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The multiple roles of both estrogenic and polypeptide regulators of mammary epithelial cell
growth are reviewed in this article. Effects of both steroidal and peptide hormones are complex
and involve multiple interactions with malignant cells and non-malignant host components. Initial
carcinogenesis and progression of mammary epithelium to cancer probably require both
proliferative stimuli (estrogen, polypeptide growth factors) and genetic damage. This condition
may lead to qualitatively different hormonal responses (hormone-responsive cancer). Estrogens
can be shown to induce growth-regulatory polypeptide growth factors and interact with them in
hormone-dependent breast cancer. Progression of hormone-dependent (estrogen-responsive)
breast cancer to hormone independence probably involves multiple mechanisms, including
oncogene activation, loss of the estrogen receptor, or loss of hormone responsivity of other gene
products. One direction for further therapies may be blockade of hormonal stimulation and
interference with necessary activated or induced components of malignant progression such as
oncogenes or polypeptide growth factor-receptor systems.

INTRODUCTION

In this review we examine evidence for autocrine and paracrine growth regulation of
normal and malignant mammary epithelium. A particular emphasis is placed on the
critical role of secreted growth factors and their receptors.

ENDOCRINE, AUTOCRINE, AND PARACRINE MECHANISMS OF
GROWTH REGULATION

The development of the complete malignant phenotype depends on interactions
between inherited genetic factors, exposure to chemical carcinogens, damaging
radiation, oncogenic viruses, and mitogenic hormones, and other promotional agents
[ 1]. Experimental animal model systems [2] have allowed considerable insight into the
mechanisms of action of these components; however, the exact etiology of any human
cancer has not been fully established. The work of Huggins and Clark [3], linking
testicular secretions (androgen) to prostatic carcinoma, and by Beatson [4], linking
ovarian secretions (estrogens) to breast carcinoma, represented critical insights into
endocrine-dependent neoplasia. In this section we summarize the potential mecha-
nisms of action of systemic estrogen in the human breast cancer process. We also
explore the mechanisms of loss of endocrine control of experimental and clinical breast
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cancer. This process is commonly observed either spontaneously or following the
selective pressure of systemic therapy [5].

Loss of estrogenic control of breast cancer growth during malignant progression
implies the emergence of other growth controls. Recent work on locally acting,
diffusible growth-regulatory substances known as growth factors has provided a model
for how additional growth controls might be exerted on mammary epithelial cells
ranging from normal epithelium, to hormone-dependent intraductal malignancies, to
locally invasive malignancies, to metastatic tumor deposits. Tumors may be accompa-
nied at almost any point by development of resistance to hormonal and chemothera-
peutic agents [6]. In some cases, these growth factors can function as autostimulatory
or "autocrine" acting substances. In addition, a number of dominantly acting,
cancer-inducing genes, known as oncogenes [7,8], have recently been described. Some
of these oncogenes code for growth factors or their receptors (e.g., c-sis, c-fms,
c-erb-b). Others appear to code for defective, cell membrane-bound growth factor
receptors which are enzymatically active even though they lack extracellularly exposed
ligand binding sites (e.g., erb-b2 or src). One oncogene codes for a protein with
homology to nuclear receptors for steroid and thyroid hormones and retinoids
(c-erb-a). Still other oncogenes appear to act distally on growth regulatory pathways,
including modulation of transcriptional complexes in the cell nucleus (fos, myc, and
myb) or elsewhere in the cell (ras) [9,10].

Genetic events which evoke the malignant phenotype probably involve either
activation of dominant oncogenes and/or inactivation of dominant cancer-suppressive
genes. The mutation of cellular proto-oncogenes (all of which must have some normal
function in physiologic growth control or development of normal tissue) to yield highly
active (transforming) oncogenes is now known to be extremely important in chemical-
and radiation-induced carcinogenesis [1]. Malignant progression of breast cancer,
though incompletely defined, probably involves multiple elements; these may include
underlying genetic predisposition, mutation, and mitogenesis in response to estrogen,
growth factors, and overexpressed growth factor receptors [I 1,12] . On a cellular level,
the actual mechanisms involved in malignant progression remain conjectural. While
the entire tumor could undergo progressive, malignant changes, this change is not the
most likely scenario. Rather, the bulk of observations suggest that subpopulations of
genetically unstable cancer cells continuously arise within the tumor. These additional
genetic events result in subpopulations which may have a survival advantage and
overtake other, less progressed tumor and normal cells. Surviving subpopulations are
modulated by selective pressures: host defenses, competition for nutrients, survival of
chemo-hormonal therapeutic agents, and altered environment after metastatic spread
[13,14].
Growth control processes in breast cancer are not limited to the malignant cells

themselves. Cancer depends upon an intimate and complex interrelationship with
non-tumor tissues of the host. The cancer must thwart host immune surveillance and
nourish itself as its mass increases [15]. Angiogenesis (blood vessel invasion) and
desmoplasia (stromal proliferation), commonly observed surrounding breast cancer,
are probably involved [16]. Soluble intercellular mediators of such processes are
known as "paracrine" acting hormones. Some of these hormones may also be encoded
for by oncogenes such as c-sis [ 17,18] . Development of metastatic potential is reflected
by passage across the basement membrane, local invasion, infiltration of blood vessels
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and lymphatics, and reseeding in distant metastatic sites. It probably also involves both
oncogene- and mitogenic-mediated processes.

