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The induction of Th2 responses is thought to be multifactorial, and emerge from specific 
pathways distinct from those associated with antagonistic antibacterial or antiviral Th1 
responses. Here, we show that the recognition of non-viable Nippostrongylus brasil-
iensis (Nb) in the skin induces a strong recruitment of monocytes and neutrophils and 
the release of neutrophil extracellular traps (NETs). Nb also activates toll-like receptor 4 
(TLR4) signaling with expression of Ifnb transcripts in the skin and the development of an 
IFN type I signature on helminth antigen-bearing dendritic cells in draining lymph nodes. 
Co-injection of Nb together with about 10,000 Gram-negative bacteria amplified this 
TLR4-dependent but NET-independent IFN type I response and enhanced the devel-
opment of Th2 responses. Thus, a limited activation of antibacterial signaling pathways 
is able to boost antihelminthic responses, suggesting a role for bacterial sensing in the 
optimal induction of Th2 immunity.

Keywords: Nippostrongylus brasiliensis, helminth, dendritic cells, toll-like receptor 4, iFn-i, neutrophil extracellular 
traps, Th2 response, skin immunity

inTrODUcTiOn

Diverse immune responses have been associated with different classes of pathogen or insult, and 
with the specialization of CD4+ T helper cells toward the secretion of a certain set of effector 
cytokines: Th1 cells secreting Interferon-γ (IFNγ) are generated in antitumoral, antibacterial, and 
anti-“intracellular pathogen” responses, Th2 cells secreting interleukin 4 (IL4), IL5, and/or IL13 
are generated in anti-venom/toxin/irritant and anti-macroparasite (including helminths and ticks) 
responses, and Th17/22 cells secreting IL17 or IL22 are generated upon antifungal and antibacterial 
responses (1–3).

Tissue resident dendritic cells (DCs) are critical for the priming of antigen specific T cell responses. 
They are able to shape the polarization of adaptive immunity toward a Th1, Th2, or Th17 response 
by interpreting signals from their environment (1). While the sensing of viral and bacterial nucleic 
acids by intracellular Pattern Recognition Receptors, and of bacterial lipopolysaccharides (LPS) by 
Toll-like receptor 4 (TLR4) have been shown to induce the development of strong Th1 responses, 
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a consensus signal required to induce the development of Th2 
immune responses has not been identified. Several types of sig-
nals can participate in inducing a Th2 response including, but not 
limited to, tissue derived cytokines and alarmins such as TSLP, 
IL25, and IL33, an innate “third party” source of IL4, the activ-
ity of specific proteases or phospholipases, some macroparasite 
glycans or glycolipid motifs, and the detection of extremely low 
amounts of LPS (1, 3–7). Understanding the signals that govern 
the development of Th2 responses is of uttermost importance 
considering that helminths potentially affect around 25% of the 
world population (8, 9) while allergic diseases can affect more 
than 30% of the population (10), mainly in areas where helmin-
thiases are not endemic.

We unexpectedly identified that the development of Th2 
responses to the prototypical helminth Nippostrongylus brasil-
iensis (Nb) is partly dependent on IFN type I (IFN-I) signaling 
(11). It has also been shown very recently that IFN-I is important 
for the initiation of Th2 responses to Schistosoma mansoni and 
House dust mite (HDM) by DCs (12). Indeed, 2 days after the 
injection of non-viable AF488-labeled Nb into the ear dermis, 
AF488+ DCs infiltrating the draining lymph nodes (dLNs) 
showed a strong transcriptomic IFN-I signature. These AF488+ 
DCs also showed a phenotypic IFN-I signature as demonstrated 
by their expression of several IFN-I-dependent cell surface mark-
ers including bone marrow (BM) stromal antigen 2 (BST2, or 
CD317). Neutralizing IFN-I signaling with αIFNAR1 antibodies 
was able to diminish the expansion of IL4-secreting CD4+ T cells 
in response to Nb (11). As IFN-I signaling is generally associated 
with the development of antiviral, antibacterial, or autoimmune 
responses (13–15), and with DC activation and maturation 
(16–21), we sought to identify by which mechanisms Nb could 
induce an IFN-I response.

The release of endogenous oxidized DNA during cell death 
or neutrophil extracellular traps (NETs) secretion is strongly 
immunogenic and interferogenic in various pathophysiological 
contexts (22–25). As neutrophils are important for the immune 
response to Nb (26–28), we investigated whether Nb injection 
induced the secretion of NETs in the skin. To this end, we used 
a very controlled and defined system utilizing non-viable L3 Nb 
larvae injected into the ear dermis (29). This enabled us to moni-
tor the development of the immune response in local tissue and 
auricular dLNs in the absence of potential interfering factors such 
as local tissue damage or infection-related systemic effects.

We show that the injection of non-viable L3 Nb larvae into 
the ear dermis induces recruitment of neutrophils undergoing 
NETosis around the worms. Surprisingly, NET digestion or 
depletion of neutrophils were not sufficient to diminish the IFN-I 
signature on AF488+ DCs. Interestingly, expression of IFN-I in 
the skin, and the IFN-I-dependent upregulation of BST2 on dLN 
DCs, required expression of TLR4. Consistent with this observa-
tion, adding Gram-negative bacteria to AF488+ Nb before injec-
tion increased the expression of BST2 on AF488+ DCs in dLN, 
and the magnitude of the resulting Th2 response. These findings 
strongly suggest that metazoan parasite TLR4 ligands, originat-
ing from their associated microorganisms and/or also from their 
cuticle glycans (7, 30), induce the secretion of IFN-I to enhance 
DC maturation and the development of specific Th2 responses.

MaTerials anD MeThODs

Mice and Treatments
Seven- to 10-week-old female C57BL/6J, SiglecH-DTR (31), 
TLR2 KO (32), and TLR4 KO (32) mice were bred and housed 
in specific pathogen-free conditions at the Malaghan Institute of 
Medical Research Biomedical Research Unit. All experimental 
protocols were approved by the Victoria University of Wellington 
Animal Ethics Committee (Permit 2014R17M) and performed 
according to Institutional guidelines.

