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Abstract

Background: Insertions/deletions (InDels) and more specifically presence/absence variations (PAVs) are pervasive in
several species and have strong functional and phenotypic effect by removing or drastically modifying genes.
Genotyping of such variants on large panels remains poorly addressed, while necessary for approaches such as
association mapping or genomic selection.

Results: We have developed, as a proof of concept, a new high-throughput and affordable approach to genotype
InDels. We first identified 141,000 InDels by aligning reads from the B73 line against the genome of three
temperate maize inbred lines (F2, PH207, and C103) and reciprocally. Next, we designed an Affymetrix® Axiom®
array to target these InDels, with a combination of probes selected at breakpoint sites (13%) or within the InDel
sequence, either at polymorphic (25%) or non-polymorphic sites (63%) sites. The final array design is composed of
662,772 probes and targets 105,927 InDels, including PAVs ranging from 35 bp to 129kbp. After Affymetrix® quality
control, we successfully genotyped 86,648 polymorphic InDels (82% of all InDels interrogated by the array) on 445
maize DNA samples with 422,369 probes. Genotyping InDels using this approach produced a highly reliable
dataset, with low genotyping error (~ 3%), high call rate (~ 98%), and high reproducibility (> 95%). This reliability
can be further increased by combining genotyping of several probes calling the same InDels (< 0.1% error rate
and > 99.9% of call rate for 5 probes). This “proof of concept” tool was used to estimate the kinship matrix between
362 maize lines with 57,824 polymorphic InDels. This InDels kinship matrix was highly correlated with kinship
estimated using SNPs from Illumina 50 K SNP arrays.

Conclusions: We efficiently genotyped thousands of small to large InDels on a sizeable number of individuals
using a new Affymetrix® Axiom® array. This powerful approach opens the way to studying the contribution of
InDels to trait variation and heterosis in maize. The approach is easily extendable to other species and should
contribute to decipher the biological impact of InDels at a larger scale.
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Genome assembly, Breakpoint, Chromosomal rearrangements
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Background
In the past decade, there has been growing evidence that
structural variations (SVs) are pervasive within plant ge-
nomes [1–9]. Insertion/deletions (InDels) are one class
of SVs of particular interest, since they lead to the pres-
ence or absence of, sometimes large, genomic regions at
a given locus, among individuals from the same species.
The content of these InDels can be present elsewhere in
the genome, but they can also be completely absent from
the genome, in which case they are referred to as
presence/absence variants (PAVs). Some InDels carry
entire genes or affect gene regulatory elements and are
thus likely to have a functional and phenotypic impact
[7, 10–13]. Hundreds to thousands of SVs, including
PAVs and copy number variations (CNVs), have been
discovered in several plant species, including wheat [14],
rice [15], Arabidopsis thaliana [13], potato [16], pigeon
peas [17], and sorghum [18]. These results support the
idea that one single reference genome cannot properly
represent the complete gene set of a given species. There
has been an increasing interest for building new individ-
ual genomes in complement to the reference genome, in
order to better describe the genetic diversity within a
plant species [3, 19–25] .
In maize, BAC sequence comparison first revealed that

gene and transposable element content greatly vary be-
tween inbred lines [26, 27]. Whole genome sequencing of
the B73 inbred line then provided the opportunity to ex-
plore the extent of SVs across the entire maize genome
[28] by designing Comparative Genomic Hybridization
(CGH) technology [29] . Several CGH studies found mul-
tiple CNVs between the B73 reference genome and other
maize inbred lines or teosintes [2, 8, 9]. These studies
demonstrated the large extent of SVs among maize inbred
lines, including presence/absence variations of low copy
sequences, such as genes. This was well illustrated by the
discovery of a large 2 Mbp presence/absence region be-
tween Mo17 and B73 carrying several genes [2, 9, 20, 21].
However, CGH array technology shows several major
drawbacks since (i) it does not allow the discovery of se-
quences that are not present in the reference genome used
for designing probes of the arrays, (ii) it has a limited reso-
lution which does not allow detection of InDels smaller
than 1 kb, and (iii) it is costly and labor-intensive, and
therefore not adapted for genotyping several hundreds of
individuals.
Methods based on SNP array experiments have been

developed to detect CNVs and were shown to be more
affordable and with higher throughput than CGH arrays
[30–33] . Didion et al. (2012) identified atypical patterns
of reduced hybridization intensities that were highly re-
producible, so called “off-target variants” (OTVs) [34].
OTV patterns could originate either from the absence of
the sequence due to a PAV polymorphism, or to a single

nucleotide polymorphism within the probe sequence,
thus preventing the correct hybridization of the DNA
sample. For instance, 45,974 OTVs were discovered in a
maize population using the 600 K Affymetrix® Axiom®
SNP array [35]. While these approaches proved to be
useful, there is a strong risk of false positive detection of
PAVs using OTV patterns, mainly because these arrays
were not designed to target PAVs. In order to reduce
this risk of false positive detection of PAVs and more
largely CNVs, several methods based either on seg-
mentation or Hidden Markov Chain have been devel-
oped to use variation of fluorescent intensity signal of
contiguous probes along the genome [36–41] These
kind of approaches have been used on 600 K Affyme-
trix® Axiom® SNP array to detect several hundreds of
CNVs and to explore the contribution of CNV to
phenotypic variation [42].
With the emergence of massive parallel sequencing,

new methods have been developed to detect structural
variations based on the alignment of resequencing reads
onto a high quality reference genome sequence. Among
these, three have been mainly used [43]: (i) the “read-
depth” (RD) method, which can only detect copy num-
ber variations; (ii) the “read-pair” (RP) method, which
can detect deletions as well as small insertions (up to
the size of the library insert); and (iii) the “split-read”
(SR) method which can also detect deletions and small
insertions (up to the size of a read). Chia et al. (2012)
used the RD approach to identify CNVs among 104
maize lines and performed association studies for several
traits [10]. However, the RD method does not allow the
identification of novel sequences and is error prone, es-
pecially regarding the size of the discovered CNVs which
greatly depends on the size of the sliding window used.
The RP method has been implemented in many compu-
tational tools like BreakDancer [44] and has been widely
used. Although it has proven to be highly efficient to de-
tect deletions [45–47], this approach suffers from two
limitations: it does not allow precise detection of break-
points, and the size of the insertions which can be de-
tected is directly limited by the library insert size. The
SR method, which was first implemented in PInDel [48],
has the advantage of defining breakpoints at a single-
base resolution, but again the size of the detectable
inserted sequence is limited.
The “assembly” (AS) method is able to detect all types

of SVs of any size, but is also the most cost and
computation-intensive. It is the only method able to detect
large insertions with precise breakpoint definition. How-
ever, the assembly of large and complex genomes such as
maize remains very expensive and computationally inten-
sive, despite recent progress in this area [19–21]. There
has been in the past some attempts to reduce this com-
plexity by reducing the number of sequences to assemble.
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For instance, Lai et al., (2010) identified 104 deletions and
570 insertions among 6 maize inbred lines by assembling
genomic regions from reads that did not map on the B73
reference genome [49]. The sequences assembled by this
approach were enriched in erroneous reads or reads com-
ing from external contamination, and they were too short
to be anchored to the reference genome B73. Hirsch et al.
(2014) identified several putatively expressed genes that
were not present within B73 reference genome by assem-
bling and comparing the transcriptome of hundreds of in-
bred lines [12]. This new approach was limited to the
transcribed part of the genome and suffered from a high
level of false positives. More recently, Lu et al., (2015) used
genotyping by sequencing approaches on 14,129 inbred
lines to identify 1.1 million short and unique sequences
(GBS tags) that (i) did not align on the B73 reference gen-
ome, or were aligned but outside of a 10Mbp windows
around their mapped position; or (ii) were mapped at the
same location by joint linkage mapping in NAM popula-
tions using co-segregation with a SNP and logistic regres-
sion between the InDel and the SNP in an association
panel [13]. The main drawback of this approach is the
high percentage of missing data due to the low depth of
sequencing, which requires imputation before being able
to perform genetic analysis. Recent whole genome se-
quence assemblies of PH207 [19], and F2 [20] have
allowed the identification of thousands of large InDel and
PAV sequences. For instance, 2500 genes were found ei-
ther present or absent in PH207 and B73 genomes and 10,
735 PAV sequences larger than 1 kb were discovered be-
tween F2 and B73, including 417 novel genes in F2. These
discovery approaches have been limited to a few individ-
uals due to sequencing costs and computational chal-
lenges, so they have not been adapted for characterization
of SVs on large maize panels. Darracq et al. (2018) devel-
oped an interesting approach for the genotyping of PAVs
from mapping of low depth (5-20X) resequencing datasets
[20]. This method is based on the comparison of reads
aligning to the region found in F2 and in the line of inter-
est. While this method is potentially adapted to genotype
PAVs on any set of line with low resequencing data, it has
been so far used for PAV genotyping on a low (< 30) num-
ber of maize lines. Moreover, it is restricted to the analysis
of PAVs, and is not adapted for genotyping other types of
SVs. To avoid this ascertainment bias due to use of a
single reference genome to genotype SV, other studies
proposed to call SV by aligning reads on a pan-
genome representing the combination of several ge-
nomes [14, 22, 50]. However, these approaches
remained computationally challenging on a sizable set of
individuals, time demanding, and costly for large and
complex genomes, since it requires high-depth sequencing
[50]. To our knowledge, no high-throughput genotyping
approach has been developed for genotyping large

numbers of InDels, including PAVs, on a large set of indi-
viduals. We have developed, as proof of concept, a new
high-throughput and affordable array that is able to geno-
type simultaneously large insertions and deletions, with
highly variable size and contents that are previously dis-
covered by different sequencing methods. In this study,
we present this approach which is both (i) comprehensive,
as it includes the discovery and localization of deletions as
well as insertions regarding the B73 reference genome at
the base pair level and (ii) high-throughput, as it allows
genotyping of thousands of InDels on hundreds of individ-
uals. Our strategy takes advantage of next generation se-
quencing (NGS) technologies and recent advances in
assembly of complex genomes. It also benefits from the
high efficiency of SNP arrays like the high-throughput
Affymetrix® Axiom® technology. In this paper, we detail
how we discovered thousands of small to large InDels, in-
cluding PAVs, from three maize inbred lines (F2, PH207
and C103) as compared to the B73 reference genome. We
then describe how we designed and selected 600,000
probes to create a new Maize Affymetrix® Axiom® array to
genotype these InDels. Finally, we describe how we suc-
cessfully used this array to genotype an association panel
of 362 maize inbred lines.