Estrogens play an obvious and critical role in normal mammary development. They
clearly function both as permissive agents for carcinogen action and as true tumor
promotors. Women without functioning ovaries essentially never develop breast
cancer, and many breast cancers show an estrogen-dependent or responsive phenotype.
A major thesis of this review is that estrogens act by inducing production of locally
acting hormones. To identify some of these mediators of growth control, reference may
be made to a well-established system for rodent fibroblasts in vitro. Smith, Scher, and
Todaro, among others, identified "restriction points" in the cell cycle of "normal" (but
immortalized) fibroblasts. Various polypeptide growth factors abrogate these restric-
tion points and allow the cell cycle to progress [19]. Platelet-derived growth factor
(PDG F) allows cells to pass a restriction point in early G1. As PDGF acts to initiate the
cell cycle, several genes known as proto-oncogenes are sequentially induced. Among
these are c-fos and c-myc in the nucleus, and c-ras in the plasma membrane [20].
Epidermal growth factor (EGF) or the related transforming growth factor (TGFa),
act later, while insulin-like growth factor I (IGF-I), also known as somatomedin C, and
other hormones act still later in G,. One growth factor may induce another one, which
acts further along in the cell cycle. For example, human diploid fibroblasts treated with
PDG F, EG F, or growth hormone secrete their own IGF-I . Secreted IGF-I is capable of
self-stimulation to promote mitogenesis; anti-IGF-I antibodies block growth hormone
stimulation of DNA synthesis.

Fibroblasts and other cells can be transformed with various tumor viruses, onco-
genes, chemicals, or radiation. They lose some requirements for exogenous growth
factors and produce more of their own as reflected in the decreased serum requirement
of some cancer cells [20-23]. Thus, malignant transformation may result from ectopic
production of growth factors, which act at restriction points in the cell cycle [24,25].
The ability of some cells to form colonies under anchorage-independent conditions

(growth suspended in agar or agarose) is often correlated with their tumorigenicity or
state of malignant "transformation" [26]. At least four growth factor activities have
been identified which together can reversibly induce this transformed phenotype of
murine fibroblasts: PDGF, EGF (or TGFa), IGF-I (or IGF-II, a different somatome-
din activity), and an additional growth factor, transforming growth factor / (TGF3)
[25,27,28]. An important aspect of TGFfl's action as a transforming agent appears to
be its induction of basement membrane components, such as collagen and fibronectin
[29], and of the c-sis proto-oncogene [30]. While results using anchorage-independent
growth assays suggest that these growth factors are involved in cancer growth control,
little direct evidence for an in vivo role in tumor growth has yet emerged. In addition,
conclusions drawn from the murine fibroblast model system may not apply to other
cancers.
The nature of specific restriction point(s) for epithelial cell cycles is unknown.

Normal human mammary epithelial cells require a glucocorticoid such as hydrocorti-
sone, insulin, EGF, PGE, (a prostaglandin), transferrin, and an incompletely defined
pituitary component(s) to proliferate in serum-free medium [31]. In contrast to the
fibroblast model, TGFJ is a growth inhibitor for many types of normal and malignant
epithelial cells, including breast [32,33]. While some of the same growth factors may
facilitate traverse of the cell cycle in both fibroblasts and epithelial cells, control of
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anchorage-independent growth may involve another growth factor(s). Halper and
Moses [34] have identified an adrenal carcinoma cell line (SW 13) which is extremely
sensitive for anchorage-independent cloning to a mitogen found in epithelial cancers or
cell lines. Basic pituitary fibroblast growth factor (FGF) also stimulates cloning of
SW 13 cells, and their epithelial cancer-derived growth factor may be a new member of
theFGF family. In unpublished studies we have shown that other members of the FGF
family (produced occasionally by breast cancer cells) can stimulate clonogenic growth
of SW 13 cells. Using an independent model system transfected SV40T oncogene,
immortalized human mammary epithelial cells, TGFa, EGF, and FGF can also be
shown to have transforming activity [35,36]. Finally, in MCF-7 human breast cancer
cells, estrogen is capable of inducing anchorage-independent growth [37,38]. Estrog-
enic control of growth factor activities and elaboration of basement membrane
components may contribute to steroid control of the malignant phenotype.

