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A B S T R A C T

Vagus nerve stimulation (VNS) is a low-risk surgical option for patients with drug resistant epilepsy, although it
is impossible to predict which patients may respond to VNS treatment. Resting-state magnetoencephalography
(rs-MEG) connectivity analysis has been increasingly utilized to investigate the impact of epilepsy on brain
networks and identify alteration of these networks after different treatments; however, there is no study to date
utilizing this modality to predict the efficacy of VNS treatment. We investigated whether the rs-MEG network
topology before VNS implantation can be used to predict efficacy of VNS treatment. Twenty-three patients with
epilepsy who had MEG before VNS implantation were included in this study. We also included 89 healthy control
subjects from the Human Connectome Project. Using the phase-locking value in the theta, alpha, and beta
frequency bands as a measure of rs-MEG functional connectivity, we calculated three global graph measures:
modularity, transitivity, and characteristic path length (CPL). Our results revealed that the rs-MEG graph
measures were significantly heritable and had an overall good test-retest reliability, and thus these measures
may be used as potential biomarkers of the network topology. We found that the modularity and transitivity in
VNS responders were significantly larger and smaller, respectively, than those observed in VNS non-responders.
We also observed that the modularity and transitivity in three frequency bands and CPL in delta and beta bands
were significantly different in controls than those found in responders or non-responders, although the values of
the graph measures in controls were closer to those of responders than non-responders. We used the modularity
and transitivity as input features of a naïve Bayes classifier, and achieved an accuracy of 87% in classification of
non-responders, responders, and controls. The results of this study revealed that MEG-based graph measures are
reliable biomarkers, and that these measures may be used to predict seizure outcome of VNS treatment

1. Introduction

Vagus nerve stimulation (VNS) is a low-risk surgical option for ap-
proximately one-third of patients with epilepsy who continue to seize
despite tailored medical therapy (Mohanraj and Brodie, 2006). It has
been demonstrated that VNS is effective in reducing seizure frequency
by>50% in approximately 50% of patients (responders), though re-
duction in seizure frequency is< 50% in about one half of patients
(non-responders) and approximately 25% of patients experienced no
measurable benefit from VNS treatment (Englot et al., 2011). Despite
the growing application of VNS, it is still not possible to predict which
patients will respond to VNS treatment, and the degree of their re-
sponse. In recent years, resting-state magnetoencephalography (rs-

MEG) connectivity analysis has been used in several epilepsy studies to
lateralize and localize the seizure onset zone (Nissen et al., 2017), in-
vestigate alteration of the brain connectivity patterns from interictal to
preictal (Hamandi et al., 2016), and relate alterations of the brain
connectivity to duration and severity of epilepsy (Englot et al., 2015).
Although MEG has been increasingly utilized in investigation of the
brain networks in patients with epilepsy, there is no study to date that
utilizes this modality to predict the efficacy of VNS treatment. The aim
of this study was to predict VNS seizure outcome using rs-MEG data
collected before implantation of VNS.

Graph measures can extract useful features from the brain network
(Bullmore and Sporns, 2009). Network topology has been used to
characterize structural and functional properties of the brain networks
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in healthy subjects and patients (Ridley et al., 2015; Garcia-Ramos
et al., 2016; Rubinov and Sporns, 2010). The brain of a healthy subject
is a complex network and has properties such as balanced integration
and segregation; however, the brain of patients with epilepsy is de-
viated toward regular or random networks, with alterations in in-
tegration and segregation characteristics. Previous studies have de-
monstrated alteration of graph measures in patients with epilepsy
compared to healthy control subjects using electroencephalography
(EEG) (van Diessen et al., 2016), MEG (Niso et al., 2015), electro-
corticography (ECoG) (Vega-Zelaya et al., 2014), and functional MRI
(fMRI) (Ridley et al., 2015; Garcia-Ramos et al., 2016; Doucet et al.,
2015). Despite the growing applications of network topology in patients
with epilepsy, there is only one study that used EEG-based graph
measures and investigated the difference in these measures in re-
sponders and non-responders to VNS treatment (Fraschini et al., 2014).
Moreover, this study did not investigate the network topology of the
patients before implantation of the VNS, in the interests of finding a
biomarker that could predict which patients will respond to VNS.

We investigated whether individual differences in the network to-
pology (i.e. CPL, transitivity, and modularity), derived from rs-MEG
functional connectivity, have a biological basis by establishing them as
heritable traits. To establish clinical applicability of the network to-
pology as biomarkers, these biomarkers have to relate to naturally oc-
curring variation, such as those caused by genetic factors. Therefore,
demonstrating sensitivity of a network topology biomarker to genetic
influences provides some external, genetic validity to the biomarker.
Furthermore, if it is demonstrated that a network topology biomarker is
heritable, and the value of this biomarker is significantly different be-
tween VNS-responders and non-responders, this motivates further re-
search into specific candidate genes, or sets of genes, that may affect the
response to VNS treatment. Heritability of rs-MEG functional con-
nectivity has been observed in a few studies (Demuru et al., 2017;
Colclough et al., 2017); however, these studies did not investigate
heritability of the network topology. We address this deficiency in the
current study.

Previous studies reported different characteristics of EEG in re-
sponders and non-responders to VNS treatment (Fraschini et al., 2014;
Fraschini et al., 2013; Bodin et al., 2015). Using EEG data acquired after
implantation of VNS, Fraschini et al. demonstrated that patients re-
sponding to VNS represent a brain network reorganization toward a
more integrated architecture (Fraschini et al., 2014; Fraschini et al.,
2013). A recent study utilized resting-state functional MRI (rs-fMRI)
data pre-VNS implantation and found an association of greater VNS
efficacy with larger connectivity between the thalami to the anterior

cingulate cortex (ACC) and left insula (Ibrahim et al., 2017). These
studies provided some evidence that fMRI and EEG can be utilized to
detect the differences in the brain networks between VNS responders
and non-responders, and ultimately to predict which patient may re-
spond to VNS treatment. Considering this evidence, and the fact that
MEG has a superior temporal resolution compared to fMRI and is less
affected by the volume-conductor effect compared to EEG, it is expected
that the rs-MEG connectivity analysis may provide a reliable prediction
of VNS seizure outcome.