Results
InDel and PAV discovery
To design a comprehensive InDel genotyping array, we
first discovered a set of InDels which would be representa-
tive of the maize temperate germplasm. We already had
access to sequence data for the European flint line F2, and
we benefited from a first set of 42,330 F2-specific se-
quences, larger than 150pb and totaling 16Mbp. This
dataset was derived from the de novo assembly of an F2
paired-end that failed (at least for one read of the pair) to
align onto the B73 AGPv2 sequence, and which were to-
tally devoid of coverage by B73 reads (“Reference guided
assembly” in Additional file 2: Figure S1,also called “no
map” approach). We also took advantage of the work done
by [20] to add another 10,044 F2-insertions (size > 1 kb,
total size of 88Mb), with less than 70% of their length
covered by B73 reads discovered by a whole genome as-
sembly approach (Additional file 2: Figure S1B).
To complement these two datasets of F2/B73 deletions

and insertions, we generated and assembled Illumina®
paired-end and mate-pair sequences from two other key
founders of temperate maize breeding programs: PH207
and C103. We then used this F2, PH207, and C103 se-
quence data to detect all InDels, including PAVs, at
base-pair resolution, between these three lines and B73.
As opposed to the “reference guided assembly ap-
proach”, the “whole genome assembly” methodology
allowed us to access both to their sequences and their
breakpoints, permitting the genotyping of such InDels in
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several individuals (more details in Methods). We did
not use the “no map” approach for InDel discovery on
PH207 and C103, because this approach did not give ac-
cess to breakpoint resolution, did not allow the discovery
of InDels without specific sequence, and was almost re-
dundant with the assembly approach.
We first aligned F2, PH207, and C103 sequences against

the B73 reference genome sequence in order to detect de-
letions. Here, the term “deletion” does not reflect any
underlying biological process of DNA excision but refers
to a sequence of at least 100 bp present in the B73 genome
at one locus and absent in another line at the same locus.
Deletions were detected for the three lines simultaneously
using the “genotyping” option of PInDel [48], generating a
set of 26,368 non-redundant deletions with precise identi-
fication of their breakpoints (Additional file 2: Figure
S2A). The number of deletions found for each line was
similar, respectively 12,165, 11,922, and 13,432 for F2,
PH207, and C103. 67% of the deletions found were unique
to one line, 24% were shared by two lines, and 9% by three
lines (Additional file 2: Figure S2A). These results confirm
the good complementarity of the lines chosen to discover
InDels. The high proportion of unique deletions among 4
lines may also reflect that numerous InDels remain to be
discovered in temperate maize germplasm.
Next, we generated a draft genome assembly for each

of these lines, which was used as a template for align-
ment of B73 reads to detect insertions relative to the
B73 reference genome (Additional file 1: Table S1). As
for deletions, here the term “insertion” does not reflect
any underlying biological process of DNA integration,
but defines a sequence larger than 100 bp that is present
in one line at a given locus, and absent from B73 at the
same locus. These three draft assemblies cover less than
one third of the expected maize genome size but include
a large portion of low copy sequences, including genes,
as shown by BUSCO results (Table 1).
Detection of insertions was processed separately for

each inbred line and generated 28,221 insertions for F2,
27,904 insertions for C103, and 26,795 insertions for
PH207, with their precise breakpoints. The number of
insertions is similar between lines, but significantly
greater than the observed deletions. Among these

insertions, 26,691 cases could be uniquely anchored at
base pair resolution onto the B73 reference genome se-
quence (Additional file 2: Figure S2B). Again, a majority
of insertions were unique to one line (72%) confirming
the complementarity of the material chosen (Additional
file 2: Figure S2B).
Finally, the results from the different approaches were

merged into a non-redundant set of 141,325 InDel se-
quences (see Methods), comprising 52,175 deletions and
89,150 insertions. These regions were then used for the
design of genotyping probes.

Design of the genotyping array
Genotyping strategy
Large InDels can be efficiently genotyped with a SNP
array using a combination of two types of probes: (i) “ex-
ternal” probes, which target breakpoints using the two
flanking sequences of a given InDel (BP probes), and (ii)
“internal” probes, which target presence/absence regions
(PARs) within the internal sequence of InDels on poly-
morphic (OTV probes) or monomorphic sites (MONO
probes). We define PARs as small portions of DNA se-
quence of at least 35 bp that were observed present or
absent at the genome level, when comparing two indi-
viduals. They are thus suitable for the design of pres-
ence/absence genotyping probes. Ideally, each InDel
should be called by two BP probes on either side and by
multiple internal probes, regularly distributed along the
internal sequence of the InDel (Fig. 1a). However, in
practice, this combination of different probes is not al-
ways possible. For instance, precise breakpoints were not
determined for all PAVs from our “no map” approach
and [20], and PARs for internal probes were not always
found in our InDels (Fig. 2).

Probe design
BP probes should behave like classical SNP probes
where one allele corresponds to the presence and the
other to the absence of the InDel. They are useful to ex-
plore the conservation of the localization of large inser-
tion/deletion events across multiple individuals, even
when no internal probe can be designed due to the ab-
sence of PARs. Among the 141,325 selected variants, 86,

Table 1 F2, PH207, and C103 de novo assembly metrics

Maize line Number of scaffolds Min size Max size Average size N50 Total (Mb) % of Ns Complete
BUSCOs (C)

Fragmented
BUSCOs (F)

Missing
BUSCOs (M)

F2 76,563 892 112,956 16,900 14,042 646.3 9.48% 89.3% 4.9% 5.8%

PH207 81,688 884 2,024,489 29,557 16,860 797.5 8.90% 91.8% 2.7% 5.5%

C103 84,990 886 120,582 19,305 16,146 793 8.21% 90.6% 4.2% 5.2%

Number of scaffold: The number of scaffold sequences assembled, Min Size: the length of the shortest scaffold, Max size: the length of the longest scaffold,
Average Size: the average size of scaffolds, N50: N50 of the assembly, Total: the total number of bases included in the assembly, % of Ns: the percentage of Ns
present in the assembly; BUSCO statistics included the percentage of complete (C), fragmented (F) and missing (M) BUSCO genes from a total of 1440
BUSCO genes.
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Fig. 1 Genotyping of InDel CNVMAIZE_DEL_12661 using three probe types on 445 individuals. a Schematic distribution of the 9 probes along
the sequence of InDel CNVMAIZE_DEL_12661 (green line) and the bordering sequence common between all individuals (blue line) genotyped by
the array. Double, dotted, and full arrows represented the probes designing on the forward and reverse flanking sequences of the breakpoint
sites (BP), at not polymorphic (MONO) and polymorphic sites (OTV) within internal sequence of InDel. b Schematic distribution of the 8 probes
passing Affymetrix® quality control and called by the Affymetrix® pipeline c) Clustering produced by the Affymetrix® algorithm for an OTV, MONO,
and BP probe from InDel based on both fluorescence contrast (X axis) and intensity (Y axis) of the 445 inbred lines. Red, blue and yellow dots
indicated the presence of the sequence (genotype “present”) either homozygous for allele A (AA) or allele B (BB) or heterozygous (AB),
respectively. Cyan and green indicated that the sequence was absent in the individual (OO), or only in one copy of the sequence, e.g.
hemizygous for presence/absence (OB or OA). Black dots indicated individuals for which no genotype could be assigned (Missing data) d)
Haplotypes displayed by the genotyping using 8 probes (column) on the 445 inbred lines (row). Colors corresponded to the genotype of
individuals produced by clustering in c)
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406 InDels (22,420 deletions and 63,986 insertions as
compared to the B73 reference genome sequence) had
breakpoints defined at base-pair resolution and were
suitable for BP probe design. Four different breakpoint
types were identified according to the presence of
micro-homology and/or shorter non homologous se-
quence [51] in place of a complete deleted sequence
(Additional file 2: Figure S3): (type I) 3397 cases with
sharp breakpoints; (type II) 45,987 cases with a micro-
homology sequence (8.6 bp on average and no more
than 237 bp) which was present in one copy in the refer-
ence sequence and duplicated at both extremities of the
novel inserted sequence; (type III) 36,893 cases harbor-
ing insertion of a short non-homologous fragment (42.2
bp on average and up to 892 bp) in place of a large de-
leted sequence; and (type IV) 156 cases with a combin-
ation of type II and type III breakpoints. Following
Affymetrix® recommendations, 19,010 InDels with type
II breakpoints having a micro-homology sequence longer
than 5 bp were excluded from the design process. In the
end, 67,396 InDels, representing 48% of all available
InDel variants, were submitted to the Affymetrix® design
pipeline. Two probes, one on forward (FW) and one on
reverse (REV) strand, were designed for each breakpoint.
These probes were classified as not possible (18%), not
recommended (33%), neutral (15%) and recommended
(35%) by this automated pipeline (see Methods for de-
tails), leaving 33,430 InDels (51%) that could be targeted
by at least one recommended probe.
Internal probes, which should behave like “off-target”

variants [34] where the hybridization of the probe indicates
presence of the InDel, and the absence of hybridization of
the probe indicates absence of the InDel, are useful to ex-
plore the genetic diversity within InDel sequences (Fig. 1d).
They will also be particularly interesting to target InDels
for which no breakpoint could be identified (such as PAVs
from the “no map” approach).
For the design of OTV probes, we benefited from the

availability of SNPs which had been previously identified
from the alignment of resequencing data from a core
collection of 25 temperate maize inbred lines against the
B73-F2 maize pan-genome from [20]. As a consequence,
OTV probes have only been designed for deletions
positioned on the B73 reference genome and F2 inser-
tions coming from [20]. Among these, the context se-
quences of 436,162 SNPs, corresponding to 21,390
InDels, were extracted and submitted to the Affymetrix®
design pipeline. Two probes, one on forward (FW) and
one on reverse (REV) strand, were designed for each
SNP. A total of 872,324 OTV probes could be designed
and scored as not possible (0.05%), not recommended
(71%), neutral (14%) and recommended (16%), leaving
17,589 InDels (82%) which could be targeted by at least
one recommended probe.

For the design of BP and OTV probes we could rely on
Affymetrix® design pipeline to identify probes localized in
PARs and thus suitable for the Affymetrix® Axiom® technol-
ogy. For the design of MONO probes, we first had to
identify such PARs within 141,325 InDels cumulating
133Mbp of sequence. We used sequence masking methods
to exclude repeats based on similarity to known maize
repeats or on occurrence of 17-mers found within the se-
quencing datasets we had for B73, F2, PH207, and C103
(see Methods). By doing so, we identified 122,972 PARs,
representing a cumulated size of 27Mbp, corresponding to
20.3% of the initial size and allowing the possibility to de-
sign MONO probes for 79,987 InDels (56.5%). These PAR
sequences were successfully used for the design of 25,735,
797 MONO probes, among which 59% were scored as rec-
ommended and allowed to target 62,875 InDels (79%).
With this combined approach, we designed a total of

26,715,361 probes targeting 117,756 InDels, which repre-
sent a cumulated length of 250 Mbp including 27 Mbp
of PARs (Table 2).
Among these InDels, 97,748 (83%) can only be targeted

with either internal or external probes, but not both
(Fig. 3a). These results support our overall strategy which
includes the discovery of InDels, with precise breakpoints
in a preliminary step, and the use of complementary in-
ternal/external probes for the genotyping of large InDels.

Array design
We used the Affymetrix® recommendations to select the
700,000 probes to be included in the final array, plus some
other criteria depending on the probe type. Nevertheless,
because of their added value, we decided to keep all BP
probes as long as they had less than 3 hits on the B73 ref-
erence genome sequence. This first selection consumed
84,994 probes targeting 53,456 InDels, among which 70%
could only be targeted by BP probes. Concerning OTV
and MONO probes, we first selected neutral and recom-
mended probes having no hit at all (for insertions), and
only one hit (for deletions), against the B73 reference gen-
ome sequence. We then considered their density with the
objective to maximize the number of InDels that could be
surveyed, as well as to have an even distribution of probes
along targeted InDel sequences (see Methods). We then
performed a second selection among not recommended
OTV and MONO probes for 4,541 InDels that were still
not targeted. After filtering some duplicated probes, we
built a final array design containing 662,772 probes target-
ing 105,927 InDels that represent a cumulated length of
232 Mbp, including 25.9 Mbp of PARs.