Neoplastic Growth Control

Regulation of neoplastic growth of breast cancer by estrogens is probably a modified
remnant of normal regulatory mechanisms for mammary epithelial proliferation and
differentiation. Estrogens are mitogens for noth normal and malignant breast epithe-

lium. The hypothalamus-pituitary axis is indirectly in control of ovarian estrogen
secretion by virtue of GnRH and gonadotropin stimulation [39]. Whether or not there
are direct effects of estrogens on mammary epithelial cells is far less clear. In addition,
the pituitary gland (or other organs) may also secrete other direct- or indirect-acting
mitogens [40,41] such as IGF-II, FGF, or LHRH. Studies of murine model systems
show that estrogen can control breast tumor growth by inducing pituitary synthesis
and secretion of prolactin. Sirbasku and colleagues have employed the term "estrome-
din" for other hypothetical, estrogen-induced mitogens [42]. Estrogen might also act
by allowing breast cancers to overcome growth inhibitory agents in their environment
or by synergy with other stimulatory agents [43-45]. These interacting components
could be serum-derived, produced by the cancer itself, or produced by nearby tissues.
Studies of hormonal control of breast cancer have been facilitated by the availability of
cancer cell lines, usually derived from pleural or ascites fluids of patients. Several
estrogen-responsive lines exist, including MCF-7, T47D, MDA-MB-134, ZR-75-1,
PMC42, and CAMA-l [37,46-61]. The best characterized of these is MCF-7 [46],
which has an absolute requirement for estrogen for tumor formation in the athymic
(nude) mouse [50]. Experimental findings obtained using cell lines must be regarded
with circumspection. After years in laboratory culture, subclonings, and assorted
selective pressures, one can only hope that data derived from these cell lines will prove
relevant to understanding of tumorigenesis in vivo. This hope can only be fulfilled by
eventual in vivo clinical verification of experimentally derived hypotheses.
Some years ago we and others succeeded in demonstrating receptors for [37,46] and

direct proliferative responses to physiologic doses of 17f-estradiol (E2) in vitro
[37,48,52,54-59,62] and in vivo in the nude mouse [47,50]. A number of other groups
failed initially to observe these responses [43-45,49,51] . One problem appears to have
been that some groups were working with an incorrectly identified or contaminated
MCF-7 cell line [61]. Other discrepancies have now been largely resolved with a more
complete understanding of relevant variables in culture conditions. Serum is a rich
source of estrogenic compounds, including sulfate conjugates, which must be removed
to observe maximal effects of exogenous estrogen in vitro [51,54,57]. Furthermore,
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phenol red, which is commonly present in culture medium as a pH indicator, can
produce estrogenic effects [59,63]. Finally, growth factors, particularly of the insulin
family, can critically modulate estrogen responses in the cellular environment [51 ].

While breast cancer cells may selectively model hormone dependency, their ability
to model steps along the pathway toward more malignant behavior is less clear.
PMC42, a well-differentiated estrogen-responsive breast cancer cell line, has been
recently described. Monoclonal antibodies prepared against surface antigens of this
line cross react with intraductal (non-invasive) breast cancer specimens [64,65].
Numerous estrogen-independent breast cancer lines also exist [47]. While existing cell
lines can be sorted according to their estrogen receptor status, nearly all were derived
from metastatic sites in patients and are fully malignant in that sense. Somewhat
confusingly, virtually all are non-metastatic in nude mice. Thus, controls on metastatic
behavior have been difficult to address.
We now turn to evidence that estrogens can directly interact with receptor-

containing breast cancer cells to modulate gene expression and phenotypic properties.
We propose that polypeptide growth factors are common mediators of growth control
for normal breast epithelium, estrogen-regulated breast cancer, and autonomous
hormone-independent breast cancer. By stressing direct effects of estrogens on cancer
cells in vitro we do not wish to suggest that growth control of tumors in vivo might not
be a much more complex phenomenon resulting from interactions among other cell
types, hormones, proteases, and basement membrane components.

In isolated cell cultures of clonal lines of human breast cancer cells, estrogens induce
a large number of enzymes and other proteins involved in nucleic acid synthesis. These
include DNA polymerase, the c-myc proto-oncogene [66], thymidine and uridine
kinases, thymidylate synthetase, carbamyl phosphate synthetase, aspartate transcar-
bamylase, dihydroorotase, glucose 6-phosphate dehydrogenase, and dihydrofolate
reductase [49,67-69]. Physiologic concentration of estrogen stimulates DNA synthesis
by both scavenger and de novo biosynthetic pathways. Estrogen regulates thymidine
kinase and dihydrofolate reductase at the mRNA level [70,71 ]. Regulation of
thymidine kinase mRNA occurs at the transcriptional level. Increases in global
transcription are tightly coupled to estrogen action [72]. The existence of "second
message" regulatory systems in the growth induction process is also possible but has
not yet been proven. In MCF-7 cells, estradiol-induced stimulation of phosphatidyl
inositol turnover to generate diacylglycerol and inositol-triphosphate occurs with an
exceptionally long lag time [73]. In other polypeptide growth factor or protease-
induced model systems, this metabolic effect is rapid (within minutes as opposed to
hours for estrogenic effects) and tightly coupled to growth control [74,75]. Phosphati-
dyl inositol turnover is associated with stimulation of Ca" fluxes by inositol-
triphosphate and of protein kinase C by Ca++ and diacylglycerol. Phosphatidyl inositol
could therefore serve as a metabolic mediator of mitogenic effects of estrogen-induced
growth factors and/or protease. One potential target for protein kinase C is the
Na+/H+ antiporter system. The Na+/H+ antiporter is activated in a number of
mitogen-triggered proliferation systems. Inhibition with the antidiuretic amiloride
prevents proliferative responses in some systems [76]. Protein kinase C is not an
oncogene; however, its expression can lead to disordered morphology of fibroblasts
[77,78].