Nippostrongylus brasiliensis infective L3 larvae (Nb) were col-
lected, washed in sterile PBS, killed by three freeze–thaw cycles, 
and injected intradermally (i.d.) into the ear pinna of anesthetized 
mice as previously described (29). “Low Endotoxin” Nb prepara-
tions (LE-Nb) were achieved by adding five extra washing steps 
to the preparation. Endotoxin content was quantified using the 
LAL Chromogenic Endotoxin quantitation kit (Pierce) and was 
<5 EU/mL. Nb sterilization was achieved by antibiotic treatment 
as previously described (27). In some experiments, Nb was 
labeled using Alexa Fluor 488 (AF488) succinimidyl ester dyes 
(Molecular Probes) as described previously (11). To prepare Nb 
supernatant (SN), Nb suspensions were left to sediment for 5 min 
at room temperature (RT), and SN collected.

To block IFN-I signaling in vivo, mice were treated i.d. with 
250  µg MAR1-5A3 (blocking anti-mouse IFN-alpha and beta 
receptor 1 antibody, anti-IFNAR1) or isotype control (MOPC-
21) given with Nb on day 0. The same antibody dose was given 
again on day 2 by intraperitoneal (i.p.) injection. “In Vivo Plus” 
MAR1-5A3 and MOPC-21 were from BioXCell (West Lebanon, 
NH, USA).

To deplete plasmacytoid DCs (pDCs), SiglecH-DTR mice were 
given 25 ng/g diphtheria toxin (DT, Sigma) i.p. 1 day before Nb 
injection. In all experiments, flow cytometry analysis of spleen 
cells confirmed >95% depletion of pDCs, identified as CD11b− 
CD11c+ B220+ Ly6C+ BST2+ cells, compared to DT-untreated 
controls. Neutrophils were depleted by injecting 0.5  mg anti-
Ly6G antibody or 200  µg anti-Gr1 antibody versus the same 
amount of their isotype control (IA8 or RB6-8C5, respectively, 
InVivoPlus, BioXCell) i.p. 1  day before and on the day of Nb 
injection. Depletion was assessed in skin by enumerating neutro-
phil infiltration as CD45+ CD11b+ Ly6Cint Ly6B+ cells (50–70% 
depletion) or CD45+ CD11b+ Ly6G+ cells (>95% depletion).  
To digest NETs, mice were injected with 2,000  U DNase I i.d. 
(Roche) together with Nb, followed by 2,000 U i.p. every 12 h 
until the end of the experiment. NET digestion was qualitatively 
confirmed by microscopy at 2 h after DNase I injection (33, 34).

Quantitative reverse Transcription Pcr 
(rT-qPcr)
Ears were collected at the indicated times and stored in RNALater 
(Invitrogen) at 4°C. Tissue was cut into small pieces with scis-
sors and homogenized using TissueLizer II (Qiagen) and RNA 
was extracted with Trizol (Invitrogen) following the supplier’s 
instructions. cDNA was synthetized using the High capacity RNA-
to-cDNA kit (Applied Biosystems). RT-qPCR was performed 
using SYBR Green Master Mix and the following primers: Beta 
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Actin (F:5′ CTAAGGCCAACCGTGAAAAG, R:5′ ACCAGA 
GGCATACAGGGACA), Ifnk (F:5′ CCGCCCATCCAATCTCT 
GAA, R:5′ GGAAAGCCGGTCATGGTACT), Ifnb1 (F:5′-
GCACTGGGTGGAATGAGACT, R: 5′-AGTGGAGAGCAGTT 
GAGGACA), and Ifna (F: 5′-TCTGATGCAGCAGGTGGG,  
R: 5′-AGGGCTCTCCAGACTTCTGCTCTG) to amplify all 
Ifna species (16), using a QuantStudio 7 (Applied Biosystems) 
and following the manufacturer’s guidelines. Transcript levels are 
expressed as the ratio of 2−ΔCT (Transcript of interest)/2−ΔCT (Beta 
Actin) and normalized by comparison to pertinent experimental 
controls.

cell preparations and Flow cytometry
For DC preparations, auricular dLNs were harvested and digested 
for 30  min at 37°C in IMDM (Gibco) containing 100  µg/mL 
DNase I and 100 µg/mL Liberase TL (Roche). For T cell prepara-
tions, LNs were passed through a 70-µm cell strainer (Falcon). 
For skin cell preparations, ears were split into the dorsal and ven-
tral layers, and then minced in Accutase (Stemcell) containing 3  
U/mL Dispase II, 100 µg/mL DNAse I, and 100 ng/mL Liberase 
TM (Roche) for 30 min at 37°C.

Peripheral blood leukocytes were harvested by cheek puncture 
and red blood cells were lysed in an ammonium chloride/TRIS 
buffer, as detailed elsewhere (35). Single cell suspensions were 
filtered on 70-µm nylon mesh cell strainers (Falcon) and blocked 
for 15 min at 4°C in FACS Buffer (PBS 1% bovine serum albumin 
0.05% NaN3) containing anti-mouse CD16/CD32 from affinity 
purified 2.4G2 hybridoma SN. Cells were then stained in FACS 
Buffer for 20  min at 4°C with an optimized concentration of 
fluorophore-conjugated antibodies.

For intracellular cytokine staining, cells were cultured in 
complete IMDM containing 10% Fetal Calf Serum (FCS) and 
penicillin/streptomycin (all from Gibco) and stimulated with 
Phorbol 12-Myristate 13-Acetate (50  ng/mL) and Ionomycin 
(1  µg/mL) for 5  h at 37°C in the presence of GolgiStop (BD 
Bioscience). After surface staining, cells were fixed and per-
meabilized with the Cytofix/Cytoperm kit (BD Bioscience) and 
stained intracellularly.

