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Abstract: The accumulation of misfolded or unfolded proteins in endoplasmic reticulum (ER) lu-
men results in the activation of an adaptive stress process called the unfolded protein response 
(UPR). As the most conserved signaling branch of the UPR, Inositol-requiring enzyme 1 (IRE1) 
possesses both Ser/Thr kinase and RNase activities operating as major stress sensors, mediating 
both adaptive and pro-apoptotic pathways under ER stress. Over the last three decades, a mounting 
body of evidence has shown that IRE1 signaling dysfunction is involved in the pathology of various 
neurological disorders. Targeting this pathway has emerged as a promising therapeutic strategy 
against these diseases. In this review, we provide a general overview about the expression and 
physiological function of IRE1 signaling and its pathophysiological roles in the central nervous 
system diseases. 
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1. INTRODUCTION 

 Endoplasmic reticulum (ER) is an important subcellular 
organelle for proper folding and sorting of proteins. The 
function of the ER can be disrupted by various physiological 
and pathological stimuli, including glucose deprivation, per-
turbation of calcium homeostasis, and exposure to free radi-
cals [1]. Under such conditions, the accumulation of un-
folded proteins or disturbance of Ca2+ homeostasis in the ER 
would trigger ER stress-induced apoptosis [2]. Inositol-
requiring protein 1 (IRE1) has been long believed to be a 
proximal ER stress sensor and plays an important role in 
transducing the stress signals [3]. However, when cells are 
exposed to excess levels of stimuli causing ER stress, the 
apoptotic IRE1 signaling pathway is activated [4]. Over the 
last three decades, a mounting body of evidence has shown 
that IRE1 signaling dysfunction is involved in the pathology 
of various neurological disorders, such as Alzheimer’s dis-
ease (AD) [5], Parkinson’s disease (PD) [6], Huntington’s 
disease (HD) [7], ischemic stroke [8], spinal cord injury [9] 
and glioma [10]. In this review, we provide a general over-
view of IRE1 signaling in these central nervous system dis-
eases. In the first section, we describe the localization, struc  
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ture of IRE1 and the function of IRE1 signaling pathways 
under ER stress. In the second section, we summarize the 
roles and possible mechanisms of IRE1 signaling pathways 
in different neurological disorders. 

2. ER STRESS AND IRE1 

 ER is the main subcellular organelle in eukaryotic cells, 
which plays essential roles in protein folding and secretion, 
in addition to lipid synthesis and calcium storage [11]. A 
wide range of external factors, such as ischemia-reperfusion 
injury, oxidative stress, calcium disturbances and imbal-
ances, and the inhibition of protein glycosylation, can disturb 
ER homeostasis, leading to ER stress [12-14]. To alleviate 
ER stress, cells activate an adaptive signaling cascade known 
as the unfolded protein response (UPR), which aims to re-
establish ER proteostasis by decreasing the load of misfolded 
proteins [15]. The UPR is essentially initiated by three 
classes of sensors, (i) PERK (PKR-like ER kinase), (ii) IRE1 
and (iii) ATF6 (activating transcription factor 6). The activa-
tion mechanism of these proteins has not been totally re-
solved but it is known that certain molecular chaperones of 
ER lumen, e.g. glucose-regulated protein (GRP78), are in-
volved in the activation of these effector proteins. Among 
the three UPR branches, IRE1, a serine-threonine kinase and 
endoribonuclease located at the ER membrane, is the most 
conserved ER stress sensor [16]. It has two isoforms: IRE1α 
and IRE1β; IRE1α is ubiquitously expressed in most cells 
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and tissues while IRE1β is limited to gastrointestinal epithe-
lial cells [3]. IRE1 comprises a serine/threonine protein 
kinase domain and an endoribonuclease (RNase) domain and 
is activated upon dimerization and autophosphorylation. 

3. IRE1 SIGNALING PATHWAYS 

 At the initial phase of ER stress, IRE1 is bound by 
GRP78 and is subsequently activated by dimerization fol-
lowing separation from GRP78. The activated IRE1 cleaves 
a 26-nucleotide intron from the coding region of the tran-
scription factor X box-binding protein 1 (XBP1) [17]. This 
unconventional splicing event leads to a shift of the coding 
reading frame of the mRNA, resulting in the expression of a 
more stable and active transcription factor, termed XBP1s, 
which is also an indicative activation of UPR [17, 18]. Sub-
sequently, XBP1s translocates into the nucleus and binds to 
the promoters of its target genes such as encoding molecular 
chaperones and proteins contributing to ER-associated deg-
radation. 