Ornithine decarboxylase (ODC) is another intracellular target of estrogen action.
ODC is covalently linked to cellular membranes through inositol. This bond is broken
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by a phosphatidyl inositol-specific phospholipase C, activating the ODC enzyme [79].
ODC activity is associated with induction of proliferation in numerous systems,
including breast cancer [80]. The actual contribution to growth control by any of these
potential mediators (protein kinase C, ODC, Ca", or Na+/H+ antiporter) remains to
be determined.

Progesterone receptor is also induced by estrogen [811]. Estrogen appears to induce
the progesterone receptor at the mRNA level [82,83]. Progestins are growth-inhibitory
for human breast cancer while inducing a specific protein of 48 kDa [84]. The presence
of the progesterone receptor is generally coupled to functional growth regulation by
estrogens in vivo and in vitro. Thus, progesterone receptor content in breast tumors is
used as a marker for estrogen and antiestrogen responsiveness of tumors, although
exceptions do exist in vitro and in some patient tumors [85].

Estrogens and antiestrogens alter the cellular synthesis activity and/or secretion of
several other proteins whose role in growth control is unclear. These proteins include
various plasminogen activators and collagenolytic enzymes. These proteases may
contribute to tumor growth and progression by allowing the tumor to digest and
traverse encapsulating basement membrane [86-89]. Proteases may serve additional
roles, such as facilitating release of mitogenic growth factors like IGF-I (somatomedin
C) from carrier proteins, processing inactive precursor growth factors and proteases to
active species [90], or interacting directly with their own cellular receptors [91,92]. In
additon, breast cancer cells secrete proteins of 24 kDa [93], 52 and 160 kDa [94,95],
37-39 kDa, 32 kDa [96,97], and 7 kDa (initially identified by detection of an
estrogen-induced mRNA species termed pS2) [98,99]. Four other mRNA species,
termed pNR 1-4 [100], and the cytoplasmic enzyme LDH [101] are also under
estrogen regulation. The 52 kDa glycoprotein, one of the major secreted proteins, has
cathepsin D-like activity in purified form; it is also mitogenic for MCF-7 cells in vitro
[102,103]. A recent study [104] has suggested that secreted cathepsin D-like activity
can release and activate cell-associated transforming growth factor alpha (vide infra).
The natures of the 160, 37-39, 52, 24, and 7 kDa proteins are unknown at present, but
the 160, 52, and 7 kDa secreted proteins may be disassociated from in vitro estrogen
and antiestrogen modulation of MCF-7 cell growth using two MCF-7 clonal variants
[105-107]. These three protein species are decreased by antiestrogen to the same
extent in both MCF-7 and LY2, the latter being a stable antiestrogen-resistant variant
of MCF-7. In 1-13, an MCF-7 clonal variant which is growth-arrested by physiologic
concentrations of estrogen, the same three proteins are induced to the same extent as in
MCF-7. These observations suggest that (at least in vitro) a significant alteration in
secretion of these major proteins has no effect on growth in LY2 or 1- 13.

Estrogen induces the cell surface "receptor" or binding protein for laminin in
MCF-7 cells [108,109]. The laminin receptor mediates attachment of cells to
basement membrane laminin [88,89] and contributes to invasiveness by tumor cells.
Estrogen treatment of MCF-7 cells increases I'25-laminin binding, cell attachment to
artificial, laminin-coated membranes, and the migration of the same cells across an
artificial membrane toward a diffusible source of laminin [109]. Estradiol treatment of
MCF-7 cells also induces rearrangements of cytoskeletal and adhesion structures
[I 10] and alterations in the plasma membrane microvilli as observed by scanning
electron microscopy [Ill]].

Thus, estrogens exert a considerable number of influences in vivo which may
indirectly alter breast cancer progression [1 3]. Direct effects of estrogens on isolated
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breast cancer cells are also well established. These effects include growth regulation as
well as modulation of enzymes and other activities thought to mediate mitogenic,
metastatic, and differentiated status. Some of these activities are secreted normally
and can be detected in milk as products of the normal gland [112, 113].