Description of the array content
The final array design allows genotyping InDels with
various sizes, ranging from 37 bp to 129.7 kbp, with a
median of 501 bp (Fig. 2). They are covered by 1 to 482
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probes, with a median of 3 probes per InDel (Additional
file 2: Figure S4). The number of probes does not always
reflect the length of the InDels, as the proportion of PARs
within InDels is highly variable (Fig. 2a). 8,040 InDels
(ranging from 37 bp to 2,409 bp, with a median of 163 bp)
were completely covered by PARs and could thus be
considered as a proper PAVs, 34,372 InDels (ranging
from 101 to 129,700 bp with a median of 320 bp)
were not covered by any PAR at all (Fig. 2a). The
biggest InDels contains more frequently PARs than
the little ones (Fig. 2b). In fact, the number of in-
ternal probes were more strongly correlated to the
size of the PARs (r2 = 0.79) rather than to the size of
the InDels (r2 = 0.16) (Additional file 2: Figure S5).
As expected, the probe selection process did not impact

the overall distribution of probe types among targeted
InDels, as 35% of them can exclusively be genotyped by BP
probes, and 50% can only be genotyped by internal probes,

among which 73% are only targeted by the use of the ori-
ginal MONO probes (Fig. 3b). Indeed, a large number of
InDels did not contain PARs and cannot be genotyped with
35 bp internal probes but only with BP probes. Whereas,
others InDels contains PARs but have no BP probes due to
the InDel discovery approach (“no map”).
Among the 43,117 InDels that could be anchored onto

the B73 reference genome sequence and which were in-
cluded in the array design, 13,737 were located inside a
gene, 57 close to a gene (less than 1 kb away), 1311 in-
side a pseudo-gene and 2212 inside a transposable elem-
ent. InDels and probe density varied across each
chromosome (Additional file 2: Figure S6). We observed
a higher density in chromosome arms than in peri-
centromeric regions (Additional file 2: Figure S6). We
also identified clusters of InDels with a large specific se-
quence at the beginning of chromosome 6 (10-20Mbp)
or at the end of chromosome 5 (~190Mbp).

Fig. 2 Distribution of 105,927 InDels genotyped by the array according to their size and the cumulated length of Presence/Absence regions (PARs) in
their internal sequence. a Distribution of the number of InDels according to the proportion of presence/absence regions (sequence not present
elsewhere in the genome) within their internal sequence. b Distribution of the number of InDels according to their size (kbp) and the percentage of
internal sequence of InDel covered by PAR(s). Red Color indicates the proportion of InDels with (red) or without (blue) PARs for the 7 InDel size classes

Table 2 Number of probes and targeted InDels before and after selection for array design and passing the Affymetrix® quality
control according to different probes type. Percentages are indicated in brackets

Before selection On array Called by Affymetrix® pipeline

Probes InDela Probes InDela Probes InDela

BP Type1 6,648 (0.02%) 3,324 (2.82%) 4,691 (0.71%) 2,751 (2.6%) 2,092 (0.44%) 1,482 (1.66%)

BP Type2 51,770 (0.2%) 25,885 (21.98%) 38,790 (5.85%) 22,662 (21.39%) 20,540 (4.29%) 14,407 (16.12%)

BP Type3 71,820 (0.27%) 35,910 (30.5%) 41,272 (6.23%) 27,897 (26.34%) 23,631 (4.93%) 18,485 (20.68%)

BP Type4 312 (0.001%) 156 (0.13%) 241 (0.04%) 146 (0.14%) 119 (0.02%) 93 (0.1%)

OTV 872,324 (3.26%) 21,390 (18.16%) 163,278 (24.64%) 18,558 (17.52%) 96,867 (20.22%) 15,064 (16.85%)

MONO 25,735,797 (96.25%) 68,573 (58.23%) 414,500 (62.54%) 65,796 (62.11%) 335,778 (70.1%) 63,597 (71.14%)

ALL 26,738,671 117,756 662,772 105,927 479,027 89,393
aNote that a same InDel could be genotyped by several probe types which resulted in the percentage values great than 1
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Fig. 3 (See legend on next page.)
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Assessing array quality by genotyping 105,927 InDels on
480 maize DNA samples
InDel calling using dedicated Affymetrix® pipelines
We genotyped 480 maize DNA samples including 440
inbred lines, 24 highly recombinant inbred lines and 16
F1 hybrids. Dedicated Affymetrix® pipelines were imple-
mented for each of the probe types to call genotype of
the InDels based on fluorescent intensity and contrast
variation of the probes. It included two algorithms
already developed by Affymetrix® [34] for BP and OTV
probes (Additional file 2: Figure S7A and B) and a third
one, which was newly developed for the calling of pres-
ence/absence genotypes using MONO probes (Add-
itional file 2: Figure S7C). 35 DNA samples including all
F1 hybrids, did not pass Affymetrix® quality control due
to their low call rate (< 0.9) and were eliminated. Call
rate of the 445 remaining samples, which are all inbred
lines, varied from 96 to 99% with a median of 98%. The
call rate varied according to probe type (median of 90
and 99% for BP and internal probes, respectively). Out
of 662,772 probes, 479,027 probes representing 89,393
InDels passed Affymetrix® quality control and were
called on 445 DNA samples. Respectively 55, 59, and
81% of BP, OTV, and MONO probes were converted
into recommended markers after clustering by Affyme-
trix® pipelines (Additional file 1: Tables S2, S3, and S4).
94% of these recommended BP and OTV markers were
classified as “PolyHighResolution” (PHR) indicating a
high quality of clustering and that these markers were
polymorphic (Additional file 2: Figure S8). Note that the
criteria defining high quality of clustering for MONO
probes called by new Hom2OTV algorithm was not yet
implemented in Affymetrix pipeline (Additional file 1:
Table S4 and Additional file 2: Figure S7C). As a conse-
quence, classification of MONO probes could not be
comparable to BP and OTV probes. Thanks to the 3
probe types and redundancy, 84% of all InDels could be
called with an average of 5.4 probes per InDel.
To evaluate the genotyping ability of the 479,027

probes, we first compared the clustering of inbred
lines expected for three probe types (BP, OTV, and
MONO) with the observed clustering of inbred lines
based on fluorescence intensity and contrast of 445
inbred lines genotyped with the array. For BP
probes, we expected at least two clusters corre-
sponding to the individuals homozygous either for

presence (“AA” or “BB”) or absence (“OO”). A third
cluster could be observed when individuals were het-
erozygous individuals for presence/absence (“OA” or
“OB” hemizygous) (Fig. 1c). For OTV probes, we ex-
pected at least 3 different clusters: two cluster corre-
sponding to the individuals homozygous for allele A
or B of SNP (“AA”, “BB”), and a third “off-target”
cluster for the individuals homozygous for absence
(“OO”). A fourth cluster could be observed when
some individuals were heterozygous at the within-
InDel SNPs (AB). For MONO probes, we expected
only two clusters corresponding to the individuals
for which the sequence was present (“AA” or “BB”)
or absent (“OO “) (Fig. 1c). The observed clustering
by the three dedicated pipelines was consistent with
the expected clustering for 43% of BP, 83% of OTV
and 63% of MONO probes (Table 3).
We observed also some unexpected clustering. For 57%

of BP probes, we observed an additional off-target cluster
(OTV in Table 3). This indicates that some BP probes did
not hybridize properly in some inbred lines, which can ei-
ther be due to the presence of polymorphism within flank-
ing sequences of the targeted InDels or to the existence of
more complex rearrangements removing the breakpoints.
Regarding MONO probes, 25% displayed additional

cluster(s) when the sequence was present suggesting the
presence of single nucleotide polymorphisms at this pos-
ition. Among these, we were able to distinguish two
types of clustering (Table 3). 4.7% of MONO probes ex-
hibited a clustering similar to those observed for OTV
probes suggesting that these MONO probes revealed, by
chance, a single nucleotide polymorphism. In contrast,
20.4% of MONO probes displayed an unexpected cluster-
ing pattern for inbred lines with the presence of a hetero-
zygous cluster but absence of a second homozygous
cluster for SNP (Additional file 2: Figure S9B). In the end,
2.8% of MONO probes displayed an additional heterozy-
gous cluster for SNP when the sequence is present but no
“off target” cluster corresponding to individuals for which
the sequence is absent (Additional file 2: Figure S9D).
For 18% of OTV (Additional file 2: Figure S9A) and 8.3%

of MONO probes, clustering displayed no “off target”
cluster for absence, suggesting no presence/absence
polymorphism at this position (Table 3). Note that
some BP were also classified as monomorphic for
presence/absence but were filtered out by the BP

(See figure on previous page.)
Fig. 3 Number of InDels interrogated by each probe types or their combination, for which: a probe could be designed (a) and a probe was
finally selected to be included in the final array (b). Vertical bars indicate number of InDels interrogated by each probe types or their
combination. Black points and connected traits below the vertical bars indicate the corresponding probes types or their combination that are
used for interrogating this subset of InDels. Horizontal bars indicate number of InDels interrogated by each probe types (OTV, BP, MONO).
Number of InDels by probe type, for which: a probe could be designed (a) and a probe was finally selected to be included in the final array (b).
Number of InDels that could be targeted by each type of probes designed (a) and selected to be included in the final array (b)
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pipeline (“MonoHighResolution” in Additional file 1:
Table S2 and Additional file 2: Figure S8). These
monomorphic probes originated from false positive
discovery of InDels or PARs within InDels that are
not present/absent elsewhere in the genome of four
lines (see Discussion). After removing these mono-
morphic probes for presence/absence, 422,369 probes
allowed us to successfully genotype a total of 86,648
InDels (82% of 105,927 InDels targeted by the array)
on 445 inbred lines.

Evaluation of genotyping reproducibility and quality
Consistency of genotyping among the four inbred
lines used for InDel discovery We used the 479,027
probes passing Affymetrix® quality controls to evaluate
the quality of Presence/Absence genotyping by compar-
ing the genotyping results obtained from our array
(GBA: Genotyping By Array) with those from sequen-
cing (GBS: Genotyping by Sequencing) for the 4 lines
used for the discovery of InDels (B73, F2, PH207, and
C103). Respectively, 97, 92, and 88% of the BP, OTV,

Table 3 Comparison between the clustering expected for BP, MONO, and OTV probe types and the clustering produced by
Affymetrix® pipelines based on the fluorescent intensity and contrast of 445 inbred lines for 479,027 probes

Classification based on the clustering produced by Affymetrix® pipelines and genotyping assignment

Probe
types

BP OTV

BP Number
(%)

20,370 (43.9%) 26,012 (56.1%)

Clustering
examples

Description Two homoz.
clusters

Two homoz. and
one OT clusters

OTV MONO SNP monomorphic

OTV Number
(%)

78,799 (81.3%) 502 (0.5%) 17,562 (18.1%) 4 (0.0%)

Clustering
examples

Description Two homoz. and
one OT clusters

One homoz. and
one OT clusters

Two homoz. clusters One cluster

MONO OTV Unexpected MONO 1 SNP Unexpected MONO
2

monomorphic

MONO Number
(%)

212,434 (63,3%) 15,690 (4,7%) 68,562 (20,4%) 1,981 (0.6%) 9,525 (2.8%) 27,586 (8.29%)

Clustering
examples

Description One homoz. and
one OT clusters

Two homoz. and
one OT clusters

One homoz., one OT
and one het. clusters

Two homoz.
clusters

One homoz. and
one het. clusters

One cluster

“Clustering example”: typical example of clustering based on the fluorescent intensity (y-axis) and contrast (x-axis). Colors on figure indicate the assignation of the
genotype to the individuals based on this clustering; “Number (%)”: Number (percentage) of probes displaying the corresponding clustering. “Description”: Brief
characteristic of each classification based on the clustering of individuals (homoz.= homozygote, het=heterozygous, OT= off-target)
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and MONO probes had a genotyping result consistent
with results obtained from BLAST alignments against
our three draft genome assemblies and the B73 reference
genome. We observed a strong asymmetry for concord-
ance rates for internal probes (OTV and MONO) de-
pending on whether the genotype has been called by
sequencing as present or absent (95% vs 80% for present
and absent, respectively, Table 4). Interestingly, we ob-
served no asymmetry for BP probes that are designed
exclusively on B73 genome compared to OTV and
MONO probes that are designed from the 4 genome as-
semblies (Table 4). These low consistencies for internal
probes when genotype by sequencing indicated absence
could be explained by the use of incompletely assembled
genomes of the three lines (PH207, C103, F2) to call the
presence/absence genotype from sequencing.
If the genomic region containing the InDels were ab-

sent or badly assembled in at least one line, some probes
would not align properly, resulting in false absence calls,
instead of presence in GBS. The four inbred lines
showed very similar concordance rates, F2 being the
most concordant (95%). This could be partially explained
by the higher proportion of GBS present calls in F2 as
compared to the three other lines since GBS present
calls are more consistent with GBA than GBS absent
calls. The median consistency rate of probes within
InDels remained relatively high and stable, around 90%,
independently of the number of probes per InDel (Add-
itional file 2: Figure S10), suggesting no relationship

between the consistency rate of individual probes and
length of PARs within InDels.