The fluorescent antibodies used were specific for CD11c (HL3), 
CD86 (GL1), MHCII (M5/114), CD326 (G8.8), CD4 (RM4-5), 
CD3 (145-2C11), CD103 (M290), IL4 (11B11), IFNg (XMG1.2), 
and CD44 (IM7; all from BD); IL10 (JES5-16E3), CD8a (53-6.7), 
CD11b (M1/70), CD45 (30-F11), CD64 (X54-5/7.1FC), Ly6C 
(HK1.4), Ly6G (IA8), CD317 (BST2, clone 927) from BioLegend; 
IL17A (eBio17B7) and B220 (RA3-6B2; both from eBioscience); 
Ly6B.2 (7/4) from Thermofischer. IL4-AmCyan expression was 
quantified with a 504/12 filter after excitation at 445 nm. Non-
viable cells and doublets were identified and excluded using DAPI 
or LIVE/DEAD staining (Molecular Probes). Compensations 
were performed using OneComp eBeads (Invitrogen) as single 
stained positive controls and fluorescence minus one (FMO) con-
trols were used to set background expression. Flow cytometry was 
performed on a BD LSRII or LSR Fortessa SORP flow cytometer 
with FacsDiva 6.1.1 software (Becton Dickinson). Analyses were 
conducted using FlowJo vX (Tree Star) and the represented values 
of expression intensity are the geometric means of fluorescence 
intensity (mfi).

cell culture
Human Embryonic Kidney 293 (HEK) cell lines engineered 
to report NF-κB activation with the secretion of an optimized 
alkaline phosphatase were used to study the signaling pathways 
activated by Nb. HEK-Blue cells expressing murine TLR2, TLR4, 
TLR7, or TLR9, and their respective control cell lines (Null1, 
Null2, Null1-v, Null2-k) were cultured in triplicate in 96 well 
plates at 50,000/well, and stimulated O/N at 37°C with either 100 
Nb or the appropriate positive controls. Reporter expression was 
assessed using QuantiBlue medium (InvivoGen) following manu-
facturer’s instructions. Absorbance at 640 nm was measured on 
a spectrophotometer (Helios Gamma, ThermoScientific). Data 
from each reporter cell line were expressed as ratio of the means 
of stimulated versus unstimulated cultures.

Primary BM cells were harvested by flushing femurs’ content 
using medium. One million cells were cultured in RPMI and 
10% FCS (Gibco) for 24 h at 37°C, in the presence of 10 µg/mL 
InVivoPlus mouse IgG1 (MOPC1) or anti-IFNAR1 (MAR-5A3) 
from Bio X Cell (Lebanon, NH, USA). Cultures were stimulated 
with HDM whole bodies (Greer) at 100 µg/mL, or 10–200 Nb, or 
10 µg/mL low-endotoxin Poly(I:C) (Invitrogen). Escherichia coli 
(E. coli) MG1655 was grown in Luria Broth (Invitrogen) at 37°C, 
quantified by OD, harvested at exponential growth phase, and 
fixed in 1% formalin.

Microscopy
One hundred and fifty AF488-labeled Nb were injected into the 
ear dermis in 30 µl of sterile PBS. After different times, mice were 
euthanized and hair was removed with a hair removal cream (Veet) 
before harvesting the ears. The ear dorsal and ventral parts were 
split and fixed in 4% formalin (Sigma) for 30 min, washed in PBS, 
permeabilized and blocked in PBS with 0.3% Triton X100 (PBS-T)  
5% Donkey serum and 2.4G2 hybridoma SN at RT for 30 min. 
The same buffer was used for antibody staining: primary antibody 
staining was performed using 5 µg/mL of goat anti human/mouse 
MPO (R&D, AF3667), 1/500 rabbit anti-Histone H3 citrulline 
(R2 + R8 + R17, ab5103) or 1/100 rabbit anti-mouse Neutrophil 
elastase (ab21595, both from Abcam) for 2 h at RT or overnight 
at 4°C. Samples were washed five times in PBS-T and then 
stained for 1 h using 1/500 donkey anti-goat AF594 (ab140150) 
and/or 1/500 donkey anti-rabbit AF647 (ab181347, both from 
Abcam). After five washes, tissue was mounted under a coverslip 
in Fluoromount (Sigma) and recorded using a Confocal Laser 
Scanning microscope FV1200-IX83 (Olympus). Image analysis 
and tri-dimensional reconstructions were done with the Fiji ver-
sion of ImageJ and the help of a 3D viewer plugin to juxtapose 
z-stacks (36, 37).

statistical analysis
Statistical analyses were performed using Prism 7.0 (GraphPad). 
The distribution of the data groups was always assessed using a 
Shapiro–Wilk test for normality. Data groups were compared 
using one way ANOVA with a Tukey’s multiple comparison test 
for experiments following a normal distribution, or using the 
Mann–Whitney tests, or, when more than three independent 
groups were considered, a Kruskal–Wallis with a Dunn’s mul-
tiple comparison test for experiments whose data points were 
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FigUre 1 | Nippostrongylus brasiliensis (Nb) induces the recruitment and activation of neutrophils in the skin. C57BL/6 mice were injected intradermally into the ear 
with 600 AF488+ Nb or PBS. The resulting inflammatory response in blood and skin was analyzed by flow cytometry at the indicated time points. Each symbol 
represents one mouse. (a) Proportion of neutrophils (CD11bhi Ly6G+) in peripheral blood leukocytes (PBL). Data are pooled from two independent experiments.  
(B) Recruitment of leukocyte populations in the ear skin at 24 h. Leukocytes were identified as CD45+ cells, neutrophils and monocytes were identified according to 
the gating in panel C. Data are from one of three experiments that gave similar results. (c) Representative dot plots depicting the gating of ear skin CD45+ 
populations expressing Ly6G (neutrophils), high Ly6C (monocytes), and AF488 as a measure of Nb uptake. (D) Pie chart showing the relative proportion of AF488+ 
populations in skin, identified as in (c). Monocyte-derived DCs (moDCs) are defined as Ly6G− Ly6Chi CD11bhi CD11c+ MHCII+, and CD11b+ dendritic cells (DCs) are 
Ly6G− Ly6C− CD11c+ MHCII+ CD11b+ CD326−. Data are from one of three experiments that gave similar results. Bar graphs show mean ± SEM. Statistical analyses 
used the Mann–Whitney test. NS: not significant; *p < 0.05; **p < 0.01; ****p < 0.0001. (B) Symbols close to the legend indicate a comparison of the same 
population between the two groups.
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not following a normal distribution. In all cases, a two-tailed  
p value < 0.05 was considered as threshold for significance. Mean 
and SEM are shown in all graphs.

resUlTs

The Majority of cells Taking up nb 
Material in the skin at 24 h are  
neutrophils and inflammatory Monocytes
Stage 3 (L3) larvae from the helminth Nb can infect rodents 
by penetrating their skin barrier. To study the development of 
antihelminth Th2 responses in skin we used a simplified model 
involving injection of non-viable Nb into the ear dermis of mice 
(29, 38). Nb injection induced a quick and transient neutrophilia 
in the blood (Figure  1A) and an accumulation of CD45+ leu-
kocytes in the ear dermis comprising mainly CD11bhi Ly6G+ 
neutrophils and CD11bhi Ly6G− Ly6Chi inflammatory monocytes 
at 24 h (Figure 1B).