GROWTH FACTOR PRODUCTION BY NORMAL AND
MALIGNANT MAMMARY CELLS

We next consider breast cancer-related growth factors and the evidence supporting a
pathophysiologic role for them in the growth and malignant progression of mammary
epithelium.

Transforming Growth Factor a (TGFa)-Epidermal Growth Factor (EGF) Families

TGFa was initially identified as a secreted product of virally transformed rodent
fibroblasts by Delarco, Todaro, Sporn, and Roberts [24,114]. TGFa has subsequently
been found in many proliferating normal and malignant human tissues. EGF was
initially characterized from rodent salivary glands by Cohen [115] but is now known to
be more widely expressed in human tissues. The human form was originally known as
urogastrone, a placental product. TGFa activity is known to exist in 25 kDa, 21 kDa,
and 17-19 kDa precursor forms [116] and commonly processed to a 7 kDa form. EGF
appears to be processed from a very large precursor form (130 kDa) with multiple
polypeptide products [117]. EGF, TGFa, and a related protein from vaccinia virus
form a functional family of growth factors which apparently utilize the EGF receptor
to carry out their many functions [118].

Several lines of evidence show that breast cancer cells produce TGFa. Cell lines
secrete stimulatory factors for MCF-7 and murine 3T3 fibroblast monolayer cultures
as well as "transforming growth activity" (TGF). This information has been deter-
mined by stimulation of anchorage-independent colonies of rodent NRK and AKR-2B
fibroblasts in soft agar culture [119-123]. The material produced by some breast
cancer cells is a 30 kDa molecular weight species of transforming activity for NRK
fibroblasts, which comigrates chromatographically with a peak of MDA-231 autosti-
mulatory activity and is the principal species of EGF receptor-competing activity
[121,122]. Antisera specific to TGFa react with this species [124]. Thus, this activity
is related to TGFa but appears to be significantly larger than the cloned and sequenced
6 kDa species from transformed rodent fibroblasts [125]. It is not yet certain if this
protein is related to the 17-19 kDa TGFa precursor protein observed in transformed
fibroblasts [116,126,127], nor is it known if this protein is modified by glycosylation,
palmitoylation [116], or if it is the product of alternative mRNA splicing. The
precursor species is thought to be membrane bound in cell lines which express it
[116,126,127]. It is possible that breast cancer-derived TGFa may be the product of a
novel TGFa-related gene. The 30 kDa TGFa-like species is induced by estrogen
treatment of estrogen receptor-positive MCF-7, T47D, and ZR-75-1 cells
[11,121,122,124,128,129]. It increases by two- to fourteenfold depending on cell type
and culture conditions. An expected 4.8 Kb TGFa mRNA species has been detected in
MCF-7 and other human breast cancer cell lines and breast tumors [123,130]. This
species ranges from low to high estrogen receptor content. No correlation of TGFa
mRNA expression was observed with estrogen receptor status; in biopsy samples, at
least 70 percent of the adenocarcinomas contained TGFa mRNA [123].
The significance of TGFa induction and secretion has been further examined. TGFa
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mRNA is induced in six hours in MCF-7 cells treated with estradiol [123]. Similar
observations have been made in hormone-dependent mouse mammary tumors [131].
Using antibodies directed against either TGFa or its receptor (the EGF receptor), we
have noted growth suppression of MCF-7 cells grown as anchorage-independent
colonies or as estrogen-stimulated, high-density monolayer cultures [123]. Thus,
TGFa has a likely role as an autocrine growth factor in experimental breast cancer.
Whether this possibility reflects an artifact of adaption of cells to in vitro culture
conditions must await in vivo study. A phase I trial of anti-EGF receptor antibody
therapy has been initiated in breast cancer patients [132]. TGFa has also been
detected in the urine of patients and nude mice bearing breast and other human tumors
[133,134]. Thus it may provide a marker for tumor burden or disease progression.
Detection of urinary TGFa has been complicated by the presence of very high levels of
EGF-related growth factors present even in normal control urine [133].

Insulin and Insulin-Like Growth Factors and Their Receptors

The insulin family of growth factors is a complex group of cross-reacting ligands,
further complicated by multiple receptors, and serum-borne binding proteins. Insulin
is a two-chain disulfide-linked growth factor, processed from a single gene product
(uncleaved, 7.5 kDa size) whose primary site of synthesis is the pancreas. In contrast
to insulin, the single-chain, IGF-I, and IGF-II growth factors (somatomedins) are
synthesized by many body tissues (including liver). Somatomedins are under different
hormonal regulation, particularly growth hormone [135,136]. Several other growth
factors, such as relaxin and lentropin (which controls lens fiber formation) appear to be
members of an even larger insulin-related family [1 37]. Alternative splicing ofmRNA
of the insulin-like growth factors (particularly IGF-I) [1 38] further contributes to the
complexity of members of this diverse family.