Consistency among probes from the same InDel To
estimate the consistency of different probes for typing a
given InDel, we analyzed genotyping results for 50,648
InDels genotyped with at least two probes in a collection
of 362 temperate inbred lines. For each InDel and each
inbred line, we calculated the average allelic frequency
of presence over all probes. Frequencies of 1 (presence)
and 0 (absence) indicated that all probes displayed con-
sistent genotyping for the corresponding inbred line
(Fig. 1d and Additional file 2: Figure S11A). Alterna-
tively, frequencies different from 0 or 1 (FreqDiff01) in-
dicated that at least one probe displayed inconsistent
genotyping with other probes for corresponding inbred
lines (Additional file 2: Figure S11B). Overall, 75% of the
InDel genotyping resulted in an average allelic frequency
for the presence of 1 or 0, meaning that all probes had a
consistent genotyping results for calling the allele at
both present or absent states, respectively (Fig. 4a).
However, we observed a strong variation of median (aver-

age) allelic frequency different from 0 or 1 (FreqDiff01), ac-
cording to the number of probe interrogating that InDel
(Fig. 4b, Additional file 1: Table S5). Median (average) Freq-
Diff01 across InDels varied from of 1.2% (9.8%) to 58%
(52%) when the number of probes varied from 0 to 30
(Fig. 4b, Additional file 1: Table S5). We compared this vari-
ation to what could be expected for different probe genotyp-
ing error rates (1, 3, 5, and 10%). Based on this comparison,
we estimated the probe genotyping error rate is approxi-
mately 3% (Fig. 4). For InDels with fewer probes (< 10), the
average and median FreqDiff01 differed slightly, suggesting
that some InDels with low probe numbers displayed high
genotyping inconsistencies among their probes (Fig. 4, Add-
itional file 1: Table S5). In order to evaluate whether probe
genotyping error is similar for present or absent calls, we an-
alyzed the variation of FreqDiff01 with regard to the average
frequency of absence of InDel sequences in 362 lines (Add-
itional file 2: Figure S12A). The median FreqDiff01 was
higher for InDels which have their sequence more fre-
quently absent than present across 362 lines, regardless of
the number of probes (Additional file 2: Figure S12B). It
suggested that genotyping was more accurate for absence
than presence. This was logical, considering that polymor-
phisms within probes would preclude hybridization of the
probes for some lines, and it would result in absent calls
with MONO and OTV probes, while polymorphisms within
probes have no impact when the sequences are absent.
Combining genotyping from multiple probes within

InDels greatly improved reliability of InDel genotyping,
since it allowed (i) to correct the individual genotyping er-
rors due to polymorphisms within probe sequences, (ii) to
reduce the missing data rate due to bad clustering or

Table 4 Consistency rate between genotyping by sequencing
and by array for the 4 individuals used to discover the InDels,
for the three probe types and for the two different genotypes
observed from sequencing: presence (P) or absence (A)

Probe Types Genotype by
sequencing

B73 F2 C103 PH207 All Lines

BPa A 0.98 0.98 0.98 0.97 0.98

P 0.97 0.97 0.97 0.96 0.97

ALLa 0.97 0.97 0.97 0.97 0.97

OTV A 0.85 0.89 0.80 0.78 0.83

P 0.93 0.97 0.96 0.96 0.96

ALL 0.90 0.95 0.91 0.90 0.92

MONO A 0.77 0.81 0.82 0.81 0.80

P 0.90 0.98 0.94 0.94 0.95

ALL 0.82 0.94 0.89 0.88 0.88

ALL A 0.80 0.86 0.84 0.82 0.82

P 0.92 0.97 0.94 0.95 0.95

ALL 0.85 0.95 0.90 0.89 0.90
aNote that consistency rate of hemizygous genotypes (heterozygous for
presence / absence) were not displayed in the table for BP probes but
considered to estimate global consistency rate (ALL). Note that the absence of
probe sequence due to absence of hybridization or no alignment on draft
sequence of BP probes were considered as missing data. Missing data were
not included in the comparison for all probes
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probes polymorphisms, and (iii) to remove probes display-
ing highly-divergent genotypes compared to other probes
for the same InDel, due, for example, to a bad design of the
probes. In order to evaluate the combining of genotypes of
several probes on the accuracy of InDel genotyping, we
simulated global genotyping error rates for InDels by
assigning to each inbred line the most frequent allele, based
on the average frequency over all probes from an InDel,
with various genotyping error rates (Additional file 1: Table
S6). By this approach, the genotyping error for InDels was
greatly reduced. Considering a probe genotyping error of

5%, the genotyping error of InDels for inbred lines were re-
duced to 0.2 and 0.1%, when the number of probes within
the InDels were 2 and 5, respectively (Additional file 1:
Table S6). Combining genotypes from several probes also
strongly reduced the average missing data rate for InDels; it
decreased from 2.3 to 0.2%, when the number of probes in-
creased from 2 to 5 (Additional file 1: Table S5). However,
some contradictory probe genotypes were repeatedly found
across the 362 samples (Additional file 2: Figure S11B), sug-
gesting that some probe inconsistencies could have bio-
logical origins (i.e more complex rearrangement), rather

Fig. 4 Consistencies among probes within 50,648 InDels with at least two probes genotyped in 362 inbred lines. a Distribution of the average
allelic frequencies of present calls over all probes. b Variation of proportion of genotypes not fully consistent across all probes (FreqDiff01). The
black and gray curves with triangle points represent the variation of the median and average FreqDiff01 across InDels, respectively. Colored
curves with circle points represent the expected variation of the proportion for different error rates (1%: red, 3%: green, 5%: light blue, 10%: dark
blue). Frequencies of 1 (presence) and 0 (absence) indicate that all probes had consistent genotypes for the corresponding inbred line.
Intermediate frequencies indicate that at least one probe was not consistent with the other probes for the same InDel in one inbred line
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than being genotyping errors. Additionally, 35% of InDels
called by BP had their FW and REV probes classified differ-
ently (e.g. one as BP and the other as OTV). Altogether,
these results suggest that some calling inconsistencies be-
tween probes within InDels could come from polymor-
phisms in the flanking sequence while some other could be
due to local rearrangements in the genotyped lines as com-
pared to the lines used for InDels discovery.

Reproducibility and Mendelian inheritance Genotyp-
ing reproducibility was evaluated by comparing geno-
types between five DNA replicates corresponding to
unique F1 hybrids derived from a cross between B73
and F72 for all probes type. Median reproducibility was
95, 96, and 97% for BP, OTV and MONO probes re-
spectively. Interestingly, there is some variation of repro-
ducibility relative to probe clustering (Additional file 1:
Table S7). Note that Affymetrix© algorithms were not
specified to genotype hemizygote using OTV and
MONO probes in this dataset. We also performed a
parent-offspring analysis on 12 F1 hybrids derived from
9 parental lines by comparing genotypes observed of
these F1 hybrids with those predicted from genotypes of
their two parental lines for 46,382 BP probes (Add-
itional file 1: Table S8). On average, 95 and 77% of
observed genotypes were consistent with those pre-
dicted from parental lines for homozygous and hemi-
zygous genotypes, respectively (Additional file 1:
Table S8). The consistency rate was slightly higher
when genotypes were absent (98%) than present
(94.5%). Note that the seed-lot of parental lines used
for producing F1 hybrids were different from those
genotyped, which could explain lower consistencies
rate than for DNA replicate of F1 hybrids. Note also
that the genotypes of all F1 hybrids have been initially
eliminated by Affymetrix® quality control due to their
low call rate and were therefore forced for reproduci-
bility analysis. This low call rates can be attributed to
the fact that these samples had different genotype
cluster properties (probe intensity profiles) compared
to the samples that passed QC. As a consequence,
this strongly increased the missing data rate for the
F1 hybrids for OTV and MONO probes.
In the end, we evaluated genotyping reproducibility for

inbred lines, by comparing the genotyping results of 13
different inbred lines that were replicated in the experi-
ment (Additional file 1: Table S9). Note that these are
not perfect biological replicates, as they represent the
same variety but come either from different seed lots or
from different accessions. These replicates exhibited a
genotyping difference varying from 0.6 to 5.2% (Me-
dian = 1.7%, Additional file 1: Table S9). This is similar
to the amount of inconsistencies obtained on the same
material using a 50 K SNP array [52], suggesting that

InDel genotyping inconsistencies for replicates can be at-
tributed mostly to seed-lot divergences, rather than geno-
typing errors (Additional file 1: Table S9). However,
genotyping reproducibility was higher for these inbred
lines than for the DNA replicates of the F1 hybrid, sug-
gesting that errors in F1 hybrids can mostly be attributed
to the inability to genotype hemizygous with OTV and
MONO probe for this small dataset.