 Although the IRE1-XBP1 pathway has neuroprotective 
effects, activated IRE1 also mediates the crosstalk with other 
stress pathways as a scaffold by binding to tumor necrosis 
factor receptor associated factor 2 (TRAF2), forming a com-
pound which separates TRAF2 from pro-caspase-12. This 
activates caspase-12 and JUN N-terminal kinase (JNK), 
which are closely associated with autophagy and apoptosis 
[19]. Caspase-12, specific to apoptosis induced by ER stress, 
leads to cell apoptosis through the activation of downstream 
caspase-9 and caspase-3 as well as the induction of DNA 
fragmentation [20-22]. JNK can phosphorylate and inhibit 
the anti-apoptotic activity of Bcl-2 and Bcl-xL or activate the 
pro-apoptotic function of Bim and Bid [23, 24]. In addition, 
the RNAase activity of IRE1 is also involved in the degrada-
tion of mRNAs, rRNAs and microRNAs through a process 
called regulated IRE1-dependent decay (RIDD), which se-
lectively degrades certain mRNAs encoding for proteins 
located in the ER and then initiates apoptosis [25, 26]. 

4. IRE1 SIGNALING IN CENTRAL NERVOUS 
SYSTEM DISEASES 

 IRE1 signaling has been extensively studied in the past 
decades and its dysfunction in the brain is linked to the oc-
currence of several central nervous system (CNS) diseases. 
As summarized in Table 1, the impairment of IRE1-XBP1 
branch plays a role in the development of many neurological 
disorders, such as AD, PD, HD, post-traumatic stress disor-
der (PTSD), glioma, and spinal cord injury. Meanwhile, the 
pro-apoptotic function of IRE1 signaling has been shown to 
be involved in ischemic stroke and epilepsy. Thus, IRE1 
signaling may play quite different roles in CNS diseases, as 
discussed in more detail below. 

4.1. IRE1 Signaling in Alzheimer’s Disease 

 AD is a progressive neurodegenerative disorder that af-
flicts almost 480 billion individuals worldwide. Pathologi-
cally, the clinical manifestation of AD is characterized by 
two hallmarks: intracellular aggregates of tau in the neurofi-
brillary tangles (NFTs) and extracellular aggregates of β-
amyloid (Aβ) in the senile plaques [27, 28]. In the hippo-

campus of AD patients, it was found that a large quantity of 
phosphorylated IRE1 accumulated in granules associated 
with granulovacuolar degeneration in pyramidal neurons 
[29]. Higher XBP1 levels were also observed in cortical ar-
eas of patients with AD than those in normal subjects [30]. 
In addition, a latest study which was assessed among 276 
AD patients and 254 matched healthy individuals in China 
demonstrated a possible association between polymorphism 
in XBP1 promoter and risk of AD development. There was a 
significant difference in genotype and allele frequencies be-
tween AD patients and control subjects, suggesting that the -
116C/G polymorphism of XBP1 might be a risk factor to 
develop AD in the Chinese population [31]. In light of the 
common belief that the abnormal deposition of both Aβ and 
tau proteins is critical for the pathobiology of AD, it has 
been shown that targeting IRE1 signaling represents a sig-
nificant pathway for protection against all cardinal features 
of AD pathology, leading to reduced amyloid deposits, im-
proved cognitive and synaptic function, and attenuated as-
trogliosis [5]. Moreover, growing evidence indicates that 
XBP1s prevents the Aβ neurotoxicity and phosphorylated 
tau in neurons and it has the ability to improve cognitive 
impairment in AD mouse models [5, 32]. In both drosophila 
and mammalian cell culture models of AD, XBP1 overex-
pression down-regulates ryanodine receptors 3 expression, 
which in turn prevents free Ca2+ accumulation in the cytosol, 
a key cellular mediator of Aβ cytotoxicity [33, 34]. In con-
trast, silencing endogenous XBP1 using small interfering 
RNA results in a decrease in cell viability for Aβ toxicity 
[32]. Although these observations suggest that IRE1 signal-
ing may participate in AD, its direct function to AD patho-
genesis remains to be established. 