The reactive amines in the cuticle of Nb larvae can be stained 
covalently with the succinimidyl ester AF488, to generate 
AF488+ Nb larvae (11, 38). 24  h after AF488+ Nb injection, 
approximately 90% of the cells that had taken up AF488 in the 
dermis were neutrophils and inflammatory monocytes. Indeed, 
the majority of these two cell types stained positively for AF488 
(Figures  1C,D). Of note, AF488 fluorescence was consistently 
brighter in monocytes than neutrophils, which might be due to 
different phagocytosis rates, dye stability, or apoptosis of these 
cell populations.

These observations show that neutrophils and inflammatory 
monocytes are recruited early to the ear dermis to interact with 
non-viable Nb.

injection of non-viable nb induces 
neTosis in the Dermis
In order to visualize the early events in the interaction of 
non-viable Nb with infiltrating leukocytes, we carried out a 
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whole-mount confocal imaging of fixed ear dermis. An increased 
density of DAPI+ cells close to the injected Nb was observed as 
early as 1 h post-injection (p.i.) (Figure 2A, left). Surprisingly, in 
addition to the cellular infiltrate, worms were also surrounded 
by large DAPI+ fiber-shaped structures (Figure  2A, right). By 
2 h after Nb injection, most of the cells associated with Nb were 
Ly6G+ neutrophils (Figure  2B, left). Interestingly, the Ly6G 
staining was often associated with the formation of extracellular 
DAPI+ fiber-shaped structures, suggesting a neutrophil mediated 
phenomenon induced less than 1 h after Nb injection (Figure 2B, 
right).

Immunohistochemistry experiments to investigate the nature 
of the DAPI+ structures surrounding Nb showed that extracellular 
DNA fibers were often co-localized in the extracellular space with 
the neutrophil granule enzymes neutrophil elastase (NE, Green) 
and myeloperoxidase (MPO, Red) (Figure 2C), commonly found 
in NETs. NET formation has been shown to be dependent on 
peptidyl arginine deiminase 4 activity and its histone H3 citrul-
lination. Peptidyl arginine deiminase 4 facilitates nuclear DNA  
decondensation, and the release into the extracellular space of 
DNA coated by neutrophil granule enzymes and histones. Indeed, 
extracellular DNA fibers could be observed in the dermis for at 
least 48 h after Nb injection, and stained strongly for histone H3 
citrullines thus identifying them as NETs (Figure 2D) (39–42).

Nippostrongylus brasiliensis induces an 
iFnar1-Dependent and Tlr4-Dependent 
expression of BsT2 on BM cells
We recently showed that the injection of non-viable Nb in the ear 
dermis induces a strong IFN-I transcriptional signature on the 
migratory DCs infiltrating the skin dLN, and that IFN-I signaling 
is important for an optimal Th2 immune response in this model 
(11). In order to study the Nb sensing mechanisms that lead to 
IFN-I secretion, we used primary BM cells as they contain high 
proportions of neutrophils and monocytes, which are the main 
cell types recruited to the ear dermis early after Nb injection.  
An analysis of the surface markers expressed by these cell 
populations showed that, compared to AF488−/low cells, AF488+ 
inflammatory monocytes, and to a lesser extent neutrophils, 
overexpressed the IFN-I-induced marker BST2 (11, 43) 
(Figure  3A). Treatment with IFNAR1-blocking antibodies 
reversed BST2 upregulation, confirming that it was dependent on 
IFNAR1 signaling (Figures 3B,C). Coculture with SN from Nb 
preparations, to determine if the IFN-I inducing factor present in Nb  
preparations sedimented with the Nb body or was a soluble fac-
tor, and coculture with house dust mite whole bodies (HDM) also 
induced an IFN-I-dependent upregulation of BST2 (Figure 3C). 
This latter observation is consistent with a very recent and elegant 
report showing that Schistosoma mansoni and HDM induce an 
IFN-I dependent Th2 response (12). Thus, several Th2 stimuli can 
induce the secretion of IFN-I by primary BM cells.

IFN-I is known to be produced in high amounts during 
antiviral and cellular immune responses, but much less is known 
about its secretion during metazoan parasite infections or other 
Th2 responses (12, 44). The mechanisms leading to the secretion 
of IFN-I have been mostly associated with the detection of viral 

nucleic acids or bacterial LPS (45–47). We used commercial toll-
like receptor (TLR) reporter cell lines to investigate whether Nb 
preparations were able to trigger active signaling through these 
receptors. In vitro, non-viable Nb larvae induced the activation 
of NF-κB only in reporter cell lines expressing TLR2 or TLR4, 
but not in those expressing TLR7 or TLR9, or their respective 
controls (Figure 3D). This suggests that Nb-induced IFN-I secre-
tion is unlikely to be mediated by nucleic acid sensing, and that 
Nb can instead be detected by TLR2 and TLR4.

