up to now. Diatomite was used as a partial sand substitute. A reference sample containing only
MOC and silica sand was also prepared and used for comparison. The samples were analyzed in
terms of their phase and chemical analysis using X-ray diffraction and energy dispersive spectroscopy.
Optical microscopy was used to analyze the microstructures of all the samples. All of the samples
were subjected to mechanical tests to show their compressive strength, flexural strength and elastic
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moduli. Ability to transport and accumulate water was characterized by the measurement of hygric
parameters, porosity and pore size analysis. The thermal parameters of composites were the subject of
the investigation as well.

2. Materials and Methods

The light burnt magnesia (MgO) was a product of Styromagnesit Steirische Magnesitindustrie Ltd.
(Oberdorf, Austria). A hydrous solution of MgCl2·6H2O (p.a. purity) delivered by Lachner s.r.o.
(Neratovice, Czech Republic) had density of 26 Bé◦. The 0–2 mm fraction of silica sand (Filtrační písky,
spol. s r.o., Chlum u Doks, Czech Republic) was used as only filler in reference samples. The loose
bulk density of sand used was 1678 kg·m−3. In modified composite mix, fine-grained diatomite (Blaine
fineness 2087 m2

·kg−1) produced in LB MINERALS s.r.o., (Horní Bříza, Czech Republic) was used as
10% volumetric replacement of silica sand. The grain size analysis of quartz sand was done by sieve
method in accordance with the EN 933-1 [55]. The particle size distribution of MgO and diatomite
was investigated on a laser diffraction principle using an Analyssete 22 MicroTec plus apparatus
(Fritsch, Idar-Oberstein, Germany). The particle size of the used materials is apparent from Figure 1.
Both diatomite and MgO exhibited unimodal particle size distribution with maxima at 26.8 and
46.2 µm respectively.
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Figure 1. Particle size distribution of diatomite, MgO, and silica sand.

The graphene nanoplatelets having declared surface area 500 m2
·g−1 were provided by Alfa

Aesar (Thermo Fisher Scientific, Kandel, Germany). The purity of graphene used was 99.9 wt.% and
negligible traces of other elements such as S, Si, and Fe were identified. The microstructure of the
graphene was studied by HR-TEM (Jeol, Tokyo, Japan). The TEM data presented in Figure 2 prove a
characteristic layered structure of graphene and a thickness of a few atoms.

A magnesium chloride solution of required concentration was prepared using MgCl2·6H2O and
tap water. Part of the solution was used for the dispersion of graphene nanoplatelets. For this purpose,
the magnesium chloride solution with graphene was first sonicated in ultrasonic bath for 15 min and
then dispersed for 5 min using a T18 UltraTurrax (IKA, Staufen im Breisgau, Germany) operating at
7000 rpm. The resulting suspension was added to MgO powder and mixed for 90 s. After that the
sand or sand/diatomite mix were added and the mixture was stirred for another 90 s.

The fresh composite was then poured in two layers into prismatic iron molds having dimensions
of 160 mm × 40 mm × 40 mm and compacted on a vibrating table. The specimens were demolded
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after 24 h, and then they were cured for 27 days in laboratory at temperature of (23 ± 2) ◦C and
relative humidity of (50 ± 5)%. D The composition of investigated composites is presented in Table 1.
The dosage of graphene nanoplatelets was 0.5 wt.% of the sum of MgO and MgCl2·6H2O mass.Materials 2020, 13, x FOR PEER REVIEW 4 of 14 
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Table 1. The dosage of the particular components in composite mixtures (g).

Composite MgO MgCl2·6H2O Water Silica Sand Diatomite Graphene

MOC-REF 584.4 258.9 215 3 × 497.7 - -
MOC-DG 584.4 258.9 215 3 × 382.8 26.6 4.2

The graphene nanoplatelets were subjected to the HR-TEM. For that purpose, an EFTEM 2200 FS
microscope (Jeol, Tokyo, Japan) was applied.