Somatomedins or insulin are required both for anchorage-dependent and indepen-
dent proliferation of fibroblasts. They may also play a role in breast cancer. IGF-I is
mitogenic for some breast cancer cells in culture [139,140]. Using radioimmunoassay,
we and others have found that an IGF-I-related species is secreted by all human breast
cancer cells examined to date [140,141]. After partial purification from MCF-7
cell-conditioned medium, this growth factor comigrates on gel exclusion chromatogra-
phy with authentic human serum-derived IGF-I. Acid ethanol extraction is required
partially to disrupt a high molecular weight form of the growth factor. A complex
series of IGF-l-cross-reacting mRNA species are also detected with Northern blot
analysis, using a cDNA probe to authentic IGF-I [140]; however, none of these
mRNA species are identifiable as authentic IGF-I upon nuclease protection analysis of
mRNA [142]. Complex species of IGF-I cross-hybridizing mRNAs have been
previously described for the human fetus [143]. Utilizing phenol red-free medium,
there is a three- to sixfold induction of IGF-I-like growth factor with estrogens, TGFa,
EGF, or insulin treatment [144]. Secretion of IGF-I-related factors is inhibited by
antiestrogens, TGF,B, (in phenol red-containing medium), and glucocorticoids. While
growth hormone is a strong stimulus for IGF-I production by liver, fibroblasts, and
other normal tissues, it is without effect on production of IGF-I-like growth factors by
MCF-7 breast cancer cells [144-148]. IGF-I-related polypeptides are secreted by
fibroblasts and smooth muscle and contribute to autocrine growth control in these cell
types [146,148,149]. It remains to be seen whether IGF-I produced by breast cancer
acts primarily on breast cancer itself in an autostimulatory mode or on surrounding

466



GROWTH REGULATION OF BREAST EPITHELIUM

stroma to promote chemotaxis and growth. Alternatively, breast cancers may induce
surrounding mesenchyme to produce IGF activities which function to stimulate the
mesenchyme or the breast epithelium. Recent studies have shown that an antibody
which blocks the IGF-I receptor [150] is capable of inhibiting MDAMB-231 breast
cancer cloning in vitro [151] and tumor growth in vivo [152]. This finding suggests
that importance of an autocrine or paracrine role for growth factors acting through the
IGF-I receptor.

Since insulin synergizes with estrogen in promoting growth of breast cancer cell lines
in vitro and in vivo in the nude mouse, it is possible that somatomedins principally act
by interacting with estrogen to promote breast tumor growth in hormone-dependent
cells; their role in hormone-independent cells is even more obscure [153,154].

It has also been reported that IGF-II-related gene product(s) are produced by
normal and malignant tissue [155]. IGF-II appears to bind to multiple receptors
(insulin, IGF-II, and IGF-I). All of these receptors, including the IGF-II receptor,
have been detected in human breast cancer [139,156] as well as in normal breast tissue
[157]. While IGF-II interaction with IGF-I receptors may stimulate cellular response,
IGF-II receptors may be primarily involved in IGF-II degradation. The IGF-II
receptor is a multifunctional protein, previously described as the mannose-6-phosphate
receptor for lysosomal enzymes [158,159]. IGF-I-like mRNA has been recently
reported in other human tumors: lung, colon, and liposarcoma [160-162]. IGF-II has
been observed to be overproduced in Wilms tumor [163]. Somatomedins appear to be
among the most ubiquitous growth factors, produced by nearly all normal tissues
[164-166] and found in the blood [167] and urine [168].

Transforming Growth Factor ,B (TGFf)

Transforming growth factor beta (TGFf) is a 25 kDa homodimer initially purified
from platelets and various normal tissues. It is required (along with other growth
factors) for full induction of the transformed phenotype in fibroblasts. It is also
produced autonomously in fibroblasts transformed by oncogenes [169]. TGF3 is a
member of a multi-gene family which includes four TGFf3's, Mullerian inhibiting
substance, inhibins and activins [170], a T-cell suppressor factor [171], and a
Drosophila morphogenesis-controlling gene known as decapentaplegic [172]. In con-
trast to TGFa and many other growth factors, TGF#l is growth-inhibitory and/or
differentiating-promoting for most epithelial cells [32,33,173]. For example, it inhibits
myogenic differentiation [174,175]. It also inhibits normal hepatocyte growth more
extensively than malignant liver cell growth, and it prevents dedifferentiation of other
epithelial cell types [176,177]. In addition, it stimulates differentiated behavior of
vascular smooth muscle and normal breast epithelial cultures [178].