In this study, we developed and validated a machine learning ap-
proach to predict the VNS seizure outcome using the network topology
derived from rs-MEG data, acquired before implantation of VNS. Our
hypothesis was that responders and non-responders would have a dif-
ferent network topology, and that this difference could be demonstrated
using rs-MEG data acquired before implantation of VNS. In addition to
VNS responders and non-responders, we included healthy subjects
(controls) who underwent three sessions of rs-MEG data collection from
the Human Connectome Project (HCP) (Larson-Prior et al., 2013). The
rs-MEG datasets of controls were used to: 1) demonstrate reliability and
heritability of the rs-MEG graph measures as potential clinical bio-
markers; and 2) compare the network topology of controls with that of
VNS responders and non-responders.

2. Methods

2.1. Participants

2.1.1. Patients
A consecutive series of 121 patients with drug resistant epilepsy

who underwent VNS implantation at the Le Bonheur Children's Hospital
(LCH) from 2011 to 2017 were retrospectively selected for this study
(Table 1). The International League Against Epilepsy established the
definition of drug resistant epilepsy as “failure of adequate trials of two
tolerated and appropriately chosen and used antiepileptic drug (AED)
schedules (whether as monotherapies or in combination) to achieve
sustained seizure freedom” (Kwan et al., 2010). The inclusion criteria
were patients: (i) who underwent three five-minute sessions (runs) of
rs-MEG data collection within one month before VNS implantation; (ii)
whose MEG data were not contaminated with artifacts generated by
orthodontic devices, ventriculoperitoneal (VP) shunt, and environ-
mental noise; and (iii) who had at least one year follow-up after VNS
implantation. Of these 121 patients, 23 patients (11.3 ± 6.9
(mean ± SD) years, 13 female) met inclusion criteria. It is noteworthy
that data of 21 patients were contaminated by artifacts.

Table 1
Demographic and clinical data for patients.

Responder Non-responder P-value

Number of patients (n) 14 9 –
Female (n, %) 7 (50%) 6 (67%) 0.25b

Sedateda (n, %) 7 (50%) 5 (56%) 0.32b

Age at seizure onset (y, mean ± SD) 4.1 ± 4.6 6.1 ± 7.4 0.44c

Duration of epilepsy before receiving VNS (y, mean ± SD) 7.1 ± 5.2 5.4 ± 4.8 0.45c

Age at VNS implantation (y, mean ± SD) 11.2 ± 5.4 11.4 ± 9.3 0.93c

Follow-up (month, min, max (mean ± SD)) 13, 74
(35.0 ± 20.5)

12, 46
(23.4 ± 12.4)

0.16c

Pre-VNS seizure frequency (per day, median, IQR) 1.2, 4.9 3.0, 20.7 0.64d

Post-VNS seizure frequency (per day, median, IQR) 0.1, 0.4 3.0, 18.3 0.0096d

Seizure reduction (%, median, IQR) 85.6%, 35.7% 0.0%, 17.1% 0.000075d

Generalized epilepsy (n, %) 4 (29%) 3 (33%) 0.34b

Presence of an MRI lesion (n, %) 6 (43%) 3 (33%) 0.31b

IQR, interquartile range; SD, standard deviation; y, year.
a 12 patients were sedated for MEG study under general anesthesia.
b P-value was calculated using the Fisher exact test.
c P-value was calculated using the t-test.
d P-value was calculated using the Mann Whitney test.
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All patients were implanted with VNS supplied by LivaNova Inc.
(Houston, TX, USA). The VNS stimulation parameters were individually
adjusted to achieve optimal efficacy with minimal side effects. Patients
were assigned to two groups, VNS responders and non-responders,
based on the alteration of the seizure frequency from baseline (i.e.
before VNS implantation) to their last follow-up visit. The seizure fre-
quency was determined over one month at both baseline and the last
follow-up visit. Reduction in seizure frequency was 50% or more in
responders and< 50% in non-responders. Twelve patients (approxi-
mately 50% of patients in each of the VNS responders and non-re-
sponders group) were sedated for MEG study under general anesthesia
induced by propofol injection, and maintenance achieved by a propofol
infusion rate of 166 μg/kg/min. Eleven patients did not receive sedation
during MEG data collection. MEG data from patients were collected as
part of a standard of care clinical procedure at the LCH. The decision as
to whether or not to collect MEG data under sedation was made clini-
cally. Overall, young and/or developmentally delayed patients who
could not follow instructions for MEG data collection were sedated. The
study was approved by the Institutional Review Board (IRB) of the
University of Tennessee Health Science Center.

2.1.2. Controls
Eighty-nine healthy control subjects (28.6 ± 3.9 (mean ± SD)

years, 41 female) from the Human Connectome Project (HCP) who
performed three six-minute runs of rs-MEG were included in this study
(Larson-Prior et al., 2013). Of these subjects, there were 19 mono-
zygotic (MZ) and 13 dizygotic (DZ) complete twin pairs (Table 2). The
HCP, led by Washington University, aimed to characterize human brain
function and connectivity in a large number of twins and their siblings
(Van Essen et al., 2012). The HCP subjects are young adult healthy
individuals who are free from severe neurodevelopmental (e.g. autism),
neuropsychiatric (e.g. depression), or neurologic (e.g. epilepsy) dis-
orders.

2.2. MEG data acquisition and pre-processing

For controls, we used the HCP rs-MEG data that were acquired using
a MAGNES 3600 (4D Neuroimaging, San Diego, CA) MEG system lo-
cated at the Saint Louis University medical campus. The HCP rs-MEG
dataset consisted of three consecutive six-minute runs for each subject.
We used the pre-processed rs-MEG data from the HCP S900 data re-
lease. Details of pre-processing of the HCP data are described elsewhere
(Larson-Prior et al., 2013). Briefly, artifact-contaminated time segments
of recordings (which may correspond to head or eye movement) were
removed. Noisy MEG channels exhibiting high variance ratio or poor
correlation to neighboring channels were identified and removed. The
number of channels which were removed due to excessive noise across
the controls was 4.0 (avg.), S.D. 2.4. The physiological artifacts (e.g.
eye-blinks, muscle artifacts, or cardiac interference) and noise with
clear temporal and spectral signatures were identified using in-
dependent components analysis (ICA) and then regressed out from the
MEG data (Larson-Prior et al., 2013). The sampling rate of the HCP pre-
processed MEG data was 508.6 Hz.