Application: diversity analysis of 362 maize inbred lines
panel
In order to evaluate this new array for genetic ana-
lysis, we analyzed genetic diversity using 57,824 poly-
morphic InDels on a subset of 362 inbred lines,
representing genetic variation that has been successfully
used to decipher maize genetic structuration and perform
genome-wide association studies [53–55]. To represent
each InDel in the diversity analysis, we selected one single
probe per InDel, based on the probe genotyping quality
(see Methods).
We first compared kinship values between 362 inbred

lines estimated with 57,824 InDels and with 28,143 pre-
fixed Panzea SNPs from the 50 K SNP array. Kinship
values between lines obtained with SNPs and InDels
were strongly similar and highly correlated (r = 0.9), ex-
cept those for a couple of lines closely related to B73
and F2 (Additional file 2: Figure S13). Then, we per-
formed Principal Coordinate Analysis (PCoA) based on
the genetic distance between 362 lines estimated by
InDels and SNPs (Fig. 5). We included on this PCoA the
genetic structuration of these 362 inbred lines, as ob-
tained from the prefixed Panzea SNPs from the 50 K
SNP array [53]. The global genetic structure developed
using two types of polymorphisms are highly similar.
The first axis showed good discrimination of European
Flint from Corn Belt Dent and Stiff Stalk lines, while the
second axis discriminated European Flint and Northern
Flint lines. Overall, the clustering of individuals based on
genetic distance estimated with InDels (Fig. 5a) was con-
sistent with those estimated with SNPs (Fig. 5b). We ob-
served that B73 and F2, which were used to discover the
majority of InDels, were more contrasted on PCoA
when genetic distance was estimated with InDels, as
compared with SNPs from the 50 K array, indicating
some ascertainment bias. We thus performed two
PCoAs, with InDels and SNPs, excluding B73 and F2
(Additional file 2: Figure S14). The two PCoAs gave
similar patterns, suggesting that this ascertainment
bias was largely removed when no close relative lines
from those used for discovering InDels were used in
diversity analysis. Due to this ascertainment bias, re-
sult of our array should be therefore interpreted with
caution for diversity analysis.
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Discussion
An original high throughput approach for genotyping
InDels
The comparison of whole genome sequence assemblies is
in theory the best approach to identify, precisely and ex-
haustively, structural variations between two individuals.
But even though great progress has been made recently in
this area, high-quality, whole genome assembly is still too
costly, time-consuming, and computationally intensive to
be applied to hundreds of individuals, especially when
considering the complexity of the maize genome [20, 56].
Other whole genome sequencing approaches based on
alignment of reads on a single reference, and using either
“read-depth”, “read-pair”, or “split-read” identification
methods [44–48] have mostly been limited to the identifi-
cation of deletions (i.e. sequences absent from a reference
genome). Liu et al., (2015) partially addressed the lack of
insertions (i.e. novel sequences compared to a reference
genome) by the identification 1,973,746 InDels [4]. Al-
though, among these a majority were very small (85%
smaller than 11 bp), and the use of PCR markers to geno-
type them is time-demanding, labor-intensive, and costly
at a large-scale level. To avoid this ascertainment bias due
to use of a single reference genome to genotype SVs, other
studies proposed to call SVs by aligning reads from se-
quencing on a pan-genome representing the combination
of several genomes [14, 20, 22, 50]. However, genotyping

InDels with high reliability and call rate by these ap-
proaches required at least 30X-50X coverage of the gen-
ome to correctly cover their breakpoint and their internal
sequence, especially to genotype InDels larger than 50 bp
[50]. Additionally, aligning reads from a thousand individ-
uals on a pan-genome remained computationally inten-
sive, and therefore required large informatics facilities
[50]. In the end, these approaches required to build a pan-
genome of high-quality, which remains challenging for a
complex genome.
In this paper we describe a new approach combining

(i) the ‘accuracy’ of detecting InDels using whole gen-
ome assembly, with the detection of 89,150 insertions
and 52,175 deletions from the comparison of three
newly sequenced and assembled maize inbred line
(F2, PH207, and C103) genomes and the public maize
B73 AGPv2 reference genome, (ii) and the ‘high-
throughput’ genotyping utility provided by SNP ar-
rays. This approach allowed us to genotype, for the
first time, thousands of insertion/deletion variants, in-
cluding PAVs, on a few hundred maize individuals.
Genotyping cost per individual using the InDel array was
at least 10–20 fold cheaper than any approach based on
sequencing for a species with a genome as complex as
maize, at a similar level of reliability (> 1000€-2000€ for a
30-50X of a 3Gbp genome vs 50€-220€ using Affymetrix®
Axiom® array, depending on the number of samples and

Fig. 5 Principal coordinate analysis on the genetic distance between 362 inbred lines from an association panel estimated by a) 57,824 InDels
and b) 28,143 SNPs. Colors represent the assignment of the inbred lines to the 5 genetic groups defined by admixture using pre-fixed Panzea
SNPs from the 50 K Illumina array, when the probability of assignment to a group (membership) was greater than 60%. Inbred lines not assigned
to a group were considered admixed and colored gray. The common names of maize accessions, typical of each genetic group, were used
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probes). This genotyping cost did not include bioinfor-
matics analysis. Calling SVs from a pan-genome of a spe-
cies with a large and complex genome, such as maize, was
time-consuming and required bioinformatics skills and
large informatics facilities, which are costly and not avail-
able in all laboratories. In the contrary, the array could be
analyzed rapidly on a laptop using a pipeline already im-
plemented for analyzing SNPs and the Hom2OTV R
script developed for analyzing MONO probes. Addition-
ally, the array provided a wet-lab validation of the InDel
discovery and allowed the removal of putative genotyping
errors from sequencing (particularly for PAVs), due to in-
complete or bad genome assembly, as we observed in our
study. In the end, the probe content of the InDel array can
be largely optimized, either to reduce the size of array
(and therefore the cost), or to increase the number of SVs
genotyped, without losing reliability (e.g. 200,000 to 300,
000 InDels) by filtering out under-performing probes, by
strongly reducing the number of probes per InDel (2–3),
and by removing false positive InDels. It would also be
easy to design an array combining probes targeting InDels
and more classical SNPs, outside of InDel sequences.
With the use of breakpoint probes for both insertions

and deletions, our approach overcomes some of the limi-
tations of previous CGH or SNP array-based studies,
which were only able to call deletions if a few successive
probes had lower fluorescent intensity signals [30–33].
Unterseer et al., (2014) genotyped specifically 6759 small
deletions, which were discovered by aligning reads of 30
inbred lines against the B73 genome, but the study did not
include any insertions [35]. However, previous CGH and
SNP arrays did not design probes to target breakpoints
and detected InDels by analyzing the variation of fluores-
cent intensity signals of ordered probes [30–32]. Conse-
quently, these technologies targeted exclusively low copy
regions of the genome, excluding InDels containing re-
peats, such as transposable elements (TEs) [2, 8, 42]. This
is a strong drawback for maize and many other crops
since a large part of their sequence is composed of trans-
posable elements [28, 57] which may be highly variable
between individuals [4, 24, 58] and may impact pheno-
types [59–61]. The use of BP probes allows to target
Present/Absent Variations, whose sequence are unique
and not present elsewhere in the genome, as well trans-
posable elements, whose internal sequence can be
present/absent at one specific locus but also present else-
where in the genome. Another advantage of genotyping
breakpoints is that it provides the ability to genotype the
same mutational event across all individuals of the popula-
tion, as it is highly unlikely that two independent muta-
tional events could lead to the exact same breakpoint. On
the contrary, for InDels detected using classical CGH or
SNP arrays, it is much harder to identify common InDels
among a population of individuals, as we don’t know

precisely their breakpoints. Genotyping breakpoints is also
very cheap since only one or two probes are needed,
which makes the InDel size no longer a limitation for
genotyping it accurately, contrary to previous SNP and
CGH arrays that rely on fluorescent intensity variation of
probes covering the entire InDel sequence [43]. The geno-
typing of breakpoints by sequencing is possible with a tool
like PInDel [48], which has a genotyping mode or Bayes-
Typer [50], but at a much greater cost and with lower call
rate compared to the use of a SNP array. Finally, break-
point probes are codominant markers and allow accurate
genotyping of hemizygous individuals (Heterozygous for
presence/absence), since their genotyping is based on
fluorescent contrast rather than fluorescent intensity vari-
ation, which is known to be noisier as with MONO and
OTV probes [43].
Although the use of BP probes is clearly the simplest

way to genotype InDels using an SNP array, breakpoints
are not always available (“no map” approach discovery)
or “designable” with 35 bp probes, for instance, the cases
where sequences of microhomology at breakpoint site
were larger than 5 bp. In order to genotype the 52,471
InDels without breakpoints and explore the genetic di-
versity within InDels, we also designed 577,778 internal
probes both on monomorphic and polymorphic sites in
PARs for both insertions and deletions. To genotype
PARs in InDel sequences using SNPs, we took advantage
of the already available Affymetrix® algorithms to call
Off-Target Variants (OTVs), which can detect variation
of fluorescent intensity signals for a single probe (Fig. 1c)
[34]. This approach was used by [35] who was able to
detect 45,974 OTVs on a set of diverse maize inbred
lines using a 600 K SNP array. Nevertheless, the array
was designed in a classical way to target SNPs, and there
was no prior evidence that the probes called as OTVs
would belong to InDels. Additionally, detecting SNPs in
insertions required the assembly of a pan-genome, com-
bining common and specific sequences from different
individuals, in order to retrieve SNPs by aligning reads
from sequenced lines [14, 20, 22, 50]. In our case, only
using OTV probes would have resulted in the elimin-
ation of many InDels, since 87,372 of them, including
74,648 insertions, did not have known SNPs within their
sequence. In order to avoid this ascertainment bias due
to prior knowledge of the presence of SNPs we designed
414,500 MONO probes on putative monomorphic sites
within PARs of InDel sequences. This permitted the
genotyping of 38,134 supplementary InDels that could
not be targeted by OTV or BP probes. This new type of
probe required the development of a new algorithm in
order to cluster individuals according to their fluores-
cent intensity variation only, to be able to assign a geno-
type to each individual (Additional file 2: Figure S7C). A
limitation of current workflow is that Affymetrix®
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algorithms require a larger number of hemizygous indi-
viduals to generate high-quality genotype clusters using
the OTV and MONO probes. While it was not an issue
for maize inbred lines (or individuals from autogamous
species) that are mostly homozygous, it was an issue for
individuals from allogamous species that are highly het-
erozygous. By using alternate genotyping techniques or
processing a larger number of hemizygous samples, it
should be possible to identify hemizygous clusters ac-
cording to fluorescence intensity from OTV and MONO
probes. We observed some clusters that seem incorrectly
interpreted as heterozygote for SNPs, although they
likely correspond to hemizygous individuals for OTV
and MONO probes (Additional file 2: Figure S9B, see
below for a more detailed discussion). Alternatively,
other algorithms/software based on fluorescent intensity
variation of either a single probe or several ordered
probes exist and could be used to detect copy number
variation for hemizygote individuals [36–41].
In the end, we observed some ascertainment bias using

our array (Fig. 5). This was due to the fact that our four
inbred lines do not well represent the whole genomic di-
versity of maize, notably missing are tropical lines. As a
consequence, it could lead to ascertainment bias by re-
inforcing the differentiation of inbred lines genetically
close to the four inbred lines used to discover InDels
[52, 62, 63] as we observed in our diversity analysis for
lines close to B73 and F2 (Fig. 5 and Additional file 2:
Figure S13). It could be therefore highly valuable to use
more lines for the initial InDel discovery step. Several
new individual maize genome assemblies are now avail-
able in the public domain and more and more could be-
come available in the future. Our approach could easily
be applied to these new genome assemblies to discover
new InDels on a larger set of inbred lines representative
of maize diversity with the aim to design a new InDel
array.