4.2. IRE1 Signaling in Parkinson’s Disease 

 PD, following AD, is the second most common neurode-
generative disease and affects about 1% of the elderly popu-
lation [35]. PD is typically characterized by the selective loss 
of dopaminergic neurons in the substantia nigra pars com-
pacta (SN) and the accumulation of α-synuclein in Lewy 
bodies [36, 37]. Growing evidence from studies in human 
PD, genetic or toxicological models, indicates that ER Stress 
is an important contributor to the pathogenic processes,  
ultimately leading to aggregated protein accumulation  
and dopaminergic neurons loss in PD [38]. In the disease 
model induced by unilateral intrastriatal injection of 6-
hydroxydopamine (6-OHDA), developmental ablation of 
XBP1 protected dopaminergic neurons against a PD-
triggering neurotoxicity. This survival effect was accompa-
nied by the up-regulation of UPR-responsive chaperones 
calreticulin and the disulfide isomerase ERp72 in dopa-
minergic neurons of the SN, but not in other brain areas [39]. 
Similarly, in Drosophila and mouse models of AD, a mild 
dose of the ER stress agent tunicamycin selectively induced 
activation of the IRE1-XBP1 pathway but not pro-apoptotic 
factor CHOP expression, providing protection for dopa-
minergic neurons against 6-OHDA [40]. By contrast, knock-
down of XBP1 in nigral dopaminergic neurons of adult mice 
triggered chronic ER stress with CHOP induction, which led 
to spontaneous neurodegeneration [39]. In the same study, 
the potential therapeutic effect of targeting XBP1 in a neuro-
toxin-based model of PD was explored using a gene therapy 
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Table 1. Published studies on expression and effects of IRE1 signaling in central nervous system diseases. 

Disease Name Study Models Molecules in IRE1 
Signaling Analyzed 

Conclusions Refs. 

Alzheimer’s dis-
ease (AD) 

Clinical patients IRE1-XBP1 Phosphorylated IRE in hippocampal neurons and XBP1 in cortical 
areas are overexpressed in AD patients; 

The -116C/G polymorphism in XBP1 promoter is identified as a 
risk factor to develop AD in the Chinese population. 

[29-
31] 

 In-vivo mouse model IRE1-XBP1 Targeting IRE1 leads to reduced amyloid deposits, improved cogni-
tive and synaptic function, and attenuated astrogliosis; 

XBP1s prevents the Aβ neurotoxicity. 

[5, 32] 

 In-vitro cell culture  Protective activity of XBP1 can be mediated by the downregulation 
of ryanodine receptors 3. 

[32] 

Parkinson’s dis-
ease (PD) 

In-vivo drosophila, rat 
and mouse model 

IRE1-XBP1 XBP1 KO triggers the degeneration of dopaminergic neurons; 
XBP1 transgene promotes dopaminergic neurons and neural stem 

cells survival and improves the symptoms of PD. 

[39-
42] 

Huntington’s 
disease (HD) 

Clinical patients IRE1-XBP1 phosphorylated IRE1 is increased in striatal tissues of HD patients; 
XBP1 is overexpressed in the striatum of HD patients. 

[7, 44] 

 In-vitro cell culture IRE1-TRAF2 Activation of IRE1-TRAF2 stimulates Htt aggregation and induces 
death of neuronal cells. 

[44] 

Ischemic stroke In-vivo rat model IRE1-TRAF2 
IRE1-XBP1 

IRE1-TRAF2-JNK/p38 pathway mediates ischemia-reperfusion-
related neuronal injury; 

XBP1 and GRP78 are overexpressed in injured brain regions. 

[8, 50, 
53, 55] 

Post-traumatic 
stress disorder 

(PTSD) 

In-vivo rat model IRE1-XBP1 IRE1-XBP1 pathway is actived in the mPFC and locus coeruleus of 
PTSD models; 

IRE1 inhibitor treatment attenuates neuronal apoptosis in response 
to single-prolonged stress stimulation. 