The rs-MEG recordings from patients were conducted at the Le
Bonheur Children's Hospital using a whole-head MAGNES 3600 MEG
system (the same model of MEG system used by HCP) with a sampling
rate of 508.6 Hz. Three consecutive 5-minute sessions of resting-state

MEG for each patient were used in this study. We used the HCP pro-
cedures, mentioned above, for pre-processing of the rs-MEG data of
patients by adapting (with slight modification) the pipelines of meg-
connectome version 3.0 (https://www.humanconnectome.org/
software/hcp-meg-pipelines). In pre-processing of the rs-MEG data of
patients, in addition to removing artifact-contaminated time segments
of recordings (which may correspond to head or eye movement), we
visually identified the inter-ictal epileptiform discharges, and then the
time segments corresponding to these discharges were removed. We
found an average of 13 and S.D. of 3.3 noisy MEG channels across the
patients tested. It is noteworthy that the continuous head position
monitoring is not possible in the 4D-Neuroimaging MEG system, and
thus we did not perform any compensation for head movement.

2.3. Functional connectivity and graph measures

The pre-processed rs-MEG data were utilized to calculate the phase-
locking value (PLV) as a phase synchronization measure of the brain
functional connectivity. The PLV is defined as the absolute value of the
mean phase difference between two signals s1(t) and s2(t) (Lachaux
et al., 1999):

= −PLV t f E e( ; ) | [ ]|j φ t φ t( ( ) ( ))1 2 (1)

where φ1(t) and φ2(t) are the instantaneous phases of s1(t) and s2(t) in
frequency f, E[.] denotes the expected value, and |.| represents the
absolute value of a complex number. The PLV is typically estimated by
averaging Eq. (1) over time. The utilization of PLV as a measure of
functional connectivity in this study is motivated by these considera-
tions: 1) PLV is able to detect a weak synchronization regime between
two areas where the phases of the oscillatory signals in the areas are
coupled but the amplitudes of signals may not be (Hramov et al., 2005);
2) our aim was to identify biomarkers to predict VNS seizure outcome
in patients with epilepsy, and epilepsy has been historically associated
with excessive synchronization of large neuronal populations that can
be represented by the PLV (Soriano et al., 2017); and 3) we and other
investigators have demonstrated that the values of PLV are an efficient
and reliable measure for the functional connectivity in epilepsy and
other diseases (Dimitriadis et al., 2015; Elahian et al., 2017).

We calculated the PLV between all pairs of the MEG channels for
each run separately using the Fieldtrip toolbox (Oostenveld et al.,
2011). We segmented the rs-MEG data of each run into 3-seconds
epochs and calculated an average PLV across the epochs in 25 fre-
quency bins from 4Hz to 30 Hz in steps of 1 Hz. Then we computed an
average PLV in theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz)
frequency bands for each run.

The connectivity matrices, corresponding to the PLV between all
pairs of MEG channels in three frequency bands, were utilized to
compute the graph measures for each run separately. We calculated
three global graph measures – modularity, transitivity, and character-
istic path length (CPL) – which detect different aspects of functional
integration and segregation of the brain network. These graph measures
have been widely used to characterize the functional brain network of
healthy subjects and patients with neurological or psychiatric diseases
(Khazaee et al., 2015; Wu et al., 2017). Modularity is an important
graph measure that reflects the neural segregation within a network
and represents robustness of the network (Newman, 2006). A network
with modular configuration has segregated and non-overlapping com-
munities. Transitivity and the clustering coefficient are measures of
segregation of a network that represent strength of connectivity of
network nodes to their neighbors (Paldino et al., 2017). The clustering
coefficient of a node is defined as the fraction of the node's neighbors
that are also neighbors of each other (Watts and Strogatz, 1998). The
mean clustering coefficient for a network is defined as the average of
the clustering coefficients across all nodes. Transitivity is a normalized
variant of the clustering coefficient and does not suffer from the

Table 2
Demographic data for healthy control subjects.

Number of subjects 89
Age (year, mean ± SD) 28.6 ± 3.9
Female (n, %) 41 (46%)
Zygosity (n, MZ/DZ/not twin) 36/26/27

DZ, dizygotic twin; MZ, monozygotic twin; SD, standard deviation.

A. Babajani-Feremi et al. NeuroImage: Clinical 19 (2018) 990–999

992

https://www.humanconnectome.org/software/hcp-meg-pipelines
https://www.humanconnectome.org/software/hcp-meg-pipelines


problem that the mean clustering coefficient for a network may be
disproportionately influenced by nodes with small neighbors (Rubinov
and Sporns, 2010). The CPL of a network is the most commonly used
measure of functional integration and is defined as the average shortest
path length between all pairs of nodes in the network (Watts and
Strogatz, 1998).

Similar to our previous studies (Khazaee et al., 2015; Khazaee et al.,
2017; Khazaee et al., 2016), we calculated the graph measures after
applying an optimal threshold on the connectivity matrixes. By chan-
ging the ratio of the retained strong connections to the total number of
connections (defined as cost) from 0 to 1, we investigated finding an
optimal cost that maximizes the global cost efficiency (GCE) (Bassett
et al., 2009). The GCE is defined as the global efficiency minus cost.

∑ ∑= − = =
∑
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where EC is the global efficiency at cost C, Ei is the efficiency of node i,
N is the set of all nodes in the network, n is the number of nodes, dij is
the shortest path length (distance) between nodes i and j. It has been
shown that the GCE of an economical small-world network has a po-
sitive maximum value at an optimal cost. As shown in Fig. 1, we found
that a cost of approximately 10%, i.e. preserving only 10% of the
strongest connections, maximizes the GCE in our data, and thus we
applied this threshold on connectivity matrices before computing the
graph measures. We used the average values of the graph measures
across three runs in all analyses except in the test-retest reliability
analysis, in which we utilized three values of these measures corre-
sponding to three runs.