XRD data were collected at room temperature on a D8 Phaser powder diffractometer
(Bruker, Karlsruhe, Germany) with parafocusing Bragg–Brentano geometry using CuKα radiation
(λ = 0.15418 nm, U = 30 kV, I = 10 mA).

The morphology was investigated using SEM with a FEG electron source (Tescan Lyra dual
beam microscope, Tescan Brno, s.r.o., Brno, Czech Republic). EDS was measured by an X-MaxN

analyser equipped with a 20 mm2 SDD detector (Oxford Instruments, Abingdon, UK) and AZtecEnergy
software (v. 3.0).

Optical microscopy of composite samples was performed by a Navitar macro-optics microscope
(Rochester, NY, USA) with optical zoom up to 110× and recorded with 2/3” digital camera (Sony, Minato,
Japan) having a resolution of 5 Mpix. The sample was illuminated by a white LED ring light source
with individually addressable segments and intensity. NIS-Elements BR 5.21.02 software with an
Extended Depth of Focus Module (EDF) was used for imagining and analysis of the samples.

For the 28-days matured composites, structural, micro-structural, mechanical, hygric, and thermal
parameters were determined. Except for the MIP test, five samples of each material were tested.
The presented data represents mean value calculated based on the results obtained for the particular
samples. Where applicable, the expanded combined uncertainty of the presented data was given.

Basic characterization of the hardened composites was done using the bulk density, specific
density and total open porosity assessment. The bulk density test was conducted in compliance with
the standard EN 1015-10 [56]. For the specific density measurement, an Pycnomatic ATC apparatus
(Porotec, Hofheim, Germany) operating on a helium pycnometry principle was used. The total open
porosity was calculated based on the specific density and bulk density values, as originally presented,
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e.g., in [57]. Pore size distribution was investigated by mercury intrusion porosimeters of Pascal series
(Thermo Fisher Scientific, Waltham, MA, USA). The typical sample mass was ~2 g.

Mechanical resistance and stiffness were characterized by flexural strength f f (MPa), compressive
strength f c (MPa), and dynamic modulus of elasticity Ed (GPa). The strength tests were realized as
prescribed in the EN 1015-11 [58]. A Vikasonic apparatus (Schleibinger Geräte, Buchbach, Germany)
was used for recording of ultrasound wave velocity and evaluation of the dynamic modulus of elasticity.

The poor resistance of MOC-based materials against moisture damage is reported in the
literature [59,60]. Therefore, the parameters that define the water transport and storage were the
subject of the experimental analysis. The maximum capillary water absorption Wa (%) and 24-h water
absorption Wa24 (%) were measured according to the EN 13755 [61]. The water absorption coefficient
Aw (kg·m−2

·s−1/2) and apparent moisture diffusivity κapp (m2
·s−1) were evaluated based on the free

water intake experiment. This test was conducted as introduced in the EN 1015-18 [62], and the data
were assessed as proposed by Feng et al. [63].

Among thermophysical parameters, thermal conductivity, thermal diffusivity, and volumetric
heat capacity were tested. They were examined using a Hot Disk TPS 1500 thermal constants analyzer
(Hot Disk AB, Göteborg, Sweden) operating on a transient plane source technique [64]. The tests were
conducted on dry samples at laboratory temperature of (23 ± 2) ◦C.