Reliability of genotyping / calling results
Our approach provides a reliable and reproducible
method for genotyping InDels in inbred lines, since (i)
the genotypes obtained by array and by sequencing were
highly consistent for BP probes (97%) and in a lesser ex-
tent with OTV and MONO probes (92 and 88%, re-
spectively), due to the fact that the genome assembly of
sequenced lines were incomplete or incorrect, resulting
in high error rates for absent calls using GBS; (ii) the
average probe genotyping error rate was estimated at 3%
(lower for absent calls); (iii) the InDel genotyping errors
could be greatly reduced by combining the genotypes of
different probes within the InDels (0.02% for 5 probes);
(iv) the genotyping results were highly reproducible be-
tween DNA replicates of F1 hybrids (95 to 97%, depend-
ing on probe type) and between inbred lines (94.8 to

99.4%); and (v) the call rate for individuals was very high
(96 to 99%) and can be increased by combining the ge-
notypes of the probes within the InDels (97.7 to 99.9%
for 2 and 5 probes, respectively).
Our approach is promising as a method to genotype

structural variations in maize, as well as other species
with complex genomes. We obtained high metrics, com-
parable to classical SNP arrays, based on Affymetrix®
Axiom® Technologies, even though InDels are more
complex to genotype. First, call rates are high and quite
similar to those obtained for SNP with the 600 K SNP
Affymetrix® array (98% against 98.1% in [35]). Neverthe-
less, we observed a lowest call rate for BP probes (90%).
This lowest call rate could be explained by the usage of
more relaxing criterion to filter out probes for building
array and by the fact that polymorphisms in surrounding
sequences of InDel breakpoints have not been taken into
account contrary to internal probes. Second, the per-
centage of BP and OTV probes classified as PHR (94%
in both cases) is similar than for 600 K SNP Affymetrix®
genotyping array (92%) but higher than for 1.2M screen-
ing Affymetrix® arrays (~ 65%) that have been used to se-
lect best markers for designing the final 600 K SNP
Affymetrix® arrays. It is difficult to compare the classifi-
cation of MONO probes, because the algorithm used
(Hom2OTV) is new and quite different from the one
used for BP, OTV, and classical SNPs. Third, the repro-
ducibility between DNA replicates of F1 hybrids was
high (95 to 97%, depending on probe type), but this is
lower than for SNP arrays (~ 99.5% in [35]). However,
the reproducibility was estimated on DNA replicate of
F1 hybrids in our study while it was estimated on inbred
lines for 600 K SNP Affymetrix® array. When we com-
pared genotype of 13 inbred lines originated from differ-
ent seedlots, reproducibility is close to those of 600 K
SNP Affymetrix® array (98.3%) and displayed approxima-
tively same reproducibility with 50 K SNP Illumina array
([52], Additional file 1: Table S9). This comparison sug-
gested strongly that our lower reproducibility might not
be due to genotyping errors but possibly the divergence
between the samples for inbred lines and the use of F1
hybrids rather than inbred lines for DNA replicate.
Fourth, the Mendelian inheritance between F1 hybrids
and their parental lines was lower for our InDel than for
SNP array (88% vs 97.6% in [35]) but quite similar con-
sidering only homozygous genotypes (95%). This is likely
due to the presence of a small number of hemizygous
samples since the 16 F1 hybrids were eliminated due to
their low call rate (< 0.9) and there are only residual
hemizygosity for inbred lines. Considering the F1 hy-
brids for defining BP cluster could improve the delinea-
tion of hemizygous cluster and therefore Mendelian
inheritance. Note that 600 K SNP Affymetrix® in maize
was designing by selecting the high confidence probes
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based on results of a first screening 1.2M SNP Affyme-
trix® array which could favor reproducibility for this
array. Finally, 72% of probes were converted into
markers, which is comparable to this 1.2 maize Affyme-
trix® Axiom® SNP screening arrays (74.9% in [35]). Out
of these, 88% were polymorphic for presence/absence.
This conversion rate is expected, considering that Affy-
metrix® Axiom® array analysis pipelines have been opti-
mized for the detection of bi-allelic SNPs and are more
sensitive to variations in fluorescent contrast (x-axis)
compared to variations in fluorescent intensity (y-axis),
which is known to be noisier [34, 43]. Moreover, we did
not always follow Affymetrix® recommendations, as we
did not filter out probes with a bad design score.
We identified some inconsistencies between genotyp-

ing by array (GBA) and genotyping by sequencing (GBS)
obtained by aligning probes against our genomes (Table 4).
These inconsistencies were higher when GBS called absent
instead of present for InDels interrogated by OTV and
MONO probes (17.1 and 20.2% vs. 4.3 and 5.4%, respect-
ively), although no differences were observed for BP probes
(Table 4). These biased inconsistencies towards absence
for internal probes seems very high compared to our ana-
lysis on the consistencies between probes within Indels.
Our analysis of consistencies between probes within InDels
showed indeed that genotyping errors produced by the
array were close to 3% (Fig. 4) and lower for absent calls
(Additional file 2: Figure S12). These results suggested that
the higher genotyping inconsistencies for GBS absent are
due to errors in GBS. GBS errors for absence were well ex-
plained by the use of an incomplete genome draft assembly
to align probes sequences, and the use of a higher-quality
genome could help to reduce these inconsistencies. The
probes targeting sequence regions present in one line, but
not assembled in their draft genome assemblies, were
falsely genotyped absent, but the sample DNA correctly
hybridized with the probes, and the InDels were called
present with the array. This could also explain why the
number of inconsistencies was higher for B73, as all B73
absence genotypes were defined in comparison to draft as-
semblies. Whereas for the other 3 lines, absence genotypes
were defined in comparison with the gold standard B73
genome sequence. The fact that we obtained a better result
on OTV probes interrogating InDels discovered in F2 can
be explained because we used only SNPs discovered on the
B73-F2pan-genome and not in other genomes. And, the
fact that BP probes had similar consistencies for geno-
typing absent and present calls could be explained by
the fact that the BP probes were designed exclusively
on B73 reference genome.
We also found that 20,574 InDels were monomorphic

and present across all lines, suggesting they represented
false positives from regions not assembled in our draft
genomes. To reduce this false positive rate, we strongly

advise to not only align B73 reads onto each draft
genome assembly but to also align reads from each
sequenced genome on each other and against itself. This
would have several benefits: (i) it would allow to
discover even more and higher-quality InDels, as each
putative deletion discovered in one sample could poten-
tially benefit from supporting reads from another sam-
ple; (ii) this would simplify the identification of InDels
common to more than one genotype; and (iii) it would
help to identify and eliminate false positive deletions by
the alignment of each sample on its own draft assembly.
Nevertheless, the use of incomplete draft genomes

does not explain all discrepancies between genotypes ob-
tained by sequencing and by array. First, these discrep-
ancies could also be due to incorrect clustering and
assignment of a genotype call (array errors). This was
exemplified by some MONO probes classified as SNPs,
although the clustering pattern looks like a MONO
cluster with a large difference of fluorescence intensity
between two clusters (Additional file 2: Figure S9C). A
more detailed inspection of the clustering of MONO
probes displayed an unexpected cluster pattern (Table 4,
Additional file 2: Figure S9D), and OTV probes classi-
fied as SNPs (Table 4, Additional file 2: Figure S9A)
suggests a wrong assignment of genotypes for the
cluster displaying the lowest fluorescent intensity.
Similarly, the genome divergence within probe se-
quences for some inbred lines could result to group
those individuals in an OTV cluster, and therefore re-
sult in an incorrect absent call. However, these geno-
typing errors due to bad clustering or genomic
divergence between individuals within probes se-
quences could be strongly reduced by combining ge-
notypes from several probes. As an InDel called by
five different probes has a random genotyping error
of 5%, we showed by simulation that the genotyping
error for that InDel would be reduced to 0.1%, when
the most frequent allele among the 5 probes was
assigned as genotype of the InDel (Additional file 1:
Table S6).
Surprisingly, 4.7% of MONO probes displayed a

classical OTV clustering, suggesting that an unknown
SNP was targeted by these probes by chance. This
high level of polymorphism (1 SNP / 21 bp) was
slightly higher than observed by sequencing a small
set of diverse lines [64, 65]. It could suggest that PAR
genomic regions might have more divergence than
other parts of the genome, because these regions were
involved in local adaptation by maintaining together
favorable combinations of alleles as proposed by [66].
These 15,690 new OTVs are very interesting, since
they were discovered by chance on a large set of 445
inbred lines. We could therefore expect that these
OTVs have no ascertainment bias, which can be very
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useful for analyzing genetic diversity within InDels
carrying PAR regions. In addition, 20.4% of MONO
probes displayed unexpected clustering: one off-target
cluster, corresponding to absence of the sequence;
one homozygous cluster, corresponding to presence
of the sequence; and an unexpected heterozygous
cluster (Unexpected MONO 1 in Table 4). Consider-
ing these “unexpected MONO 1” as true SNPs would
indicate a density of 1 SNP every 5 bp, which is not
compatible with the level of diversity observed in pre-
vious studies of maize [64, 65]. Deeper investigation
of these MONO probe clusters identified that for
some probes, the unexpected heterozygous cluster is
positioned between the presence and absence clusters
(Additional file 2: Figure S9B). This suggests that
these unexpected heterozygous clusters are identifying
inbred samples with only one copy presence (hemizy-
gous genotype). An alternative hypothesis to explain
this unexpected pattern is the presence of divergent
duplicated sequences, leading to the existence of an
artificial heterozygous cluster for SNPs corresponding
to the presence of two paralogous sequences. This re-
sult suggests therefore that there is probably room to
develop genotyping strategies in order to better iden-
tify additional clusters corresponding to the presence
of hemizygous individuals for both MONO and OTV
probes and therefore improve the quality of the geno-
typing of InDels when using a SNP array.
These potential clustering errors, as well as the in-

correct design of some probes, can explain some in-
consistent genotypes for presence/absence between
probes for the same InDel. Comparison of genotyping
across different probes within InDels could help to
identify and remove probes displaying highly discord-
ant genotypes, due to errors originating from poor
clustering or from poor design. Interestingly, some
InDels showed reproducible inconsistent genotypes
for presence/absence across their probes in several in-
bred lines (Additional file 2: Figure S9B). This sug-
gested that this pattern could have a biological origin,
with possible rearrangements having occurred several
times within the same genomic region in some inbred
lines. Following this hypothesis, Gu et al. (2008) ob-
served two different types of rearrangements which
could explain our observations [67]: (i) rearrange-
ments with an unique breakpoint in population and
therefore common size between individuals resulting
to two haplotypes in a population and (ii) rearrange-
ment with non-unique breakpoints, scattered in a
genomic region, which resulted in several haplotypes.
This hypothesis is also supported in our experiment
by the 56% of BP probes classified as OTVs, indicat-
ing that FW or/and REV flanking sequence did not
hybridize in some lines.

The development of a statistical approach to merge ei-
ther a posteriori the calling results of independent clus-
tering of individual probes or a priori the fluorescent
intensity signal of successive probes within a InDel could
be interesting in order to improve the robustness of
InDel genotyping. This would have the advantage to
limit the effect of genotyping errors due to poor cluster-
ing and to reduce the noise in fluorescent intensity sig-
nals. We showed by simulation that assigning the most
frequent allele across probes as the genotype reduced
genotyping error to 0.7 and 0.1% when 3 and 5 probes
were used, respectively. Additionally, it increases the
InDel call rate (Additional file 1: Table S6). In the end, it
would also help to identify varying haplotypes, repre-
senting the complexity of a region in a population. Using
multiple probes for calling InDels is therefore highly
valuable for improving reliability of InDel genotyping,
since it allows putatively to reduce random genotyping
error, due to genomic divergence or other causes,
removes probes poorly clustered or designed, and identi-
fies more complex rearrangements.