2.4. Statistical analysis for variation of graph measures in three groups

The values of three graph measures (CPL, transitivity, and mod-
ularity) in three frequency bands were statistically compared in three
groups (non-responders, responders, and controls). First, we compared
values of the graph measures in two groups of patients, responders and
non-responders. Since approximately one-half of responders and non-
responders performed MEG sessions under sedation, we considered
sedation status as a binary variable, and a possible confound, in the
statistical analysis for patients. For each of nine features (three graph
measures in three frequency bands), a two-way analysis of variance
(ANOVA) was performed by considering two factors: responding to VNS
and sedation status. We utilized the Kolmogorov-Smirnov (K–S) test and

found that the ANOVA errors for all graph measures had a normal
distribution (the alternative hypothesis of non-Gaussian distributions of
the errors was rejected with P > 0.05). However, the results of
Levene's test for investigating the equal variances of the graph measures
across two groups (responders and non-responders) revealed inequality
of the variances in some measures. Since the assumption for equality of
variance in ANOVA was not met for some graph measures, we decided
to use a non-parametric ANOVA that does not require this assumption.
To this end, we used a non-parametric ANOVA based on the bootstrap
resampling with replacement (n=10,000) approach. Since we tested
the significance difference of multiple features (three graph measures in
three frequency bands), we corrected for multiple comparison by using
the false discovery rate (FDR) approach (Benjamini and Hochberg,
1995). The critical value for the FDR was set at the 0.05 level and an
FDR-adjusted P-value< 0.05 was considered statistically significant.
Then we investigated a significant difference of the graph measures in
controls compared to responders or non-responders by using the Wil-
coxon signed-rank test (WSRT). We corrected the WSRT for multiple
comparison by again using the FDR approach. As before with the first
correction for multiple comparison, the critical value for the FDR was
set at the 0.05 level and an FDR-adjusted P-value<0.05 was con-
sidered statistically significant.

2.5. Heritability analysis of rs-MEG graph measures

We used a similar approach detailed in our previous study for her-
itability analysis of the network topology, derived from the rs-MEG data
for controls (Babajani-Feremi, 2017). The calculated global graph
measures, as described in Section 2.3, based on the PLV connectivity
matrices for 89 control subjects in three frequency bands (theta, alpha,
and beta), were used as traits in the heritability analysis. The control
subjects had three resting state runs, and an average of the graph
measures across these runs was used in the heritability analysis. We
used the variance components method implemented in the Sequential
Oligogenic Linkage Analysis Routines (SOLAR)-Eclipse software
package (http://www.nitrc.org/projects/se_linux) for heritability esti-
mation in the current study. In the variance components method, the
total phenotypic variance σp2 in a trait is given by:

= +σ σ σp g e
2 2 2 (3)

where σg2 and σe2 are the genetic variance due to the additive genetic
factors and the variance due to individual-specific environmental ef-
fects, respectively.

Fig. 1. The global cost efficiency (GCE) versus the ratio of the retained strong connections to the total number of connections, defined as cost, in a representative
patient. Note that a cost of approximately 10%, i.e. preserving only 10% of the strongest connections, maximizes the GCE.
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The rs-MEG global graph measures are traits in this study. Since a
complex trait, such as rs-MEG global graph measure, is associated with
a large number of environmental factors and genes with small additive
effects, a normal distribution with variance of σp2 can model the value
of the trait. Considering an assumption that all environmental effects
are uncorrelated among family members, the covariance matrix Ω for a
pedigree of individuals is defined as:

= +Φ σ I σΩ 2 . .g e
2 2

(4)

where Φ is the kinship matrix representing the pairwise kinship coef-
ficients among all individuals and I is an identity matrix. The MZ twins
share almost 100% of their genes and the differences between them are
due to the individual-specific environmental effects. The DZ twins and
other siblings share nearly 50% of their genes. The elements of 2Φ
kinship matrix are equal to 1, ½, and ½ corresponding to the MZ twin
pair, the DZ twin pair, and siblings, respectively. The proportion of the
phenotypic variance σp2 in a trait that is explained by the additive ef-
fects of genes is given by:

=h σ σ/g p
2 2 2

(5)

The variances σg2 and σe2 were estimated by comparing the covar-
iance matrix predicted by kinship with the observed phenotypic cov-
ariance matrix. The significance of heritability of the trait was de-
termined by testing the null hypothesis in which σg2 was constrained to
zero. We adjusted the phenotype values for five covariates: sex, age,
age2, age × sex, and age2× sex. Furthermore, we applied an inverse
Gaussian transformation to assure normality of the measurements. The
heritability value (h2) and the significance values (P-value) for h2 and
all covariates were reported. The significant P-value for h2 was set to
0.01 (uncorrected).

2.6. Reliability of graph measures

Reliability and consistency across all of the rs-MEG-based graph
measures is crucial to establish these measures as potential clinical
biomarkers. Knowledge of the run-to-run variability of the rs-MEG-
based graph measures is an important step toward utilizing these
measures in the classification of different categories of patients and
healthy controls. In this study, we investigated the test-retest reliability
of the rs-MEG-based graph measures by exploring their reproducibility
across three resting-state scan sessions, quantified with the intraclass
correlation coefficient (ICC) (Shrout and Fleiss, 1979). For calculation
of the ICC, we applied a two-way ANOVA to each graph measure cor-
responding to three rs-MEG scan sessions across either patients or
controls. The ICC was defined as:

=
−

+ −
ICC MS MS

MS k MS( 1)
b E

b E (6)

where k=3 is the number of rs-MEG sessions and MSb and MSE are the
between-subject mean square and mean square error, respectively. The
ICC has a value between 0 (no reliability) and 1 (the highest reliability).
Reliability of the graph measures was rated based on the values of ICC
as poor (ICC < 0.2), fair (0.2≤ ICC < 0.4), moderate (0.4≤ ICC <
0.6), good (0.6≤ ICC < 0.8), and excellent (0.8≤ ICC) (Landis and
Koch, 1977).