Normal mammary epithelial cells are induced by TGF,B, or TGFb2 to synthesize
milk fat globule antigen. In addition, growth of these cells in culture is arrested and the
morphology is markedly altered; TGFf, or TGFb2 changes the cobblestone epithelial
appearance to an elongated spindle shape [178]. TGFf also appears to be extremely
potent in vivo in the neonatal mouse. Implants of TGFf in slow-release capsules near
developing mammary ducts result in complete cessation of mammary ductal develop-
ment. No effects of TGFj3 are seen on surrounding stromal tissue or on more distant
mammary glands [179]. TGF3 may play a role, along with other hormones such as
estrogen and growth factors (such as EGF or TGFa) [180], in the delicately balanced
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process of human mammary development. TGFf3 (along with a plethora of other
growth factors) is also a component of human milk [ 181 ].

Breast cancer, like normal breast epithelium, is inhibited by TGF/, or TGFb2.
TGF,B may be an autocrine-inhibitory type of substance (chalone) [182] in breast
cancer. Breast cancer cells have been shown to contain and secrete a TGFf-related
activity [33,121,183-185]. The activity binds to TGFf, receptors, transforms AKR-2B
and NRK fibroblasts, is immunoprecipitated by TGF-beta antiserum, and comigrates
on gel exclusion columns with platelet-derived TGF,B [ 184]. All breast cancer cell lines
reported express the expected 2.5 Kb mRNA species [182,184,186]. TGFf,l secretion
is inhibited by treatment of MCF-7 cells with estrogen and insulin [184], but
growth-inhibitory antiestrogens and glucocorticoids strongly stimulate its secretion.
Intracellular TGF,B, does not appear to change in concentration following treatment
with mitogens or growth inhibitors [184]. TGFj3 activity from antiestrogen-induced
MCF-7 cells strongly inhibits the growth of an estrogen receptor-negative cell line
MDA-MB-231. This growth inhibition was partially reversed in the presence of a
polyclonal antibody directed against native TGF,Bl [184]. Since breast cancers exist as
mixtures of estrogen receptor-positive and negative tumor cells [187,188] and breast
cancers may not become TGF,B-unresponsive as they become antiestrogen-unrespon-
sive, TGF,B may act in tumors with such mixed cell populations to make antiestrogen
more effective than might otherwise be expected [184]. In LY2 cells, an MCF-7
variant stepwise selected in vitro for antiestrogen resistance, TGFj is no longer
induced by antiestrogen, but the cells still retain the TGF,B receptor and response.
Neither the mechanism of TGFf3, induction in MCF-7 cells nor its loss in LY2 cells is
fully defined, but it is not at the regulation of steady-state mRNA level. Conversion of
a latent form to an active form of TGF3,B may contribute [ 184]. In contrast to other cell
types [168,189], there is significant active TGFf present in breast cancer-conditioned
medium. The biochemical details of the conversion of a secreted inactive to active
TG Ff3 remain to be elucidated.

Platelet-Derived Growth Factor (PDGF)

PDGF is a heterodimeric protein of approximately 30 kDa, which, as the name
implies, is found in high concentrations in platelets. PDGF-like related growth factors
are also produced by a variety of transformed murine fibroblast lines and by some
human tumors of diverse origins. The v-sis oncogene is related to a PDGF B chain
homodimer and can transform PDGF-receptor-expressing cell types [20]. Conse-
quently, PDGF could fulfill an autocrine role in such tumors. In tumors derived from
cell types lacking the PDGF receptor, v-sis is not transforming and PDGF presumably
functions in a paracrine mode. Paracrine action may stimulate angiogenesis, stromal
proliferation (desmoplasia), and chemotaxis and degranulation of monocytes and
neutrophils [190].

Simian sarcoma virus- (SSV) transformed fibroblastic cells provide a model system
for the function of PDGF in responsive cell types. In this system, the PDGF-B
chain-related protein encoded by the virus forms a homodimer and is sometimes
secreted by the cell. Antibodies directed against PDGF have been reported to exert
antiproliferative and antitransforming activity [190]; however, in many instances the
PDGF is largely cell-associated and presumably already bound to its receptor. Thus,
anti-PDGF antisera have been only partially effective as antiproliferative reagents
[191]. The subcellular origin or fate of PDGF remains to be fully characterized;
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however, immunoreactive PDGF has been observed in the cell nucleus [192] in
SSV-transformed cells. PDGF is known to encode a short peptide sequence which is
capable of directing the molecule across the nuclear pore complex [193]. Thus, PDGF
may exert autocrine growth control through both intracellular and extracellular
mechanisms of action [ 194].
Many breast cancer cell lines secrete a PDGF-related activity detected by anchor-

age-dependent growth stimulation of mouse 3T3 fibroblasts in the presence of
platelet-poor plasma. This fact is known as a "competency" assay for early mitogenic
signals [195]. 28 kDa and 16 kDa species were observed by immunoprecipitation of
metabolically labeled MCF-7, MDA-MB-231, and other breast cancer cell extracts
and medium. The 28 kDa species (the unreduced form) was biologically active after
elution from non-reducing SDS-polyacrylamide gels, and its activity was blocked with
anti-PDGF antiserum. Upon examination of poly A-selected mRNA from either cell
line, transcripts of both PDGF-A and B chains are observed [196-199]. A and B
chains are widely expressed in breast cancer and other cell lines [200-203]. While the
B chain is homologous to the v-sis oncogene, the A chain is not known to have a
retroviral oncogene homologue. The A and B chains share substantial sequence
homology to each other [204], and the A chain shows evidence of alternative mRNA
splicing [205]. It is not yet known how A and B chains assemble in breast cancer
cells.