Coculture of non-viable Nb with fresh BM cells showed that 
Nb could induce an IFNAR1-dependent expression of BST2 on 
WT and TLR2 KO, but not TLR4 KO, BM monocytes (Figure 3E; 
Figure S1A in Supplementary Material), which is consistent 
with the reported differential capacity of these receptors to 
trigger IFN-I secretion (47). Anti-IFNAR1 antibody treatment 
decreased BST2 expression below control levels, suggesting a 
constitutive IFN-I signaling in BM cultures. Of note, IFNAR1 
expression on monocytes was decreased upon Nb stimulation 
of WT and TLR2 KO BM, but was unaffected in the TLR4 KO 
BM cultures (Figure S1B in Supplementary Material). This is 
consistent with a ligand-induced endocytosis of IFNAR1, and 
an absence of IFN-I secretion only in the TLR4 KO background. 
Importantly, IFNAR1 expression and Nb-AF488 dye uptake were 
not influenced by TLR2 or TLR4 expression, revealing that these 
primary cells were not defective in IFN-I secretion, signaling, 
or phagocytosis in these conditions (Figure  3E; Figure S1C in 
Supplementary Material).

BST2 expression on monocytes and neutrophils was dose-
dependent and saturable after induction by Nb or by formalin-
fixed Gram-negative E. coli bacteria (data not shown). These 
experiments confirmed that the secretion of IFN-I induced by 
Gram-negative bacteria, known to be dependent on TLR4 signal-
ing (47), could also be observed in BM cultures.

These results show that Nb preparations are able to signal 
through TLR2 and TLR4 in BM  cells, and elicit the upregula-
tion of BST2 expression via a TLR4-dependent and IFNAR1-
dependent pathway. However, the precise nature of these TLR4 
ligands remains to be defined.

Tlr4 Mediates nb-induced Ifnb 
expression, but not neTosis, in the skin
We wished to assess the expression of IFN-I in the skin after 
Nb injection. Non-viable AF488+ Nb larvae induced expres-
sion of the IFN-I-induced marker BST2 on AF488+ monocytes, 
monocyte-derived DCs and CD11b+ dermal DCs in the skin at 
24 h p.i. (Figures 4A,B), implying that IFN-I was secreted in the 
skin before 24 h. The main components of the IFN-I family are 
transcribed from 14 Ifna, 1 Ifnb, 1 Ifnk, and 1 Ifne genes (48). 
Using RT-qPCR, we detected a transient expression of Ifnb1 in 
ear skin, peaking at 2 h p.i. and disappearing quickly at later time 
points (Figure S2A in Supplementary Material). Other common 
IFN-I species including Ifna2 and Ifna4 were not detected in sig-
nificant amounts during the first 6 h p.i. (data not shown). When 
Nb-induced Ifn expression was assessed in C57BL/6 and TLR4 
KO mice, no Ifnb1 transcripts could be detected in TLR4 KO mice. 
Of note, we could also observe a trend toward a low expression 
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FigUre 2 | Nippostrongylus brasiliensis (Nb) induces the formation of neutrophil extracellular traps in skin. C57BL/6 mice were injected intradermally into the ear 
with 150 AF488+ Nb, and z-stacks of whole-mount ear dermis were analyzed by immunofluorescence and confocal microscopy at different time points. Images are 
representative of at least two independent experiments. (a) Dermis at 1 h after AF488+ Nb injection showing DAPI+ nuclei (blue) and AF488+ Nb (magenta). 
Bar = 200 µm. (B) Dermis at 2 h after AF488+ Nb injection showing DAPI+ nuclei (blue), AF488+ Nb (magenta), and Ly6G+ neutrophils (Green). Bar = 50 µm.  
(c) Dermis at 24 h after AF488+ Nb injection showing DAPI+ nuclei (blue), AF488+ Nb (magenta), myeloperoxidase (Red), and neutrophil elastase (Green). 
Bar = 50 µm. (D) Dermis at 48 h after AF488+ Nb injection showing DAPI+ nuclei (blue), autofluorescent Nb (magenta), histone H3 citrullination (Green), and 
neutrophil elastase (Red). Bar = 200 µm.
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FigUre 3 | Toll-like receptor 4 (TLR4) expression is necessary for Nippostrongylus brasiliensis (Nb)-dependent BST2 expression in vitro. Bone marrow (BM) cells 
were harvested from C57BL/6 mice or the indicated strains, stimulated overnight in the described conditions, and analyzed by flow cytometry. (a) Identification of 
neutrophils (CD11bhi Ly6G+) and monocytes (CD11bhi Ly6G− Ly6C+) and their uptake of AF488 and expression of BST2 after stimulation with AF488+ Nb (red) or 
medium (black). (B) BST2 expression on monocytes from BM cultures that were stimulated with AF488+ Nb in the presence of IFNAR1-blocking antibodies or 
isotype control. (c) BST2 expression on monocytes from BM cultures stimulated with Nb, Nb supernatant (SN), house dust mite (HDM) or Poly(I:C) in the 
presence of IFNAR1-blocking antibodies or mIgG1. Data are from one of at least two independent experiments that gave similar results; each dot corresponds to 
a BM culture from a separate mouse. (D) Stimulation of TLR reporter activity by Nb. Cell lines expressing the indicated TLR and their respective controls were 
cocultured overnight with Nb or no stimulus, and TLR reporter activity was quantified using a colorimetric assay. Reporter activity for each cell line is expressed as 
fold-change (FC) of the readings for stimulated versus unstimulated cultures. Each dot corresponds to an independent experiment and is the average of triplicate 
cultures. (e) BM cells from C57BL/6 (WT), TLR4 KO or TLR2 KO mice were cultured with Nb or Poly(I:C) or no stimulus, in the presence of IFNAR1-blocking 
antibodies or isotype control. BST2 expression on monocytes was assessed after overnight culture. Data are from one of at least two independent experiments 
that gave similar results; each dot corresponds to a BM culture from a separate mouse. Statistical analyses used the ANOVA with Tukey’s multiple comparisons 
test. NS: not significant; **p < 0.01, ***p < 0.001, ****p < 0.0001. Symbols above individual bars refer to the p value of the indicated group versus its control 
condition, which was either unstimulated (c) or WT (e).
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of Ifna (all species) (16) and Ifnk in C57BL/6 recipients, but again 
this was not observed in TLR4 KO mice (Figure 4C).