2.7. Classification of responders, non-responders, and controls

The calculated rs-MEG graph measures in theta, alpha, and beta
frequency bands were used as input features of a machine learning
approach to classify non-responders, responders, and controls. As de-
monstrated in the Results Section, the modularity and transitivity in
theta, alpha, and beta bands were significantly different in responders
compared to non-responders. However, the CPL was not significantly
different in two groups. Therefore, we did not use the CPL as a feature

in the classification. We trained and cross-validated four classifiers
using the modularity and transitivity as input features (two features) in
three frequency bands: three classifiers corresponding to each of three
frequency bands and one classifier corresponding to combination of six
features in three frequency bands.

We used the naïve Bayes classifier (NBC) in this study since this
classifier is popular, very simple, stable, and fast. Furthermore, the NBC
converges quicker than discriminative classifiers, such as logistic re-
gression, and it can be trained with a small dataset. Moreover, classi-
fication results of the NBC are not significantly changed by noise and
irrelevant features. Additionally, we found that the NBC could outper-
form other classifiers, e.g. support vector machines (SVM), in our pre-
vious study for classifying three groups of subjects based on graph
measures extracted from rs-fMRI data (Khazaee et al., 2017). We
trained and validated the NBC using the k-fold cross-validation (KCV;
k=10). We used the KCV in this study, which is one of the most widely
used resampling techniques (Anguita et al., 2009), and its estimates for
the cross-validation errors nearly agree with the true errors (Braga-Neto
and Dougherty, 2004). Performance of the NBC was evaluated using
accuracy, sensitivity, specificity, positive predictive value (PPV), and
area under receiver operating curve (AUC) measures as criteria.

The number of controls (n= 89) in this study is larger than the
number of VNS responders (n= 14) or non-responders (n= 9). Since
NBC with unequal group size may lead to biased accuracy of classifi-
cation, we used a similar approach detailed in our previous paper
(Hojjati et al., 2017) and randomly selected 14 out of 89 controls and
then evaluated performance of the NBC using those 14 selected con-
trols, 14 VNS responders, and 9 VNS non-responders. The 10-fold cross-
validation was repeated 1000 times by randomly selecting 14 out of 89
controls and the average accuracy, sensitivity, specificity, PPV, and
AUC were calculated.

3. Results

Of the 23 patients with epilepsy included in this study, seizures were
reduced by 50% or more at the last follow-up after VNS implantation in
14 (61%) of patients (VNS responders). The last follow-up visits of
patients were within 12 to 74months (30 ± 19 (mean ± SD) months)
after VNS implantation. The seizure reduction from pre- to post-VNS
treatment was significantly larger in responders than in non-responders
(P < 0.0001). In fact, averages of the seizure reduction were 80% and
10% across responders and non-responders, respectively. However,
there were no significant differences in gender, age at seizure onset, age
at VNS implantation, presence of an MRI lesion, epilepsy type, duration
of epilepsy before receiving VNS, follow-up, and pre-VNS seizure fre-
quency in the two groups (P > 0.16) (Table 1). The MEG data were
collected in approximately 50% of patients in each group while they
were sedated, and there was no significant difference between per-
centages of sedated patients in the two groups (P > 0.32).

3.1. Graph measures in three groups

The CPL, transitivity, and modularity in the three groups (non-re-
sponders, responders, and controls) were compared in Fig. 2 and
Table 3. We conducted ANOVA to examine differences in graph mea-
sures and the effect of sedation in two groups of patients (responders
and non-responders). Our results revealed that the modularity in theta,
alpha, and beta frequency bands were significantly larger in responders
than that in non-responders (P < 0.05, FDR-adjusted). In addition,
transitivity values in the three frequency bands were significantly
smaller in responders than that in non-responders (P < 0.05, FDR-
adjusted). Furthermore, there was no significant difference in CPL in
any of three frequency bands in responders vs. non-responders
(P > 0.11, FDR-adjusted). Moreover, the effect of sedation was not
significant in any of the graph measures in the three frequency bands
(P > 0.05).
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We investigated significant differences in the graph measures in
controls compared to responders or non-responders. Results of WSRT
for comparison of the graph measures in controls vs. responders and
controls vs. non-responders revealed that the modularity and transi-
tivity in all three frequency bands were significantly different
(P < 0.006, FDR-adjusted). In addition, the CPL in theta and beta
bands were significantly smaller in controls than responders or non-
responders (P < 0.05, FDR-adjusted). However, there were no sig-
nificant differences between the CPL in alpha in controls vs. responders
and controls vs. non-responders (P > 0.09, FDR-adjusted).

3.2. Heritability and reliability of graph measures

The heritability estimates for the graph measures in controls are
presented in Table 4. The transitivity in three frequency bands were
significantly heritable (h2 > 0.57, P < 0.006). The modularity in
alpha and beta bands and CPL in theta and alpha bands were also
significantly heritable (h2 > 0.51, P < 0.005). The covariates sex and
age and their interactions (sex, age, age × sex, age2, and age2× sex)
explained<9% of the phenotypic variance in the graph measures
(Table 4). The highest proportion of variance explained by covariates
was observed in CPL in the beta band at 8.8% where sex was the most
contributed covariate in this feature, though its contribution was not
significant (P > .03). In fact, all covariates were non-significant
(P > 0.01) in explaining the phenotypic variance in the graph mea-
sures. Additive genetic factors explained>29% of the residual phe-
notypic variance in graph measures (h2 > 0.29). The largest h2 was
observed in the transitivity in the alpha band (h2= 0.81, P < 10−6)
followed by transitivity in the beta band (h2= 0.77, P < 1.3×10−5).
The smallest h2 was observed in modularity in the beta band
(h2= 0.51, P < 0.005) among all significantly heritable measures.

The results of the reliability analysis for graph measures are listed in
Table 5. The average and median of the ICCs over nine graph features
(three graph measures in three frequency bands) and two groups of
subjects (controls and patients) were 0.75 and 0.85, respectively. These
observations indicate an overall good or excellent test-retest reliability
of the rs-MEG graph measures. In fact, 78% of the graph features in
patients had an ICC larger than 0.8, which showed an excellent relia-
bility of these measures. In addition,> 78% of the graph features in
controls had an ICC larger than 0.6, indicating good or excellent re-
liability of these measures in controls. We observed that the modularity
in alpha and beta bands were fairly reliable in patients, and the mod-
ularity in these bands had a good reliability in controls. The clinical
relevance of fair reliability of the modularity in alpha and beta bands in
patients may be utilization of the modularity in theta band, which has
good reliability, instead of using alpha and beta bands.