Conclusions
Our approach, from the sequencing of a few repre-
sentative genotypes, their genome assembly, the inser-
tion/deletion discovery, and to the design and use of
the high-throughput genotyping array was applied to
maize as a proof of concept. Our approach allowed
us to rapidly create at a reasonable cost a high-
throughput SVs genotyping tool for this species. This
approach will remain interesting as long as calling
large InDels from sequencing, for a large set of
individuals, remains un-affordable, bioinformatically
challenging, and time-demanding. Nevertheless, our
approach could benefit from few improvements based
on the knowledge accumulated from this test on
maize. First, it could be highly valuable to use more
lines for the initial InDel discovery step to avoid as-
certainment bias [62] as we observed in our diversity
analysis (Fig. 5). Using more lines for detecting InDels
should also reduce the number of false positives SVs
in array due to poor assembly, genotyping error due
to genomic divergence between individuals, and help
to identify complex rearrangement. Second, even
though we did not have any indication that our
sequenced data had been contaminated, a contamin-
ation cleaning step should be applied to the se-
quenced data prior to SVs discovery and genome
assembly, in order to avoid potential false positive
SVs in the final array. Third, aligning reads against
the internal sequence of InDels, as well as aligning
probes sequences against each genome assemblies,
should strongly reduce false positives in the final
array. Fourth, improving the pipeline of MONO and OTV
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probes to call hemizygous genotype from variation of
fluorescent data would be very valuable, notably for allog-
amous species. Fifth, capacity of array could be largely in-
creased to 200,000 or 300,000 InDels without losing
reliability by optimizing number of probes per InDels.
To conclude, we developed a “proof of concept” high-

throughput and affordable InDel genotyping array, based
on the InDels discovered by sequencing on four inbred
lines. Our “proof of concept” approach could be easily
applied to other species to explore genomic structural
variation, notably species with limited sequence data or
few genome assemblies available. This could also be in-
teresting for species with greater sequencing resources
and where genotyping a large set of individuals is re-
quired, such as for breeding purposes, genome wide as-
sociation studies, genomic selection, or characterizing
SVs in large germplasm. Although our array was not de-
signed to genotype duplications and inversions, our ap-
proach could be easily extended to genotype breakpoints
of inversions, but further development of the pipeline
for genotyping duplications using internal probes would
be required. This powerful approach opens the way to
studying the contribution of InDels and other SVs to
trait variation and heterosis in maize [42] and should
contribute to decipher the biological impact of InDels
and other SVs at a larger scale in different species.

Methods
Sequencing material
Three maize inbred lines, which are key founders of maize
breeding programs and originated from three different
heterotic groups, had been selected for deep sequencing
and InDel discovery: the European Flint line F2 and two
American dent lines, PH207 (Iodent) and C103 (Lancas-
ter). For the F2 inbred line, see [20]. For C103 and PH207
inbred lines, DNA was extracted with the NucleoSpin
Plant XL, according to the manufacturer’s instructions
(Macherey Nagel, Düren, Germany). The DNA concentra-
tion was estimated by UV measurement and the quality
was checked with an agarose gel electrophoresis. Two li-
brary types were sequenced: a 180 bp overlapping paired-
end library and a 3 kb mate-pair library. The paired-end li-
braries and the sequencing were performed by Integragen
(Evry, France) on a HiSeq2000 sequencer (Illumina, San
Diego, USA). 412 and 377 million 100 bp paired-end reads
(33x and 30x) were sequenced respectively for C103 and
PH207. The mate-pair libraries were prepared and se-
quenced at BGI (China) also on HiSeq2000 sequencer
(Illumina, San Diego, USA). Raw reads were filtered to re-
move adaptor sequences, contamination, and low-quality
reads. 326 and 316 million 100 bp mate-pair reads (26x
and 25x) were sequenced, respectively for C103 and
PH207. A data set of 473 million B73 inbred line 100 bp
paired-end reads (35x) with an average insert size of 191

bp was downloaded from ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
SRR404/SRR404240.

InDel and PAV discovery
For the deletion discovery step, F2, PH207, and C103
paired-end reads were aligned against B73 AGPv2 gen-
ome sequence using novoalign version 3.01.01 (http://
www.novocraft.com) (default parameters). Samtools [68]
version 0.1.18 was used to coordinate, sort, and retain
reads with a mapping quality of at least Q30. Duplicated
reads were eliminated using MarkDuplicate from the
picardtools suite (http://broadinstitute.github.io/picard)
version 1.48. PInDel [48] version 0.2.5a2 was run in par-
allel on each chromosome to perform multi-genotype
calling of deletions. Raw formatted results were con-
verted to VCF (Variant Calling Format) using the script
PInDel2vcf. BreakDancer [44] was used in complement
PInDel, but only for F2. Deletions shorter than 100 bp
were discarded. Deletions spanning a B73 assembly gap
or located in regions prone to mis-assemblies, such as
telomeric, knob, and centromeric regions, were also
excluded from further analysis using IntersectBed BED-
Tools [69] version 2.16.1.
For whole genome sequence reconstruction of F2,

PH207, and C103 inbred lines, paired-end and mate-
pair reads were used together and assembled using
ALLPATHs-LG [70] version R41008 (Additional file 2:
Figure S1B). For F2, the script CacheToAllPathsIn-
puts.pl was used to cache the data to use for assembly:
100% of the non-overlapping 230 bp insert paired end
data set, 100% of the overlapping 170 bp insert paired
end data set, 30% of the non-overlapping 370 bp insert
paired end data set, and 100% of the 2.4 kb insert mate
pair data set. Indeed, only overlapping paired end reads
are used by ALLPATHs-LG for building contigs, but
the supplementary non-overlapping paired end reads for
F2 were used for error correction. RunAllPathsLG was
then run for all three genotypes using optional parame-
ters. Details on the sequence library usage during the as-
sembly process are given in Additional file 1: Table S1.
For each assembly, the coverage of the gene space was
evaluated using BUSCO [71] version 3.0.2 using genome
mode and the maize species (−m geno -sp maize).
B73 paired-end reads were successively aligned to

ALLPATHs-LG F2, PH207, and C103 genome sequence
assemblies (Additional file 2: Figure S1B). The same
tools and parameters used to call deletions against the
B73 genome were applied to detect B73 deletions against
F2, PH207, and C103 genome sequences. These B73 de-
letions were reciprocally called insertions of F2, PH207,
and C103. Only insertions smaller than 100 bp were dis-
carded, except those spanning real assembly gaps (with
approximate size inferred from paired reads average dis-
tance) and not “unsized” gaps like in the B73 genome.
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When possible, insertions were anchored onto the B73
AGPv2 genome sequence using a dedicated pipeline
combining Megablast version 2.2.19 [72] and Age ver-
sion 0.4 [73]. Again, insertions that could be anchored
on the B73 reference and were overlapping regions
prone to mis-assemblies such as telomeric, knob, and
centromeric regions, were also excluded from further
analysis using IntersectBed.
F2 specific sequences coming either from the no map ap-

proach (Additional file 2: Figure S1) or from the work of
[20] were included as such, without any further filtering.
The multiple references and approaches used during

the InDel discovery step led to a set of InDels with vari-
ous levels of redundancy. Some “intra-tool” redundancy
was found (e.g. multiple calls found by one tool within
the same genotype at highly polymorphic loci). These
“ambiguous” calls were systematically identified using
the Bedtools suite version 2.16.1 [69] and eliminated.
Moreover, for F2 deletions, some “inter-approach” re-
dundancy was also expected and eliminated using inter-
sectBed utility also from the Bedtools suite. When
redundancy was found, PInDel calls were preferred to
BreakDancer calls, because they had precise breakpoints
and contained the calls for PH207 and C103. The same
filter was applied to all insertions that could be anchored
to the B73 genome sequence. Furthermore, for non-
anchored InDels, in order to avoid redundancy in in-
ternal genotyping probe design, RepeatMasker (http://
www.repeatmasker.org) was used to mask redundant re-
gions by similarity using an iterative approach. First,
“ALLPATHs-LG assembly” F2 insertions were masked
with “ABySS assembly” F2 insertions (at least 95% of
identity) to generate a non-redundant set of F2 inser-
tions. Then C103 insertions were masked with F2 inser-
tions (at 90% of identity), PH207 insertions were masked
with C103 and F2 insertions (90%), and finally F2 no
map specific sequences were masked with PH207, C103,
and F2 insertions (90%).

Design of Affymetrix® axiom® array
Preparation of sequences for probes for design
To identify presence/absence regions (PARs) within InDel
sequences suitable for the design of “off-target” probes, we
used the genometools Tallymer utility [74] version 1.5.6 to
create two indexes for B73, F2, PH207, and C103: one
from their genome assemblies (17-mers with a minimal
occurrence of 1) and one from a 5x genome equivalent
subset of their raw sequenced data (17-mers with a min-
imal occurrence of 5). Then B73 genome was iteratively
annotated with the script tallymer2gff3.plx (options used:
-k 17 -min 35 -occ 1|5 depending on the index) to identify
regions not covered by F2, PH207, and C103 kmers. Re-
ciprocally, the two F2 draft genomes, PH207 and C103
ALLPATHs-LG draft genomes were run through the

same procedure to identify regions not covered by B73
kmers. The gff files generated by this process were then
used in combination with gff files of repeats annotated
with RepeatMasker to define PARs of a minimum size of
35 bp for each type of InDel and each draft genome.

BP preparation
Breakpoints could be targeted by probes (Fig. 1a) pro-
vided that the nucleotide flanking the breakpoint at the
beginning of the deleted sequence was different from the
nucleotide right after the end of deleted sequence (and
reciprocally on the reverse strand). Type I and type III
breakpoints without micro-homology sequence can be
submitted for the Affymetrix®’ standard design proced-
ure, whereas type II breakpoints have to go through an
iterative design process, shifting the sequence by one
base on each attempt until reaching a discriminative
position. This iterative process stops after 5 bp and is
also performed by Affymetrix®.

Probes scoring
All potential probes were evaluated in an in-silico analysis
to predict their microarray performance. A p-convert
value, which arises from a random forest model intended
to predict the probability that the SNP will convert on the
array, was determined for all probes. The model considers
factors including probe sequence, binding energies, and
the expected degree of non-specific binding and
hybridization to multiple genomic regions. This degree of
non-specific binding is estimated calculating 16-mer hit
counts, which is the number of times all 16 bp sequences
in the 30 bp flanking region from either side of the SNP
have a matched sequence in the genome. These scores
were generated both for forward and reverse probes. A
probeset is recommended if p-convert> = 0.6 and there
are no expected polymorphisms in the flanking region. A
probeset is neutral if p-convert> = 0.4, the number of ex-
pected polymorphisms in the flanking region is less than
3, and the polymorphisms are further than 21 bp of the
variant of interest. Probesets not falling into these two cat-
egories are scored as not recommended. Probesets that
cannot be designed are scored as not possible.

Probes selection
Concerning OTV and MONO probes, we applied three suc-
cessive filtering steps. First, we selected only probes classified
as recommended and neutral based on their scoring, with
no more than one hit on the B73 reference genome for dele-
tion probes, and no hit at all for insertion probes. After this
step, 204,213 OTV probes and 18,884,827 MONO probes
remained. Secondly, only probes with more than 70% in
PARs were kept. An additional filtering step was imple-
mented specifically for MONO probes to optimize probe
distribution along the targeted PARs. For this step, PARs
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were split in 75 bp windows using windowmaker (Bedtools)
and the MONO probe with the highest p-convert value was
selected for each window. If there were InDels with less than
4 MONO probes selected using 75 bp windows, these
probes were eliminated and a second iteration was
attempted, using 50 bp windows, followed by a last iteration
with 25 bp windows. This generated 616,286 probes includ-
ing BP and OTV probes targeting 108,24 InDels (90% of
InDel selected for design). We completed the design by res-
cuing 6219 OTV and 53,441 MONO probes from InDels or
PARs not targeted by any probes, bringing the total number
of probes selected to 675,946 to target 109,292 InDel.
At the last step, duplicated probeset were removed

based on their sequence by Affymetrix® during the chip
design procedure, leaving 662,772 probeset (105,927
InDels) corresponding to 1,404,570 different probes to
be tiled on the array.