The Fibroblast Growth Factors (FGF)
The fibroblast growth factors, like PDGF, were initially classified as "competency"

factors acting early in the GI phase of the cell cycle to stimulate the growth of
mesenchymal cells. The members of the family include acidic and basic FGF [206]
(aFGF and bFGF), kaposi FGF (kFGF, also known as hst, for human stomach tumor
oncogene) [207], int 2 [208] (a mouse mammary cancer oncogene mentioned earlier),
FGF-5 [209], and others less well characterized. A more distant homology also exists
with interleukin I (IL-i ) [210]. It is not yet known how many classes of receptors exist
for this diverse class of ligands. Both aFGF and bFGF bind a 140-210 kDa receptor
and stimulate tyrosine phosphorylation of a 90 kDa protein [2111. An FGF receptor
has recently been purified to apparent homogeneity. bFGF is capable of acting as an
oncogene when expressed in fibroblasts in association with some means of secretion,
and secreted members of the family such as LST and FGF-5 can function as bona fide
oncogenes [212,213].
FGF is required for normal mouse mammary cells to proliferate in culture. It is

present in pituitary extract used for culture of mouse and human mammary myoepi-
thelial and epithelial cells [214,215]. FGF is also a potent angiogenic substance [210].
The FGF family of peptides is characterized by a binding site for heparin [206]. This
property has facilitated purification and may allow for strategies to interrupt or
otherwise modulate FGF action through binding of various polyanionic substances
such as suramin to this site [216]. bFGF does not possess a signal peptide in its primary
sequence [217], giving rise to hypotheses for unusual secretory pathways, including
intracellular binding to heparin proteoglycan and secretion as a part of the basement
membrane [206].

Uncertainty exists as to the principal target of FGF in the normal mammary gland.
Rudland has proposed that effects are restricted to myoepithelium and stroma [218],
but Karey and Sirbasku have claimed that MCF-7 and T47D human breast carcinoma
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cells respond [219]. We have not been able to confirm this result. A 60 kDa,
heparin-binding FGF-related molecule is produced by human breast cancer cells in
culture. Its function could include autocrine and paracrine effects [220].

Pituitary Hormones, Other Steroids, and Growth Factors

Growth factors and/or estrogen probably act in concert with other systemic
mitogens in vivo to promote tumor growth. Shiu and co-workers have isolated a
pituitary-derived activity which potentiates the mitogenic effects of estradiol on
MCF-7 cells [221]. One pituitary factor has already been identified as IGF-II [222].
In addition, pituitary-derived GnRH may also directly interact with breast cancer to
inhibit its proliferation [223], while prolactin is stimulatory for some cell lines [40].
MCF-7 cells in monolayer culture are growth-regulated by a variety of lipid-soluble

hormones in addition to estrogen. These hormones include glucocorticoids, iodothyro-
nines, androgens, and retinoids [224]. MCF-7 cells have receptors but are not
growth-stimulated by progesterone or vitamin D [225-227]. Progesterone induces a
specific protein [226] and can be growth-inhibitory in vitro [228]. Other inhibitory
hormones include somatostatin [229], interleukins 1 and 6, tumor necrosis factor
(TNF), and interferon [230]. Receptors and metabolic effects, but little cellular
growth response, have been demonstrated for other hormones, such as growth
hormone, glucagon, and calcitonin [227]. Finally, transferrin, a serum iron delivery
molecule, is required for proliferation of normal and malignant mammary cells [231];
its receptor is increased in estrogen-independent breast cancer compared to estrogen-
dependent breast cancer [232].
The multiplicity of growth modulatory hormones for in vitro breast cancer systems

suggests the possibility that many serum-borne or locally produced modulators of
growth may play important regulatory roles in vivo. Alternatively, or additionally,
growth factors with a similar spectrum of activities could be elaborated by the breast
cancer cells themselves. While on the one hand, this large number of regulatory
molecules emphasizes the potential complexity of growth control of breast cancer, it
can also be seen as emphasizing the diverse number of targets for biological therapy. A
variety of strategies including anti-ligand and anti-receptor antibodies, receptor-
blocking peptides, drugs which alter receptor ligand interaction, and anti-sense RNA
strategies all have promise for novel approaches to the problem of breast cancer.
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