[58, 
60, 61] 

Glioma Clinical patients IRE1-XBP1 XBP1 is overexpressed in human glioma tissues. [66] 

 In-vivo mouse model IRE1-XBP1 IRE1 KO reduces tumor growth and angiogenesis through inhibi-
tion of hypoxia or glucose deprivation induced VEGF-A expression. 

[62, 
63] 

 In-vitro cell culture IRE1-XBP1 IRE1 KO reduces hypoxia or glucose deprivation induced VEGF-A 
expression; 

IRE1 KO relieves extracellular matrix protein SPARC, sustains 
circadian clock protein PER1 and then decreases tumor growth, 

infiltration and invasion; 
XBP1 KO protects glioma cells against oxidative stress via up-

regulating catalase. 

[63-
65] 

Mesial temporal 
lobe epilepsy 

(MTLE) 

Clinical patients IRE1-TRAF2 IRE1-TRAF2-ASK1-JNK pathway is activated in temporal neocor-
tex of MTLE; 

XBP1 is overexpressed in MTLE hippocampi. 

[67, 
68] 

Amyotrophic 
lateral sclerosis 

In-vivo mouse model IRE1-XBP1 XBP1 KO enhances clearance of the mutant superoxide dismutase-1 
protein via autophagy. 

[69] 

Spinal cord in-
jury (SCI) 

In-vivo mouse model IRE1-XBP1 XBP1 deficiency attenuates locomotor recovery after SCI whereas 
XBP1s gene transfer into the SCI site enhances locomotor recovery. 

[9] 

Cerebral malaria In-vivo mouse model IRE1-XBP1 IRE1-XBP1 pathway is activated in experimental cerebral malaria 
and then protects against neuronal cell death. 

[70] 

Abbreviations: IRE1, Inositol-requiring enzyme 1; XBP1, X box-binding protein 1; Aβ, β-amyloid; KO, knock out; TRAF2, tumor necrosis factor receptor associated factor 2; Htt, 
huntingtin; JNK1/2, JUN N-terminal kinase 1/2; GRP78, glucose regulated protein; mPFC, medial prefrontal cortex; VEGF-A, vascular endothelial growth factor-A; ASK1, Apopto-
sis signal-regulating kinase 1. 
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approach. XBP1 active form (XBP1s) was delivered into the 
SN of adult mice using adeno-associated viral vectors 
(AAVs), conferring neuroprotective effect in dopaminergic 
neurons against 6-OHDA-mediated neurotoxicity [39]. In 
another study, the XBP1s transgene also prevented the de-
generation of striatal dopaminergic neurons in a 1-methyl-4-
phenyl-1,2,3,6-tetrahydro-pyridine-induced mouse model, 
which is one of the most commonly used PD models [41]. In 
addition to neuroprotective effect in dopaminergic neurons, a 
recent study also suggested that XBP1 transfection increased 
neural stem cells survival and improved behavior in a rote-
none-induced rat model of PD [42]. 

4.3. IRE1 Signaling in Huntington’s Disease 

 HD is the most common inherited neurodegenerative 
disease characterized by motor abnormalities, and onset of 
psychiatric symptoms and dementia in early- to mid-adult 
life. The mutation responsible for HD leads to an abnormally 
long polyglutamine (polyQ) expansion in the huntingtin 
(Htt) protein, which confers one or more toxic functions to 
mutant Htt leading to neuronal loss in the striatum [43]. Re-
cent clinical research showed that the expression levels of 
phosphorylated IRE1 were increased in striatal tissues of HD 
patients compared with controls by Western blot analysis 
[44]. Further evidence supported that the activity of IRE1-
TRAF2 is necessary to stimulate Htt aggregation and induce 
neuronal cells death in vitro [44]. In addition, another study 
reported elevated protein expression of XBP1s in the stria-
tum of HD patients compared with control subjects, while no 
detectable changes were observed in cortex and cerebellum 
samples from the same individuals [7]. Interestingly, the 
authors provided correlative evidence indicating that XBP1 
deficiency might improve motor performance and neuronal 
survival, which is in contrast to its traditional role in CNS 
diseases pathology. These beneficial effects of XBP1 defi-
ciency could be in part explained by the upregulation of 
FoxO1-dependent autophagy associated with reduced accu-
mulation of mHtt aggregates in the striatum, but it is more 
likely that continuous improved degradation of the soluble 
forms of the protein prevents its organization into aggregates 
in these animals [7, 22]. Thus, additional research is war-
ranted to better understand the complex role of IRE1 signal-
ing in HD pathogenesis. 