Plasmacytoid DCs are known to be the main producer of 
IFN-I on a per cell basis in antiviral responses and some auto-
immune diseases. In these conditions, pDC IFN-I secretion is 
mainly induced by the detection of nucleic acids through TLR7 
and TLR9, whereas the TLR4 pathway is not involved (49). We, 
therefore, used SiglecH-DTR mice to assess the contribution of 
pDCs to IFN-I production after Nb injection. Depletion of pDCs 
by i.p. treatment with DT had no effect on the expression of Ifnb1 
in ear skin 2 h after Nb injection (Figure S2B in Supplementary 

Material). Transcripts for Ifna or Ifnk, which could be detected at 
low levels in C57BL/6 mice, were undetectable in SiglecH-DTR 
mice on a Balb/c background (Figure S2B in Supplementary 
Material). These discrepancies might be explained by cell type 
and strain-specific differences in the expression of IFN-I family 
members (50). Together, these results suggest that pDCs are not 
involved in the IFN-I response to Nb.

NETosis is known to be induced by various signaling path-
ways, including TLR2 and TLR4 activation (51, 52). As NETosis 
has been associated with the secretion of IFN-I by various cell 
types (22–24, 53), we investigated whether Nb-induced NETosis 
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FigUre 4 | Nippostrongylus brasiliensis (Nb) induces a toll-like receptor 4 (TLR4)-dependent expression of IFN-I in the skin. C57BL/6 (WT) or TLR4 KO mice were 
injected intradermally into the ear with 600 AF488+ Nb. Expression of IFN-I transcripts and of the IFN-I-dependent marker BST2 were examined in ear tissue as 
indicated. Each dot corresponds to one mouse. (a) Representative flow cytometry contour plots depicting AF488 uptake and expression of BST2 on CD45+ skin 
populations 24 h after PBS injection, or co-injection of AF488+ Nb together with IFNAR1-blocking antibodies or isotype control. Cell populations were identified as in 
Figure 1. Fluorescence Minus One (FMO) for BST2 is shown as a control. (B) Expression of BST2 on AF488− and AF488+ skin populations defined as in (a). Bar 
graphs show mean ± SEM from one of two independent experiments that gave similar results. (c) Quantitative Reverse Transcription PCR for Ifnb1, Ifna (all species) 
and Ifnk in ear tissue 2 h after Nb injection. Bar graphs show mean ± SEM from two independent experiments each with three mice/group. Statistical analyses used 
the ANOVA with Tukey’s multiple comparisons test in (B), or Kruskal–Wallis test with Dunn’s multiple comparison in (c) as the distribution of the data could not be 
considered normal (Shapiro–Wilk normality test). Ns: not significant; *p < 0.05; **p < 0.01.
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required the expression of TLR2 or TLR4. We were able to 
observe NETosis in the skin of mutant mice as early as 1 h after 
non-viable Nb injection, ruling out a key requirement for either 
TLR2 or TLR4 in mediating Nb-induced NETosis (Figure S3 in 
Supplementary Material).

expression of an iFn-i signature on 
migratory Dc requires host Tlr4 
expression but not neT formation
Injection of AF488+ Nb is followed by the migration of AF488+ 
skin DCs from the skin to the dLN. AF488+ DCs in dLN peak 
in number at day 2 p.i. and mostly comprise the CD11b+ and 
CD326−CD103−CD11b−, or Triple negative (TN), DC subsets. 
Work from our group has shown that these two subsets of migra-
tory DCs express an IFN-I signature that can be revealed by their 
expression of BST2 (11). We compared expression of BST2 on 
CD11b+ and TN DCs from WT or TLR4 KO mice, and found that, 
despite comparable AF488 uptake, BST2 was not upregulated in 
AF488+ DCs from TLR4 KO mice (Figure 5A). This observation 
is consistent with the lack of detectable IFN-I transcripts in TLR4 
KO mice (Figure 4C).

Infection with live Nb also involves exposure to the microor-
ganisms naturally associated with these helminths. Indeed Gr1+ 
cells (including, but not limited to, neutrophils, inflammatory 
monocytes, and pDCs), have been shown to be determinant 
in controlling bacterial proliferation and the survival of mice 
infected with Nb, thereby enabling the development of a canoni-
cal Th2 response instead of a Th1 response (27).

We investigated whether contamination by Gram-negative 
fecal bacteria was triggering the IFN-I response to Nb. Antibiotic-
sterilized Nb preparations (sNb) (27) induced similar expression 
of BST2 and of the maturation marker CD86 on AF488+ CD11b+ 
and TN DCs infiltrating the ear dLN at day 2 p.i. (Figure S4A in 
Supplementary Material).

Injecting limiting numbers of an Nb preparation that had 
been extensively washed to lower endotoxin content (LE-Nb, 
<5 EU/mL versus Nb, >40 EU/mL) still induced significant BST2 
upregulation on AF488+ DCs in dLN (Figure 5B). Co-injection 
of 10,000 E. coli together with LE-Nb enhanced the IFN-I signa-
ture of AF488+ DCs (Figure 5B). These results show that TLR4 
ligands from helminths and/or their associated microorganisms 
allow the development of an IFN-I signature on migratory DCs 
in skin dLN.
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FigUre 5 | Toll-like receptor 4 (TLR4), not extracellular DNA, drives the development of an IFN-I signature on LN dendritic cells (DCs) after Nippostrongylus 
brasiliensis (Nb) injection. C57BL/6 or TLR4 KO mice were injected intradermally into the ear with AF488+ Nb. Uptake of AF488 and expression of CD86 and the 
IFN-I-dependent marker BST2 were examined in ear draining lymph node (dLN) DCs by flow cytometry 48 h after Nb injection. CD11b+ DCs were CD11c+ MHCIIhi 
CD11b+ CD326− CD103−. Triple Negative (TN) DCs were CD11c+ MHCIIhi CD11b− CD326− CD103−. Each dot corresponds to one mouse. Data are from one of at 
least two repeat experiments that gave similar results. (a) AF488 uptake and BST2 expression on subsets of migratory DCs in dLN of C57BL/6 (WT) or TLR4 KO 
mice after injection of 600 AF488+ Nb. (B) BST2 expression on subsets of migratory DCs in the dLN of C57BL/6 mice after co-injection of 300 Low-Endotoxin (LE, 
< 5 Endotoxin Units/mL) AF488+ Nb with or without 10,000 formalin-fixed E coli. (c) AF488 uptake and BST2 or CD86 expression on subsets of migratory DCs in 
the dLN of C57BL/6 mice after injection of 600 AF488+ Nb with or without DNase I treatment. Bar graphs show mean ± SEM. Statistical analyses used the ANOVA 
with Tukey’s multiple comparisons test. Ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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As Nb injection induced NETosis and IFN-I secretion, we 
investigated whether NETs could mediate Nb-induced IFN-I 
expression. Regular administrations of high doses of DNase I 
are reported to digest NETs in vivo (33). Here, i.d. injection of 
2,000  U DNase I together with Nb inhibited the formation of 

