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ABSTRACT
Background: Elevated temperatures reduce fertilization and egg-laying rates in the
octopus species. However, the molecular mechanisms that control the onset of
fertilization and egg-laying in the octopus’ oviducal gland are still unclear; and the
effect of temperature on the expression of key reproductive genes is unknown. This
study aims to better understand the molecular bases of octopus fertilization and
egg-laying, and how they are affected by elevated temperatures.
Method: RNA-seq of oviducal glands was performed for samples before, during, and
after fertilization and their transcriptomic profiles were compared. Also, at the
fertilization stage, the optimal and thermal-stress conditions were contrasted.
Expression levels of key reproductive genes were validated via RT-qPCR.
Results: In mated females before egg-laying, genes required for the synthesis of
spermine, spermidine, which may prevent premature fertilization, and the
myomodulin neuropeptide were upregulated. Among the genes with higher
expression at the fertilization stage, we found those encoding the receptors of
serotonin, dopamine, and progesterone; genes involved in the assembly and motility
of the sperm flagellum; genes that participate in the interaction between male and
female gametes; and genes associated with the synthesis of eggshell mucoproteins.
At temperatures above the optimal range for reproduction, mated females reduced
the fertilization rate. This response coincided with the upregulation of myomodulin
and APGW-amide neuropeptides. Also, genes associated with fertilization like
LGALS3, VWC2, and Pcsk1 were downregulated at elevated temperatures. Similarly,
in senescent females, genes involved in fertilization were downregulated but those
involved in the metabolism of steroid hormones like SRD5A1 were highly expressed.
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INTRODUCTION
The endemic Octopus maya from the Yucatan Continental Shelf is becoming a good model
to study the eco-physiological adaptations to environmental challenges, such as ocean
warming (Juárez et al., 2015, 2016; Sanchez-García et al., 2017; López-Galindo et al., 2019a;
Meza-Buendía et al., 2021). This ectothermic species is adapted to a narrow temperature
range: reproductive events and embryonic development have an upper thermal limit
around 27 �C; below that temperature—and optimally around 24 �C—these processes take
place successfully. Therefore, reproductive events occur typically on winter and during
upwelling pulses when sea temperatures are cooler on this region (Juárez et al., 2015;
Caamal-Monsreal et al., 2016; Avila-Poveda et al., 2016; Angeles-Gonzalez et al., 2017;
Sanchez-García et al., 2017; Pascual et al., 2019; López-Galindo et al., 2019a, 2019b).
However, higher temperatures have been reported in its distribution area in recent years,
mainly in summer, which may negatively affect the physiological condition and
reproductive success in O. maya males and females (Juárez et al., 2015, 2016; Angeles-
Gonzalez et al., 2017; Pascual et al., 2019; López-Galindo et al., 2019a, 2019b). For instance,
gene expression patterns in the testis of thermally stressed O. maya males were associated
with physiological deficiencies and low motility of the spermatozoa (López-Galindo et al.,
2019b). In O. maya females, the exposure to temperatures above 27 �C significantly
reduced the ova production, yolk amount, fertilization, and egg-laying rates (Juárez et al.,
2015). Moreover, the effect of thermal stress on mated females substantially reduced the
hatchling survival, and hatchling growth rate. Therefore, the ability of O. maya females to
store spermatozoa and delay fertilization until thermal conditions become favorable may
be an adaptation that prevents low survival of the offspring at high temperatures (Juárez
et al., 2015, 2016). However, the molecular mechanisms controlling the onset of
fertilization and egg-laying are still unclear.

Octopus maya is a semelparous species with only one reproductive event (egg-laying) in
its lifetime and near the end of life when the female dies after the eggs hatch (Van
Heukelem, 1983). In Octopus, the reproductive system consists of a gonad oval with two
tubular oviducts and one oviducal gland (OvG) arranged halfway along each oviduct
(Wells & Wells, 1977; Arkhipkin, 1992). In general terms, the OvG is involved in
spermatozoa storage in spermathecae (Mangold, 1987; Marian, 2011, 2015), ova
fertilization, and two critical activities: the production of cement by the peripheral gland
and the cement polymerization in the central gland (Mangold, von Boletzky & Frösch,
1971; Froesch & Marthy, 1975; Wells & Wells, 1977). This cement is used to stick the eggs
together in strings and attach them to the walls or roof of the female’s shelter (Froesch &
Marthy, 1975; Wells, 1978).