Genotyping of 105 k InDels on 480 maize DNA samples
Plant material for genotyping
For genotyping, 480 different DNA samples were extracted
from leaves following a NaBisulfite method modified from
[75, 76]. These 480 samples included 440 inbred lines, 24
highly recombinant inbred lines, and 16 F1 hybrids. Both
F1 hybrids (obtained by crossing inbred lines) and their
parental inbred lines were genotyped on the array, but seed
lots used to produce F1 hybrids and those used to extract
DNA for genotyping were different. Among these 480
DNAs, 13 inbred lines were genotyped using two different
DNAs from two different seed-lots and were used to evalu-
ate the reproducibility of the genotyping (Additional file 1:
Table S9). DNA samples of one F1 hybrid were also geno-
typed 6 times. Mendelian inheritance was estimated be-
tween 12 hybrids F1 derived from 9 different parental lines
(Additional file 1: Table S8).

Variant calling using Affymetrix® algorithm
Each type of probe had a dedicated algorithm (Add-
itional file 2: Figure S7) to call genotypes, according to
expected behavior from the probe design. DNA samples
from 480 individuals were hybridized to the array using
the Affymetrix® system. The genotyping, sample QC, and
marker filtering were performed according to the Axiom®
Best Practice genotyping analysis workflow. Genotype calls
and classifications were generated from the hybridization
signals in the form of CEL files using the Affymetrix®
Power Tools (APT) and the SNPolisher package for R, ac-
cording to the Axiom® Genotyping Solution Data Analysis
Guide, and a custom-made R script, Hom2OTV, imple-
mented the algorithm for calling MONO probes.
The APT results were then post-processed using

SNPolisher, which is an R package specifically designed
by Affymetrix®. Marker metrics were generated using the
Ps_Metrics function. These marker QC metrics were

used to classify probesets into 14 categories (Additional
file 2: Figure S8) using the Ps_Classification and Ps_
Classification_Supplemental functions, with all default
setting for diploid (e.g. HetSO.cut = − 0.3, HetvMAF.-
cut = 1.9), except for an empirically determined, more
stringent heterozygous variance filter (AB.varY.Z.cut =
2.6). Example of clusters from each classification were
visualized using the Ps_Visualization function (Add-
itional file 2: Figure S8). Variants were preferentially se-
lected as recommended if they were exhibiting stable
category assignments with clearly separated clusters.
Each variant was ranked into a category (Additional file
2: Figure S8) at each step of the pipeline.
Algorithms used to convert BP and OTV were similar,

as BP and OTV probes behaved like classical SNPs. For
initial genotype calling, a priori (generic) cluster posi-
tions were used, since no information about expected
positions was available. A first analysis was performed
according to Affymetrix® recommendations. Secondly,
the level of inbreeding was taking into account for a pos-
teriori cluster definition, because of the high amount of
inbred lines in the panel. This parameter took values
from 0 for fully heterozygous to 16 for completely homo-
zygous samples. For OTV and BP algorithms, an inbred
penalty of 4 (lower penalty for inbred species) was applied
to try to re-labelled probes that fall into categories:
CallRateBelowThreshold (CRBT), HomHomResolution
(HHR), NoMinorHom (NMH), Other and Unexpected-
Heterozygosity, after the first cluster analysis (Add-
itional file 2: Figure S8). Markers that were classified as
OTV may also be considered recommended after the
OTV_caller function has been used to re-label the
genotype calls. The SNPolisher OTV_Caller function
performed post-processing analysis to identify miscalled
AB clustering and identify which samples should be in
the OTV cluster and which samples should remain in the
AA, AB, or BB clusters. Samples in the OTV cluster were
re-labelled as OTV. Finally, the recommended markers list
is created by combining the list of markers that are classi-
fied into the recommended categories (PolyHighResolu-
tion (PHR), MonoHighResolution (MHR), and OTV).
BP and OTV probes that exhibited only two clusters

(AA or BB and OTV) should fall into the monomorphic
classification and be considered as not recommended. A
new MONO algorithm was developed (Fig. 4), because,
unlike traditional SNP genotyping, we only expected two
clusters for MONO probes (presence and absence)
(Fig. 1c). To classify monomorphic sequence genotyping,
the OTV_Caller function was called, and only MHR and
NMH were considered as recommended. Other mono-
morphic probes are then analyzed with an inbred pen-
alty of 16 (highest level) to re-labelled probes displaying
higher-than-expected levels of heterozygosity. Finally,
the new function called Hom2OTV was implemented to
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classified probes exhibiting two homozygous clusters,
with primarily an intensity difference. This function de-
termined if the intensity difference represents one
homozygous cluster (InDel presence) and one OTV
cluster (InDel absence), as we expected. There are no
parameters in this function. The lower intensity homo-
zygous cluster is recalled as OTV.

Evaluation of genotyping quality
We compared the genotyping for 479,027 probes from
the InDel array (Genotyping By Array: GBA) with the
genotyping from sequencing (Genotyping By Sequen-
cing: GBS) of 4 inbred lines used to discover the InDels:
B73, F2, PH207, and C103. Genotyping by sequencing
was built from the alignment of probe sequences on the
reference genome B73 and the de novo assembly of 3 in-
bred lines (F2, PH207, and C103) with Blast software.
Sequences were considered present in lines when the
probes were aligned with less than 5% of mismatch or
otherwise considered absent.
Genotyping consistency for B73, F2, PH207, and C103

was calculated between GBS and GBA according to
genotype calls “present” or “absent”, produced by GBS
(Table 4). For this purpose, Affymetrix® genotyping was
converted into these genotypes: present, absent, and
hemizygote (1 copy present). Consistency of Presence/
Absence genotypes between sequencing and array geno-
typing was analyzed for four individuals (B73, F2,
PH207, C103) according to probe types (BP, OTV,
MONO): Number of similar genotypes between GBS
and GBA /number of genotype called by GBA and GBS.
Note that the seed-lot used for B73 and F2 genotyping is
different from the seed-lot used for InDel discovery, but
it is the same seed-lot for inbred lines PH207 and C103.
In order to evaluate the consistency of probe genotyp-

ing within InDels (Fig. 4), we used 362 inbred lines from
an association panel representing a wide range of genetic
diversity (Camus-Kulandaivelu, 2005; Bouchet et al.,
2013). From 479,027 probes, we selected 294,650 poly-
morphic probes and fully consistent between GBS and
GBA in order to limit the genotyping errors due to se-
quencing. These probes genotyped 72,555 InDels. We
then selected 50,648 polymorphic InDels that are geno-
typed with at least two probes (corresponding to 270,
581 probes), and calculated the average frequency of the
presence allele across all probes for each InDel and in-
bred line. For each InDel, we calculated the frequency of
inbred lines displaying fully consistent genotypes be-
tween probes, i.e the proportion of lines where the aver-
age frequency across all probes is 0 or 1. We also
calculated frequency of inbred lines that have a least one
probe with an inconsistent genotype (FreqDiff01), i.e the
proportion of lines where the average frequency across
all probes is not 0 or 1. To evaluate the effect of the

probe numbers on the frequency of lines inconsistent
within InDels, we analyzed the variation of frequency of
lines not fully consistent (FreqDiff01) with relation to
the number of probes within the InDels, by estimating
median and average FreqDiff01 for each probe count
(Fig. 4b, Additional file 1: Table S5). To estimate the
probe genotyping error rate, we compared this variation
to what we could expect for different genotyping error
rates (1, 3, 5, and 10%) in 362 lines, genotyped by 10,000
Indels, with the number of probes varying from 2 to 50,
using a binomial sampling (Additional file 1: Table S6).
For this, we simulated a number of false genotypes
among the probes for each InDel and each line using the
rbinom function in R, with the following parameters:
Number of observation = 362 lines × 10,000 Indels;
Number of trials for each observation = Number of
probes; Probability of success of each trial = probes
genotyping error rate. Using this simulation, we esti-
mated frequency of inconsistent calls among 362,000
simulated genotypes (FreqDiff01) for each probes count,
varying from 2 to 50, and compared them with the me-
dian and average FreqDiff01 (Fig. 4). To evaluate the im-
pact of combining multiple probes for a genotype to
correct genotype errors, we used this simulation to esti-
mate the InDel genotyping error rate, if we assign, to an
inbred line, the most frequent allele, based on the aver-
age allelic frequency of presence (Additional file 1: Table
S6). To compare accuracy for genotyping absence and
presence using this array, we separated the InDels in
four classes, according to their average allelic frequency
of absence in 362 inbred lines (0–25, 25–50%, 50–75%,
75–100%) and compared their median FreqDiff01 (Add-
itional file 2: Figure S12).
To evaluate the reproducibility of the 479,027 probes

on the array, we compared the genotypes between 6
DNA replicates from F1 hybrids that originated from
crossing B73 and F72. We also compared the genotypes
of 13 duplicated inbred lines (A554, A632, A654, B73,
C103, CO255, D105, EP1, F2, F252, KUI3, Oh43, and
W117) that originated from different seed sources (Add-
itional file 1: Table S9). The genotypes of these 13 dupli-
cated lines were also compared using 43,982 SNPs from
the Illumina 50 K SNP array.
To evaluate the quality of genotyping, we also analyzed

12 F1 hybrids derived from 9 parental inbred lines Add-
itional file 1: Table S8). We first predicted the genotypes
of the 12 F1 hybrids, based on the genotyping of their 2
parental lines, for 46,382 BPs probes, removing OTV calls.
These predicted genotypes were then compared with the
observed genotypes of the corresponding hybrids: Number
of similar genotypes (homozygous or hemizygous) be-
tween predicted and observed/Number total of genotypes.
BP probes producing missing data or displaying hemizy-
gous genotypes in the parental lies were excluded from
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the comparison. Note that the seed-lots of the parental in-
bred lines genotyped may have been different from the
seed-lots used for producing the F1 hybrids.

Diversity analysis
We performed diversity analysis on 362 inbred lines from
an association panel representing a wide range of diversity
[53, 55], obtained using InDels genotyped on our InDels
Affymetrix® Axiom® array and using SNPs genotyped from
the Illumina 50 K SNP array [52]. The genotypes of InDels
were treated as bi-allelic “present” and “absent”.
To perform diversity analysis, we first selected 237,629

probes among the 479,027 probes for which (i) the cluster-
ing observed were consistent with expectation (Table 3)
and (ii) for which genotypes produced by our array for the
4 lines used for discovering the InDels were fully consistent
with the genotyping, based on the alignment of the probes
on the genome assemblies using BLAST software. We fil-
tered out 219,068 probes based on their genotyping quality
(missing data rate below 20%, heterozygous rate below 15%
and minor allele frequency above 5%). In the end, we se-
lected a single, best probe for each InDel, leading to a set
of 57,824 probes genotyping 57,824 InDels to analyze di-
versity in 362 inbred lines.
We estimated two kinship matrices between 362 lines

using “identity by descent” estimators (IBD) based on
57,824 InDels and on 28,143 prefixed Panzea SNPs from
the Illumina 50 K (Fig. 5). Kinship matrices were esti-
mated with the “ibd” function in the R package GenA-
BEL [77]. We performed correlation between IBD values
estimated with SNP and InDel polymorphisms. Genetic
structuration was estimated using only the 28,143 Pan-
zea SNPs with admixture software [78]. We selected the
admixture results for five genetic groups (Q = 5), since it
corresponded to the number of genetics groups defined
in previous studies using the Panzea SNPs from the Illu-
mina 50 K [53]. Lines were assigned to one genetic
group, given that the probability of assignment to the
groups was greater than 0.6, whereas lines below this
threshold were considered “admixed”. In order to
compare genetic structuration based on InDels and
SNPs, we performed Principal Coordinate Analysis
(PcoA) on genetic distance between lines with (362
lines) and without F2 and B73 (360 lines) based on their
dissimilarity (1-IBD) using InDels. Each line was plotted
on the first two planes of PcoA and colored according to
the assignment to the 5 genetics groups (Fig. 5).
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