NETs at 2 h p.i., as assessed by microscopy (data not shown). 
However, regular injections of DNase I (i.d. and then i.p. every 
12  h) was unable to reduce BST2 expression on AF488+ DCs 
in dLN at 24 h and 48 h after Nb injection (Figure 5C and data 
not shown). Neutrophil depletion using anti-Ly6G or anti-Gr1 
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FigUre 6 | Toll-like receptor 4 (TLR4) enhances the development of CD4+IL4+ T cells after Nippostrongylus brasiliensis (Nb) injection. C57BL/6 or TLR4 KO mice 
were injected intradermally into the ear with 150 Nb from different preparations. T cell responses were measured in the draining lymph node by intracellular cytokine 
staining and flow cytometry 7 days after Nb injection. Each dot corresponds to one mouse. Data are from one of at least two repeat experiments that gave similar 
results. (a) T cell cytokine response in C57BL/6 mice injected with Nb, or Low Endotoxin (LE, <5 Endotoxin U/mL) Nb, or Low Endotoxin Nb preparations (LE-Nb) 
plus 10,000 formalin-fixed E coli. (B) T cell cytokine response in C57BL/6 (WT) and TLR4 KO mice injected with Nb together with IFNAR1-blocking antibodies or 
isotype control. Bar graphs show mean ± SEM. Statistical analyses used the ANOVA with Tukey’s multiple comparisons test. Ns: not significant; *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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antibody treatment was also unable to prevent Nb-induced 
BST2 expression on AF488+ DCs in dLN (Figure S5A,B in 
Supplementary Material). These results show that the IFN-I 
signature on dLN DCs from Nb-injected mice was not uniquely 
dependent on neutrophils or extracellular DNA.

Together, these data suggest that Nb and its associated TLR4 
ligands induce the expression of IFN-I in the skin (7, 54–56), and an 
IFN-I signature on antigen-bearing migratory DCs in the dLN (11).

Tlr4 signaling enhances the 
Development of Th2 responses to nb
As shown in Figure 5, TLR4 signaling is necessary for Nb-induced 
BST2 expression on AF488+ DCs in dLN. We have previously 
shown that Th2 immune responses to Nb are reduced by block-
ing IFN-I signaling (11). We, therefore, assessed the ability of 
Nb preparations with different endotoxin content to induce 
T cell responses. As shown in Figure 6A, reducing the endotoxin 

content of Nb preparations decreased dLN cellularity and IL4+ 
and IFNγ+ T  cell responses. Adding 10,000 E. coli to “Low-
Endotoxin” Nb preparations was able to rescue the percentages 
and numbers of both IL4+ and IFNγ+ CD4+ T cells (Figure 6A). 
IL17A+ CD4+ T cells were not detected in significant numbers 
after Nb injection thus the effect of TLR4 signaling could not be 
assessed in this population.

We then assessed the impact of TLR4 deficiency on the con-
tribution of IFN-I signaling to the T cell response. As shown in 
Figure 6B, TLR4 KO mice showed lower dLN cellularity and lower 
cytokine responses to Nb injection. In addition, treatment with 
IFNAR1-blocking antibodies was unable to decrease IL4+ T cell 
responses in TLR4 KO hosts, which is consistent with the lack of 
IFN-I production in these mice. A similar effect was seen also on 
IL10+ CD4+ T cells. IFNγ+ CD4+ T cell responses were essentially 
ablated by blocking IFN-I signaling and by TLR4 deficiency. Of 
note, a small population of IL4+ IL10+ CD4+ T cells was induced 
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after Nb immunization, but was independent of IFN-I signaling 
or TLR4 expression (13.47 ± 2.47% of IL4+ CD4+ T cells, data 
not shown).

These results show that TLR4 ligands can amplify Nb-induced 
T cell responses through an IFN-I-dependent mechanism. The 
role of TLR4 and IFN-I signaling appears to be in enhancing 
the magnitude of the T cell immune response to Nb, rather than 
specifically skewing the response toward Th2.

DiscUssiOn

In this paper, we show that the detection of Nb and/or its associated 
microorganisms through TLR4 allows a transient secretion of IFN-I 
in the skin. Preventing TLR4 signaling ablated the upregulation of 
IFN-I-induced markers on DCs and dampened the development 
of IFNγ, IL10, and IL4-secreting T  cells, suggesting that TLR4 
and IFNAR signaling are important but non-specific amplifiers of 
adaptive immune responses to Nb. We also show that Nb induces a 
potent recruitment and activation of neutrophils in the dermis and 
the formation of NETs. However, we were unable to demonstrate 
an effect of neutrophils or NETs on the number of Nb+ DCs in dLN, 
or on their expression of the IFN-I-induced marker BST2 and the 
activation marker CD86, suggesting that NET formation does not 
drive immune activation in response to Nb.

Neutrophils are the main cell type recruited early to the site of 
non-viable Nb injection. We show that neutrophils interact with 
AF488+ Nb in the skin, taking up a substantial quantity of the 
fluorescent dyes associated with it (Figure 1). NETs have been 
associated with the secretion of IFN-I in different models, and 
have been recently implicated in mediating the exacerbation 
of an asthmatic Th2 response induced by rhinovirus infection 
(23, 24, 34, 53). Unexpectedly, we could not find any impact of 
neutrophil depletion or NET digestion on the development of 
the IFN-I signature on antigen-bearing dLN DCs in our model. 
Indeed, Gr1+ cells, including neutrophils, have not been reported 
to contribute to the development of primary adaptive immune 
responses to sterile preparations of live Nb (27). However, 
neutrophils have been shown to improve memory protective 
responses to Nb through their control of alternative activation 
of macrophages in the lung (28). As NETosis is preferentially 
induced by the sensing of large pathogens (39), it could represent 
a mechanism of helminth trapping and killing (57). As antibodies 
and complement are important for neutrophil activation during 
NETosis (40), it appears to be worthwhile investigating whether 
the NETosis process contributes to antihelminthic protective 
immunity during secondary responses.