3.3. Classification results

We used the graph measures as input features of the NBCs to classify
three groups of subjects (i.e., non-responders, responders, and con-
trols). Since the values of CPL in all frequency bands were not sig-
nificantly different in VNS responders and non-responders, we did not
use CPL as an input feature of the NBCs. We trained and cross-validated
three classifiers using the modularity and transitivity in theta, alpha, or
beta bands. To investigate any improvement in performance of the
classifier by integrating features of three frequency bands, the fourth
classifier was trained and tested using all six features (two graph
measures in three frequency bands).

Performances of four NBCs are compared in Table 6. Accuracies of
the classifiers ranged from 71% to 95% which indicates a good per-
formance for all classifiers (accuracy by chance is 33% for a random
three group classifier). The average accuracies of three classifiers across
three groups in theta, alpha, and beta bands were 85%, 80%, and 82%,
respectively; thus, the NBC in theta band outperforms the NBCs in alpha
or beta bands. Integration of all features from two graph measures in
three frequency bands slightly improved accuracy of the fourth classi-
fier to 87%. In fact, although accuracy of the fourth classifier was larger
than that of NBC in theta band, the AUC of the NBC in theta was larger
than that of the fourth classifier. It is noteworthy that the fourth clas-
sifier consisting of six features provided maximum accuracy, though
this classifier has a larger complexity (with six input features) and less
generalization compared to the NBC in the theta band (with only two
features). Increasing the number of features may result in increasing the
accuracy; however, it increases complexity and decreases generality of
the model.

By looking at the performance of the NBC in theta band in Table 6 it

Fig. 2. Comparison of the values of the characteristic path length, transitivity,
and modularity in three frequency bands in non-responders, responders, and
controls.
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can be observed that this classifier provided a good specificity (≥78%)
in three groups and sensitivity (≥79%) in VNS responders and controls.
However, this classifier had a moderate sensitivity of 56% in classifi-
cation of VNS non-responders in that 4 out of 9 non-responders were
identified as VNS responders. It is interesting to note that all mis-
classified non-responders and controls were identified as responders by
this classifier. This observation may indicate that VNS responders have
an intermediate brain network between controls and non-responders.
This is also in concordance with results in Fig. 2, where the graph
measures (in all frequency bands) in VNS responders have intermediate
values between those in non-responders and controls. These observa-
tions may provide some evidence that similarity of the network to-
pology of a patient to that of healthy controls can be an indication for a
higher response to VNS treatment.

4. Discussion

We investigated whether the rs-MEG network topology before VNS
implantation can be used to predict efficacy of VNS treatment in pa-
tients with drug resistant epilepsy. We used PLV as a measure of
functional connectivity and calculated three graph measures (mod-
ularity, transitivity, and CPL) in responders, non-responders, and con-
trols. To investigate whether the rs-MEG graph measures can be con-
sidered as potential biomarkers of the network topology, we performed
heritability and test-retest analyses on these measures. We found that
the graph measures were significantly heritable and had an overall
good test-retest reliability, and, thus, they may have a biological basis
and can be used as biomarkers. We found that the modularity and
transitivity were significantly different in VNS responders and non-re-
sponders. We also observed that the modularity and transitivity in
controls were significantly different than that in patients. By utilizing

Table 3
The values of three graph measures - characteristic path length, transitivity, and modularity- in non-responders, responders, and controls.

Values of graph measures in three frequency bands ANOVA in responders and non-responders

Effect of responding to VNS Effect of sedation

Controls Responders Non-responders (i/m) Q P-value FDR-adjusted
P-value

P-value

Characteristic path length Theta 0.04 ± 0.00 0.05 ± 0.01 0.09 ± 0.07 0.039 0.089 0.115 0.249
Alpha 0.05 ± 0.01 0.05 ± 0.01 0.09 ± 0.09 0.044 0.142 0.150 0.234
Beta 0.04 ± 0.00 0.04 ± 0.01 0.07 ± 0.05 0.050 0.150 0.150 0.595

Transitivity Theta 0.39 ± 0.01 0.44 ± 0.03 0.55 ± 0.14 0.017 0.023 0.044 0.212
Alpha 0.41 ± 0.03 0.43 ± 0.04 0.53 ± 0.13 0.011 0.022 0.044 0.051
Beta 0.36 ± 0.02 0.40 ± 0.03 0.50 ± 0.13 0.033 0.030 0.044 0.110

Modularity Theta 0.59 ± 0.01 0.56 ± 0.02 0.50 ± 0.07 0.022 0.029 0.044 0.083
Alpha 0.60 ± 0.02 0.55 ± 0.03 0.48 ± 0.05 0.006 0.002 0.014 0.054
Beta 0.58 ± 0.02 0.54 ± 0.03 0.50 ± 0.05 0.028 0.029 0.044 0.509

These graph measures were calculated based on the PLV, as a measure of rs-MEG functional connectivity, in theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz)
frequency bands. The P-values correspond to comparisons of values of the graph measures in two groups of patients (i.e. responders and non-responders). A two-way
non-parametric ANOVA based on the bootstrap resampling with replacement (n= 10,000) approach was conducted by considering two factors: responding to VNS
and sedation status. Correction for multiple comparison was performed using the FDR approach. An FDR-adjusted P-value<0.05 was considered statistically
significant (bold values).

Table 4
The heritability estimates for the graph measures in controls. The graph measures in bold font were significantly heritable (P < 0.01).

h2 h2 (p-value) Covariates

p-value Variance explained (%)

Age Age2 Sex Age×Sex Age2× Sex

Characteristic path length theta 0.54 0.004 0.45 0.42 0.72 0.16 0.71 0.0
alpha 0.54 0.002 0.50 0.86 0.15 0.02 0.07 4.2
beta 0.36 0.045 0.80 0.15 0.03 0.07 0.09 8.8

Transitivity theta 0.57 0.006 0.39 0.89 0.48 0.60 0.24 0.0
alpha 0.81 7.0×10−7 0.92 0.70 0.22 0.19 0.27 0.0
beta 0.77 1.2×10−5 0.11 0.79 0.29 0.74 0.21 2.6

Modularity theta 0.29 0.116 0.04 0.66 0.59 0.12 0.29 0.6
alpha 0.54 0.002 0.74 0.47 0.46 0.03 0.84 6.4
beta 0.51 0.005 0.32 0.01 0.35 0.22 0.24 6.8

The column “Variance explained (%)” represents the explained percentage of the phenotypic variance by the covariates (Age, Age2, Sex, Age × Sex, and Age2× Sex).
Additive genetic factors explained the h2 portion of the phenotypic residual variance. A P-value (h2) < 0.01 was considered statistically significant (bold values).