3. Results and Discussion

In this study, the impact of graphene and diatomite addition to the magnesium oxychloride
matrix was investigated. Prepared high-performance composites are shown in Figure 3. Samples were
termed MOC-REF (REFerence sample of Magnesium Oxychloride Cement) and MOC-DG (Magnesium
Oxychloride Cement with Diatomite and Graphene).
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The phase composition of both samples was studied using X-ray Diffraction. The XRD analysis
was conducted on paste samples in order to avoid very strong reflections of quartz. Usually, when
sand is present in the samples, the quartz is the only visible phase. Both diffraction patterns can be
seen in Figure 4. The results show the presence of the phase Mg3(OH)5Cl·4H2O (ICDD 00-007-0420)
and MgO (ICDD 00-001-1169). The diatomite as well as graphene are not visible in MOC-DG sample
due to amorphous nature of diatomite and very low graphene content.
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The morphology of the composites was studied by SEM (see Figure 5). Highly compact structure
was detected. If any defects were observed (bubbles, cracks), then these areas were inter-grown by
needles from the MOC phase 5, as can be clearly visible from the SEM micrographs. This needle-like
shape is typical for MOC phase 5. The typical dimensions of such needles are 1–10 µm in length and
a few hundreds of nanometers in width. Also, the diatomite and graphene are well connected with
MOC binder.
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To determine the chemical composition of the composites, EDS was used. The qualitative analysis
showed the presence of the following major elements: magnesium, oxygen, carbon, chlorine, calcium,
silicon and aluminum, whose elemental maps can be seen in Figure 6.
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The quantitative analysis results are shown in Table 2. The presence of carbon is caused by MOCs
ability to absorb CO2. The presence of calcium and iron is caused by the low amount of impurities
present in the raw materials, namely the caustic MgO.

Table 2. Chemical Composition of MOC-REF and MOC-DG obtained by EDS.

Element MOC-REF MOC-DG

Mg 32.7 21.8
O 46.1 45.7
C 11.3 12.0
Cl 8.0 6.0
Ca 1.2 5.0
Si 0.7 9.2
Al 0.0 0.3

The microstructure of both samples was analyzed using optical microscopy (see Figure 7).
Both MOC-REF and MOC-DG showed compact structure without any visible defects. Silica sand is
well distributed in the MOC matrix. Even a very low graphene content significantly change the color
of the composite.

The basic structural properties of the analyzed composites are presented together with the
mechanical parameters in Table 3. Taking into consideration the principles of the applied porosity
assessment methods, the porosity values obtained from the combined gravimetric/pycnometric
measurement and data provided by the mercury intrusion porosimetry (PHg), were almost similar.
The use of diatomite and graphene nanoplatelets led to the high drop in porosity which was due to the
low dimension of diatomite particles and graphene agglomerates.
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Table 3. Macrostructural and mechanical properties of the tested composites.

Material ρs (kg·m−3) ρb (kg·m−3) P (%) PHg (%) f f (MPa) f c (MPa) Ed (GPa)

MOC-REF 2395 ± 29 2121 ± 30 11.2 ± 0.2 10.8 23.1± 0.3 67.3 ± 0.9 33.8 ± 0.8
MOC-DG 2298 ± 28 2115 ± 30 8.0 ± 0.2 8.11 25.6 ± 0.3 87.7 ± 1.2 37.5 ± 0.9

Because of the lower specific density of diatomite than that of silica sand, both the bulk density
and specific density of MOC-DG material were slightly reduced. The drop of the investigated
macrostructural parameters is well apparent from Figure 8.
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Consistent with the decrease in porosity, the mechanical strength of MOC-DG composite was
greatly improved. It was the result of the three mutually acted effects: (i) low porosity, (ii) activation of
two-dimensional graphene nanoplatelets that bridged the gaps between the Phase 5 needles, unreacted
MgO, and diatomite particles, (iii) high hardness, compressive strength, and flexural of graphene
nanoplatelets [65–67]. The biggest improvement in the tested mechanical parameters by the synergic
action of diatomite and graphene was achieved for the compressive strength, which increased for
MOC-DG of approx. 30% compared to the reference composite MOC-REF. However, also the flexural
strength and dynamic elastic modulus were moderately enhanced.