4.4. IRE1 Signaling in Ischemic Stroke 

 Acute ischemic stroke is among the leading causes of 
death and long-term disability in elders [45, 46]. Ischemia 
and hypoxia resulting from arterial occlusion or hypotension 
in patients lead to major damage to the brain with glucose 
deprivation, which causes endoplasmic ER stress and neu-
ronal death [47-49]. Recent research suggested that neuronal 
ischemic injury increased cell cytoxicity and apoptosis, 
which occurred via the activation of IRE1-TRAF2 pathway 
and downstream kinases which further activated JNK and 
p38 MAPK [50-52]. However, additional research showed 
that IRE1 signaling also exerted neuroprotective effect in a 
rat model of focal cerebral ischemia by middle cerebral ar-
tery occlusion. A marked increase in the expression of XBP1 
and GRP78 mRNA was found both in the striatum and cor-
tex of injured brain regions [8, 53, 54]. Similarly, another 

study using immunofluorescence staining also showed the 
temporal profile of GRP78 expression in ischemic neurons 
[55]. These findings support that IRE1-XBP1 pathway seems 
to be pro-survival in ischemic stroke by activating the tran-
scription offer chaperones. However, more robust clinical 
and scientific studies are required to reveal the relationship 
between IRE1 signaling and ischemic stroke and also to de-
termine the functional roles of correlative IRE1 pathways in 
the pathogenesis of ischemia/reperfusion injury. 

4.5. IRE1 Signaling in Post-Traumatic Stress Disorder 

 PTSD is a delayed and long-term psychiatric disorder 
that may develop after exposure to a serious life-threatening 
trauma [56, 57]. PTSD shows four Cardinal symptoms: re-
experiencing of the traumatic event, numbness, negative 
alteration in cognition and mood, and symptoms of avoid-
ance and hyperarousal [58, 59]. The medial prefrontal cortex 
(mPFC) is considered as the critical area of cognition about 
stress information. Recent studies have shown that there 
were abnormal expansion of ER and upregulations of IRE1 
and XBP1 in the mPFC of rats exposed to single-prolonged 
stress (SPS), which is a reliable model of PTSD [58, 60], 
suggesting that the activation of the IRE1-XBP1 pathway is 
involved in the pathogenesis of PTSD. Furthermore, another 
study has shown that the IRE1 pathway was significantly 
activated in the locus coeruleus of a rat PTSD model [61]. 
Treatment with STF-083010, an IRE1 RNase-specific inhibi-
tor, could attenuate the IRE1 activation, specific splicing of 
XBP1, increased GRP78 expression and neuronal apoptosis 
in response to SPS stimulation [61]. Taken together, above 
data illustrate that the IRE1-XBP1 pathway is involved in 
PTSD, which suggests a new therapeutic target for the dis-
ease. 

4.6. IRE1 Signaling in Glioma 

 Malignant gliomas are the most frequent primary brain 
tumors and their treatment still remains a challenging issue. 
An increasing body of evidence indicates a functional link 
between IRE1 signaling and glioma growth/progression [10]. 
Indeed, impairing IRE1 signaling in human glioma cells re-
duced tumor growth and angiogenesis both in vitro and in 
vivo through mechanisms dependent on inhibition of hypoxia 
or glucose deprivation induced VEGF expression [62, 63]. 
Furthermore, In-vitro study has been shown that inactive 
IRE1 in glioma cells relieved the post-transcriptional repres-
sion of an important modulator of astrocytoma cell migra-
tion, SPARC. This in turn led to decreased tumor growth, 
infiltration and invasion in a Rho-dependent way [64]. Simi-
larly, the inhibition of IRE1 signaling by either siRNA or a 
dominant-negative strategy resulted in sustained expression 
of circadian clock PER1 which was associated with reduced 
tumorigenesis in the U87 model [65]. In addition, the IRE1 
substrate XBP1 has been shown to protect glioma cells 
against oxidative stress via up-regulating antioxidant mole-
cules such as catalase [66]. This report also showed an in-
creased expression of XBP1 in human glioma tissues, as 
compared with normal brain tissues, supporting the obstruc-
tion of IRE1-XBP1 pathway as a novel therapeutic for 
glioma. 
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4.7. IRE1 Signaling in Other CNS Diseases 