Table 5
Test-retest reliability analysis of the graph measures using the ICC approach.

Characteristic path length Transitivity Modularity

Theta Alpha Beta Theta Alpha Beta Theta Alpha Beta

Controls 0.64 0.85 0.59 0.64 0.85 0.87 0.53 0.75 0.79
Patients 0.95 0.91 0.90 0.95 0.91 0.87 0.85 0.28 0.31
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the modularity and transitivity as input features of the NBCs, we clas-
sified non-responders, responders, and controls with an accuracy of
87%.

Previous electrophysiological studies utilized EEG and investigated
reorganization of the brain network after VNS implantation (Fraschini
et al., 2014; Fraschini et al., 2013; Bodin et al., 2015). Fraschini et al.
used the phase lag index (PLI) between EEG channels after implantation
of VNS, and reported a reorganization of the brain network toward a
more integrated architecture in responders (Fraschini et al., 2014).
Another study investigated the impact of VNS on the synchronicity of
interictal EEG rhythms using PLI, and found that VNS responders had
significantly smaller synchronization than non-responders (Bodin et al.,
2015). Results of these studies provide some evidence that there may be
a reorganization of the brain network in responders after VNS treat-
ment; however, these studies have not addressed prediction of efficacy
of VNS using baseline (i.e. pre-VNS implantation) measurements. To
our knowledge, the current study is the first to investigate prediction of
VNS seizure outcome using MEG data acquired before implantation of
VNS.

Our results revealed that patients with epilepsy (both VNS re-
sponders and non-responders) presented higher transitivity and lower
modularity compared to healthy control subjects. Furthermore, this
lower segregation pattern (higher transitivity and lower modularity)
was also observed in VNS non-responders as compared to responders.
The lower segregation of the brain network in patients with epilepsy
may indicate a less specialized network in these patients, and describe a
network with limited capacity for containing functional processes in
specific communities. Brain networks in patients with epilepsy are less
robust, thus any module in these networks can be exposed to disrup-
tions from other communities in the brain, which increases the risk of
spreading perturbations more easily across brain regions. Lower tran-
sitivity and higher modularity in patients responding to VNS, less than
that of patients not responding to VNS, may be evidence of effectiveness
of VNS in patients with a brain network similar to the network of
healthy control subjects.

Our findings are consistent with previous studies reporting func-
tional abnormalities in brain networks of patients with epilepsy com-
pared to healthy control subjects. For instance, Garcia-Ramos et al.
observed that the functional brain network in patients with mesial

temporal lobe (mTLE) epilepsy presented lower segregation than
healthy control subjects, which may be an indication of decreasing
robustness and increasing disruption in brain networks of patients with
epilepsy (Garcia-Ramos et al., 2016). Another study reported a lower
modularity and higher global efficiency in TLE patients compared to
healthy controls (Doucet et al., 2015). Although several previous stu-
dies investigated alteration of the network topology in patients with
epilepsy, there is only one study that investigated the effect of VNS
using graph measures, and reported shifting back from an abnormal
brain network toward more a normal network in patients responding to
VNS (Fraschini et al., 2014). Although it is not possible to directly
compare their results with ours, since they used post-implantation VNS
data and we utilized pre-implantation VNS data, our results are in
agreement with their findings in terms of the effectiveness of VNS in
patients with a more complex network similar to the network of healthy
control subjects.

A recent study utilized pre-VNS implantation rs-fMRI data and a
machine learning approach for classifying responders and non-re-
sponders to VNS treatment (Ibrahim et al., 2017). This study utilized
correlation coefficients between the time series of the left and right
thalami to the ACC and left insula as input features of a SVM classifier,
and reported an accuracy of 86% in a two group classification (VNS
responders and non-responders). The current study utilized a totally
different approach, i.e. we used rs-MEG instead of rs-fMRI, and network
topology instead of the raw connectivity, and classified three groups of
subjects (non-responders, responders, and controls) with an accuracy of
87%. It is noteworthy that the accuracy reported in (Ibrahim et al.,
2017) is similar to that of the current study, but we had a more strin-
gent condition of a three-group classification (accuracy by chance of
33%) compared to a two group classification (accuracy by chance of
50%) in (Ibrahim et al., 2017).

Our results showing heritability of the modularity, transitivity, and
CPL (h2 > 0.51) are in agreement with previous studies demonstrating
that the network topology is heritable (Sinclair et al., 2015)
(h2= 0.42–0.60). Heritability of rs-fMRI functional connectivity in
default-mode network and other resting-state networks has also been
demonstrated (Fu et al., 2015) (h2 ~ 0.4). Heritability of functional
connectivity has been reported in previous EEG (Schutte et al., 2013)
and MEG (Demuru et al., 2017; Colclough et al., 2017) studies. Our

Table 6
Comparison of performances of four NBCs in classifying non-responders, responders, and controls.