We show that endotoxins or endotoxin-containing bacteria, 
which are both commonly present in the helminth natural 
environment, can increase the Th2 response to Nb by inducing 
a quick and transient expression of IFN-I in the skin. Antibiotic 
sterilization of Nb preparations did not affect BST2 expression 
on AF488+ DCs in dLN, revealing that bacterial proliferation 
or secretions in  vivo were not important for this mechanism 
(Figure S4A in Supplementary Material). Adding extra washing 
steps during Nb preparation to diminish their potential endo-
toxin content was sufficient to decrease the development of an 
IFN-I signature on AF488+ dLN DCs and the Th2 response to 

the worms. These effects could be reversed by the addition of a 
small number of E. coli at the time of Nb injection. In addition, 
the SN from Nb preparations could enhance the IFN-I signature 
on primary BM  cells as much as Nb themselves (Figure  3C). 
Therefore, Gram-negative bacteria or endotoxins have a poten-
tial role in shaping DC activation after helminth injection, and 
the development of antihelminthic Th2 responses (Figures  5B  
and 6A). In this regard, it is nonetheless important to note that 
our efforts to completely eliminate the TLR4-dependent activity 
from Nb preparations were overall unsuccessful, suggesting the 
possibility that selected Nb components may be able to directly 
engage TLR4 and initiate signaling as was described for HDM 
DerP1 (58). Indeed, various helminths are reported to express 
glycans, glycolipids, or proteinases whose products are able to 
activate TLR4 (7, 54, 56, 59).

We previously showed that TLR4 deficiency had no effect on 
the induction of Th2 responses to Nb in IL4-reporter G4 mice (29). 
The Th2 immune response to Nb is dose-dependent, and using a 
“saturating” dose of Nb, such as 600 L3 larvae, prevented us from 
observing significant differences at that time. In this context,  
if the development of a Th2 immune response is the result of the 
integration of diverse redundant signals, one might not observe 
the contribution of each of these signals if the system is saturated 
by an optimal dose of stimulus. Indeed, IL25, IL33, and TSLP 
can each contribute redundantly to the optimal Th2 immune 
response in various organs and contexts, possibly compensating 
for the effects of TLR4-dependent IFN-I secretion (5). Here, we 
were able to observe a TLR4 dependency on the development of 
a Th2 immune response to a suboptimal dose of Nb (Figure 6B).

Our data suggest that TLR4, which is not expressed on 
conventional DC, enables the sensing of Nb and its associated 
microorganisms as a danger signal to induce IFN-I expression 
and indirectly enhance DC activation, maturation, and/or func-
tional abilities (16, 60–62). The secretion of IFN-I induced by Nb 
was completely abrogated in TLR4 KO mice. As a result, we could 
not observe any effect of IFNAR blockade on the Th2 response to 
Nb in TLR4 KO mice. More importantly, TLR4 and its corecep-
tor CD14 are known to be mainly expressed by monocyte and 
macrophage populations. As neutrophils and monocytes were 
found to be the main cell types interacting with Nb early in the 
skin, and as neutrophils were not found to be critical in mediating 
Nb-induced IFN-I secretion, we can speculate that Nb sensing 
by monocyte and/or macrophage populations is involved in this 
process. Indeed, LPS recognition through TLR4 expression by 
macrophages is a well-known stimulus of TRIF-dependent Ifnb 
expression (47). However, we cannot exclude the possibility that 
other cells such as keratinocytes (63), or TLR4-mediated IFN-I 
independent effects, might also contribute to the development of 
Th2 responses. Indeed, in HDM-mediated asthma models, TLR4 
expression by airway epithelial cells has been shown to contribute 
in a MyD88-dependent but TRIF-independent fashion to the 
development of an IL1-, alarmin-, and GM-CSF-mediated DC 
activation to allow the development of a pathogenic Th2 response 
(64–66). Interestingly, the expression of IRF3 by DCs was found 
to be critical for their optimal maturation, and for the develop-
ment of asthma in similar models. However, no role was found 
for TRIF or IFN-I signaling through IFNAR2 blockade in those 
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studies (67). Very recently, Webb et al reported that IFN-I signal-
ing was indeed important for DC activation, maturation, and 
their induction of Th2 responses by both HDM and Schistosoma 
mansoni (12). As HDM and S. mansoni are both known to activate 
TLR4, the TLR4–IFN-I axis might be an important mechanism 
enhancing DC maturation and Th2 responses in various patholo-
gies, from helminthiases to allergic diseases.

The life cycle of many parasitic helminths involves several 
distinct phases where helminths feed on bacteria during their 
free-living phase in the soil, and then spend most of their parasitic 
phase in the gut while infecting their host. It is difficult to con-
ceive how a natural helminth infection could take place without 
involving barrier disruption of the host and a small-scale invasion 
by its surrounding microorganisms. Gram-negative bacteria such 
as Wolbachia can be associated with helminths, including most 
human-infecting filarial nematodes, in symbiotic (or obligatory 
symbiotic) relationships. Wolbachia-derived endotoxins have 
been shown to strongly affect the inflammatory response to 
Brugia malayi nematodes through TLR4 (68). Our results here 
suggest that, if DCs integrate signals from helminths and from 
epithelial barrier disruption to shape a Th2 immune response, 
the detection of the endotoxins originating from helminth-
associated microflora could also participate via a TLR4 and 
IFN-I-dependent mechanism.

Our work strongly suggests that, if a limited activation of 
antibacterial signaling pathways is likely to occur in a natural 
helminth infection, it might contribute to, and not inhibit, the 
development of antihelminthic Th2 responses.
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