 As an ER stress sensor, IRE1 signaling is associated with 
many other diseases afflicting the CNS. IRE1-ASK1-JNK 
signaling cascade is activated in resected temporal neocortex 
of mesial temporal lobe epilepsy (MTLE) patients [67]. Si-
multaneously, XBP1 is also overexpressed and activated in 
MTLE hippocampi [68], suggesting that both IRE1-mediated 
pro and anti-apoptotic signaling pathways might be involved 
in epileptic brain damage. In mouse models of amyotrophic 
lateral sclerosis, XBP1 deficiency leads to augmented auto-
phagy, which enhances clearance of the mutant superoxide 
dismutase-1 protein and decreases its toxicity [69]. In con-
trast, XBP1 is required for locomotor recovery after spinal 
cord injury [9]. In addition, the activation of IRE1-XBP1 
pathway also plays an important role in protecting neuronal 
cell death in experimental cerebral malaria by Plasmodium 
berghei ANKA infection in mice [70]. 

CONCLUSION 

 Taken together, there are clear indications that IRE1 sig-
naling is involved in a range of neurological disorders and 
plays important roles in pathological processes (Fig. 1). In 
brief, IRE1 mediates both adaptive and pro-apoptotic path-
ways in CNS diseases. Under ER stress, IRE1-XBP1 axis 
mainly serves neuroprotective and anti-apoptosis effects by 

inducing the production of UPR gene Bip, up-regulation of 
antioxidant molecules such as catalase [66], and inhibition of 
Caspase-3 activation and free calcium accumulation in the 
cytosol [32]. In addition, IRE1 also acts on promoting apop-
tosis by activating the JNK/p38 pathway and downstream 
pro-apoptotic factors (e.g. Caspase-4/12 [3, 4], CHOP [3] 
and calretinin [5]) through a direct interaction with TRAF2. 
Up to date, however, the intrinsic factors which determine 
the role of IRE1 in CNS diseases have been less investigated 
and remain unclear. A well-established hypothesis is that the 
switch between anti-apoptotic and pro-apoptotic signaling of 
activated IRE1 might be dependent upon the ER stress inten-
sity or duration [71]. At the initial phase, IRE1-XBP1 path-
way is triggered to protect cells against cytotoxicity. Never-
theless, if the stress is intensive or prolonged, the IRE1-
XBP1 pathway may fade out gradually and instead the IRE1-
TRAF2 axis contributes to the transition to an apoptotic 
phase. 

PROSPECTIVE 

 Despite the fact that IRE1 signaling is now wildly recog-
nized as a new therapeutic target against CNS diseases, what 
remains to be discovered is how successful strategies that 
target on this signaling will be applied to the clinical treat-
ment. However, to translate the current knowledge of IRE1 
signaling into clinical therapeutics for CNS diseases is still 

 

Fig. (1). The role of IRE1 signaling in central nervous system diseases. ER: Endoplasmic reticulum; IRE1: Inositol-requiring enzyme 1; 
XBP1: X box-binding protein 1; TRAF2: tumor necrosis factor receptor associated factor 2; ROS: reactive oxygen species; GRP78: glucose 
regulated protein; ASK1: Apoptosis signal-regulating kinase 1; JNK: JUN N-terminal kinase; CHOP: C/EBP homologous protein; AD: Alz-
heimer’s disease; PD: Parkinson’s disease; ALS: Amyotrophic lateral sclerosis; SCI: Spinal cord injury; PTSD: Post-traumatic stress disor-
der; HD: Huntington’s disease; MTLE: Mesial temporal lobe epilepsy. 
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challenging. Rather than using natural products with plei-
otropic effects, the development and testing of specific IRE1 
signaling targeting molecules, such as small molecules tar-
geting IRE1 or XBP1 [72], is warranted to examine the IRE1 
signaling as a promising target for therapy in patients of 
CNS diseases. 
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