Confusion matrix

Input features Actual class Predicted class Sensitivity Specificity PPV Accuracy AUC

n type NR R C

Classifier 1 2 Transitivity and modularity in theta Non-responder (NR) 9 5 4 0 0.56 0.94 0.75 0.85 0.86
Responder (R) 14 2 11 1 0.79 0.78 0.68 0.78 0.85
Control (C) 14 0 1 13 0.91 0.94 0.90 0.93 0.97
Weighted average 0.78 0.88 0.78 0.85 0.90

Classifier 2 2 Transitivity and modularity in alpha Non-responder (NR) 9 5 4 0 0.56 0.89 0.63 0.81 0.83
Responder (R) 14 3 8 3 0.60 0.78 0.62 0.71 0.83
Control (C) 14 0 1 13 0.91 0.88 0.83 0.89 0.96
Weighted average 0.71 0.84 0.70 0.80 0.88

Classifier 3 2 Transitivity and modularity in beta Non-responder (NR) 9 1 11 2 0.44 0.97 0.87 0.85 0.82
Responder (R) 14 0 2 12 0.80 0.70 0.62 0.74 0.73
Control (C) 14 5 4 0 0.86 0.90 0.84 0.88 0.90
Weighted average 0.73 0.84 0.76 0.82 0.82

Classifier 4 6 Transitivity and modularity in theta, alpha, and beta Non-responder (NR) 9 5 4 0 0.57 0.94 0.76 0.85 0.83
Responder (R) 14 2 11 1 0.81 0.80 0.70 0.80 0.84
Control (C) 14 0 1 13 0.94 0.96 0.93 0.95 0.98
Weighted average 0.80 0.89 0.80 0.87 0.89

PPV, positive predictive value; AUC, area under receiver operating curve.
Note that the number of controls (n= 89) was larger than the number of responders (n= 14) or non-responders (n= 9). To prevent any bias of NBCs with unequal
group size, 14 out of 89 controls were randomly selected, then performance of the NBCs were evaluated using those 14 selected controls, 14 responders, and 9 non-
responders. The cross-validation was repeated 1000 times by randomly selecting 14 out of 89 controls and the average number of predicted class, accuracy,
sensitivity, specificity, PPV, and AUC across these repetitions are listed in the table.
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heritability results are in agreement with the previous MEG studies,
although approaches used by the current study and those of previous
studies were different in that the previous studies adopted either an
averaging across all pair-wise connectivity values, (Colclough et al.,
2017) or investigated whether the pattern of functional or effective
connectivity of one monozygotic twin could be utilized to identify the
co-twin (Demuru et al., 2017).

In summary, results of the current study and previous studies de-
monstrated heritability of the network topology, and thus the graph
measures derived from rs-MEG functional connectivity may have a
biological basis as heritable traits. Establishing the heritability of the rs-
MEG graph measures provides critical information necessary before
these measures can be considered as biomarkers. Furthermore, we de-
monstrated that rs-MEG-based graph measures are heritable and that
values of these biomarkers were significantly different in VNS re-
sponders vs. non-responders. These findings motivate future research
for identification of specific candidate genes that may affect a patient's
response to VNS treatment.

Our results indicating an overall good test-retest reliability
(ICC > 0.6) of the MEG graph measures are in agreement with pre-
vious MEG studies (Jin et al., 2011; Deuker et al., 2009). Jin et al. in-
vestigated the reliability of rs-MEG nodal network metrics using mutual
information (MI) as a measure of functional connectivity between MEG
sensors in theta, alpha, beta, and gamma frequency bands (Jin et al.,
2011). They reported that the test-retest reliabilities of these metrics
ranged from a poor to good level depending on the frequency bands and
metrics. Another MEG study investigated the test-retest reliability of
graph measures derived from MEG data recorded during an n-back
working memory task (Deuker et al., 2009). This study utilized MI as a
measure of functional connectivity between MEG sensors in different
frequency bands and reported a good reliability for most graph metrics
in the n-back task (ICC~ 0.62). Previous rs-fMRI functional con-
nectivity studies also investigated reliability of graph measures and
reported a poor to good test-retest reliability for these measures (Liao
et al., 2013). In summary, results of our study and previous studies
indicate reliability and consistency of the rs-MEG-based graph mea-
sures; thus, these measures may be considered as potential clinical
biomarkers.

4.1. Limitations

We recognize the limitations of this study, including a relatively
small sample size of VNS responders and non-responders. Although the
sample size of patients is small, this study drew from a larger sample of
patients (n= 121) who underwent VNS implantation, and is the only
study to predict efficacy of VNS using baseline (i.e. pre-VNS im-
plantation) rs-MEG. Furthermore, the sample sizes in previous EEG and
fMRI studies for investigating the effect of VNS were also small
(n= 10–21) (Fraschini et al., 2014; Fraschini et al., 2013; Bodin et al.,
2015; Ibrahim et al., 2017). Moreover, we assessed performance of the
NBC using the k-fold cross-validation strategy, which is one of the most
widely used resampling techniques (Anguita et al., 2009), and its esti-
mates for cross-validation errors are in fair agreement with the true
errors (Braga-Neto and Dougherty, 2004). However, we acknowledge
that performance of the NBC classifier should also be evaluated in the
future on new data that is entirely separate from the training dataset.
Another limitation of the current study is that some patients underwent
sedation. It is expected that sedation affects the functional connectivity
(Barttfeld et al., 2015). However, we think that the effect of sedation is
minimized in our study since: 1) sedated and non-sedated patients were
distributed evenly in VNS responders and non-responders groups; and
2) we conducted ANOVA to examine the effect of sedation in two
groups of patients (VNS responders and non-responders) and found that
this effect was not significant in any of the graph measures in three
frequency bands (P > 0.05). Another limitation of this study is that the
controls were older than the patients, and thus our finding for different

values of the rs-MEG graph measures in controls and patients may not
be accurate. However, difference in age range of controls and patients
does not affect the main findings of this study, specifically: 1) MEG
graph measures are heritable (in controls) and they have potential to
serve as clinical biomarkers; and 2) transitivity and modularity, as rs-
MEG graph measures, are different in VNS responders and non-re-
sponders, and values of these measures in baseline (i.e. before VNS
implantation) can predict VNS outcome.

5. Conclusions

VNS is a low-risk surgical option for patients with drug resistant
epilepsy. So far, it is impossible to predict which patients will respond
when initiating VNS therapy, and to what extent they will respond.
There is a persistent need to find reliable biomarkers that can identify
patients who are most likely to respond to VNS and could benefit from
this intervention. We found MEG-based network topologies were heri-
table phenotypes and reliable biomarkers. Our results revealed that
transitivity and modularity, calculated using the pre-VNS implantation
rs-MEG data, were significantly different in VNS responders compared
to non-responders. In addition, transitivity and modularity may be used
as biomarkers and input features of a machine learning approach to
predict which patients are most likely to respond to VNS.
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