The pore size distribution measured by mercury porosimetry is shown in Figures 9 and 10.
Both the cumulative and incremental pore volume distribution curves gave evidence of the improved
packing and consolidation of MOC-DG material compared to the reference one. The total pore volume
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dropped from 0.05038 cm3
·g−1 (MOC-DG) to 0.03721 cm3

·g−1 (MOC-REF). Accordingly, the average
pore size decreased from 0.0412 to 0.0174 µm.
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The effect of the use of graphene and diatomite on the hygrothermal performance of the newly
developed composite is evident from Table 4. The water absorption, water absorption coefficient,
and moisture diffusivity were considerably lowered for the MOC-DG material compared to the
reference one. The assessed hygric parameters thus well corresponded with the macrostructural
properties and pore size distribution data. Quantitatively, the water absorption coefficient was low
as typical capillary active materials have Aw value of about two orders of magnitude higher [68,69].
For example, the standard EN 998 [70] introduces three classes of rendering mortars waterproofing.
In the W1 type and W2 type mortars the Aw values should be 0.4 and 0.2 kg·m−2

·s−1/2 respectively [71].
It means the tested composites can be considered as waterproof in this manner. Typically, high dry
thermal conductivity and thermal diffusivity were determined for both composites. The porous
diatomite particles slightly reduced the thermal conductivity value of the MOC-DG composite and
thus partially mitigated heat transport in its structure. On the other hand, the ability to store heat was
almost unaffected by the incorporation of diatomite and graphene into composite mixture. The thermal
properties or MOC-based composites were only scantly studied up to now. Certain exception represents
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work published by Xu at al. [72] who analyzed thermal performance of MOC composites with
cenospheres. Authors received for the reference MOC composite with silica sand used a filler thermal
conductivity of approx. 2.3 (W·m−1

·K−1). Of course, it is lower value than obtained in our case, but
their material had much higher porosity.

Table 4. Hygric and thermal parameters of the tested composites.

Parameter MOC-REF MOC-DG

Wa (%) 4.28 1.94
Wa24 (%) 2.85 0.94

Aw (kg·m−2
·s−1/2) 0.0061 0.0023

κapp × 10−11 (m2
·s−1) 4.90 3.47

λd (W·m−1
·K−1) 3.270 3.151

ad × 10−6 (m2
·s−1) 2.112 2.154

Cvd × 106 (J·m−3
·K−1) 1.548 1.463

4. Conclusions

The impact of graphene and diatomite admixing on the performance and properties of
MOC composites was studied. A broad test campaign which involved sophisticated and effective
characterization analyses such as HR-TEM, XRD, XRF, SEM, and EDS were applied to investigate the
raw materials and composites matured for 28-days. The data acquired from the conducted tests allows
us to point out the following most substantial results:

• the identified crystalline phases in both composites were well stable and durable phase 5
(Mg3(OH)5Cl·4H2O) and unreacted MgO residue;

• the highly compacted structure of graphene-doped composite was identified, where possible
defects were inter-grown by phase 5 needle like crystals;

• diatomite and graphene were well distributed and fixed in MOC matrix;
• the porosity, bulk density, and specific density were reduced by the use of graphene nanoplatelets

and diatomite;
• the compressive strength of MOC-DG composite was greatly improved due to the high hardness

and mechanical strength of graphene, lowered porosity, and activation of two-dimensional
graphene-based reinforcement;

• as the average pore size was significantly reduced by the mutual action of diatomite and
graphene in composite mixture, the water transport and accumulation was highly limited in
MOC-DG materials which is very promising finding for its improved durability in the sense of
moisture damage;

• the use of diatomite slightly reduced the thermal conductivity of the newly developed composite,
but its heat transport properties remained high.

Summarizing the main findings of the study above listed, the diatomite/graphene enriched
MOC composite represents an interesting alternative material that meets the current technical criteria
and functional standards imposed on novel high-performance materials for construction industry.
The acquired data will be used in the near future for the design of new construction composites
designed for specific construction purposes and applications.
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