During mating, the passage of spermatozoa into the OvG towards the spermathecae
does not imply fertilization; spermatozoa are stored in the spermathecae and used later in
batches (Mangold, 1987; Marian, 2015; Sato, 2021). In wild and laboratory conditions,
females continue mating and storing spermatozoa as the OvG enlarges (Froesch &Marthy,

Juárez et al. (2022), PeerJ, DOI 10.7717/peerj.12895 2/35

http://dx.doi.org/10.7717/peerj.12895
https://peerj.com/


1975; López-Galindo et al., 2019a). Fertilization is internal: mature ova descend one by one
from their follicular sheath to the proximal oviduct; simultaneously, spermatozoa are
released from the spermathecae into the oviduct of the OvG for fertilization to occur
(Mangold, 1987). Then, the egg-laying female stops hunting and feeding, to dedicate
herself exclusively to the care and protection of her egg mass; therefore, the onset of
egg-laying depends on the energetic budget of the female, because she needs enough
energy reserves to perform the oviposition and egg incubation—which takes around
45 days—without food (O’Dor & Wells, 1978; Di Cristo, 2013; Juárez et al., 2015; Meza-
Buendía et al., 2021). Egg-incubation coincides with the onset of senescence, where a
general physiological decline and diseases occur, as part of a natural process that precedes
the octopus death; females die just after the newborns’ hatch (Anderson, Wood & Byrne,
2002). Physical deterioration of distinct organs occurs in the senescent female’s body,
including the depletion of reproductive organs, where the OvG drastically shrinks
(Olivares et al., 2017).

The OvG plays a crucial role in the reproductive strategy, thus deserves more
consideration in the study of octopus reproductive success (Olivares et al., 2017; Sato,
2021). In the present study, the transcriptomic profiles of OvG at different physiological
stages were analyzed to understand the molecular mechanisms controlling the onset of
fertilization and egg-laying in O. maya. We also evaluated the effect of temperature on the
expression of key reproductive genes at the fertilization stage.

MATERIALS AND METHODS
Ethics statement
In this study, octopuses were anesthetized with ethanol 3% in seawater at experimental
temperatures (Estefanell et al., 2011; Gleadall, 2013) to enable humane killing (Andrews
et al., 2013) in consideration of ethical protocols (Mather & Anderson, 2007), and the
animals’ welfare during manipulations (Moltschaniwskyj et al., 2007; Winlow et al., 2018),
all previous takes into account the nociception in aquatic invertebrates (Sneddon, 2015).
Our protocols were approved by the experimental Animal Ethics Committee of the
Faculty of Chemistry at Universidad Nacional Autónoma de México (Permit number:
Oficio/FQ/CICUAL/099/15) and following the ethical recommendations for the humanitarian
killing of animals as established under Mexican law (NOM-033-SAG/ZOO-2014
derogating to NOM-033-ZOO-1995) and following as closely as possible the five R’s
Principle in invertebrates (Crespi-Abril & Rubilar, 2021).

Capture and acclimation of octopuses
Female (n = 30) and male (n = 30) octopuses with a body mass that ranged between
400–600 g were captured off the coast of Sisal Yucatán, México, by an artisanal fishing fleet.
This O. maya size range assumes that they are reproductively mature, and even some
females have already collected sperm in their OvG during the process of maturation
(Avila-Poveda et al., 2016; Angeles-Gonzalez et al., 2017; Markaida, Méndez-Loeza &
Rosales-Raya, 2017). Captured octopuses were transported to the Experimental
Cephalopod Production Unit at the Unidad Multidisciplinaria de Docencia e Investigación
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(UMDI-UNAM), Sisal, Yucatan, Mexico. Figure 1 (on top) shows how the octopuses were
acclimated for 10 d in three outdoor ponds (6 m diameter) containing aerated natural
seawater (oxygen level maintained to 5.5 ± 0.5 mg L−1) at 25 ± 1 �C and a rate of 20
individuals per pond with a sex ratio of 1:1 (Rosas et al., 2014) following the acclimation
protocol of López-Galindo et al. (2019a). Octopuses were observed daily at 6:00 AM,
12:00 PM, and 6:00 PM for 1 h. Mating was observed since the first day of acclimation
which was confirmed by observing a male inserting his hectocotylus (mating arm) into the
female mantle cavity to deposit spermatophores. During the 10-d acclimation period, all
the females mated at least once.

Experimental design and thermal conditions
Figure 1 illustrates the thermal experimental design and oviducal gland dissection after the
acclimation, which are subsequently described in detail: on day 11, mated females were
distributed randomly (coin toss) into two recirculating aquaculture systems, one for the
Control condition (n = 15) and another for the thermal challenge (n = 15). Females were
individually reared in 80 L tanks for 40 d in both Control and Treatment conditions (from
day 11 to 51). Each tank contained a fiberglass box that served as a refuge and for egg-
laying. Physio-chemical parameters (dissolved oxygen, temperature, salinity, and pH) of
individual tanks were monitored twice daily to ensure homogeneous conditions within
each treatment and minimize potential confounders. In the Control condition, females
were reared at 24 �C, which is the best condition for egg-laying (Rosas et al., 2014;
Juárez et al., 2015). The thermal challenge consisted of a high-temperature shock
treatment with a temperature decrease (HTST-TD), which was performed following the
protocol of Juárez et al. (2015), where mated females were initially exposed to a stress
temperature of 30 �C for 10 d (from day 11 to day 21), then they were exposed 5 d at
temperatures from 29 to 24 (decreasing of 1 �C every 5 days) (Fig. 1). After the heat shock
of 30 �C, the system was cooled down to induce the egg-laying (Juárez et al., 2015).

Egg-laying and fertilization rates
Through the experiment, the average number of eggs per spawn was calculated and the
fertilization was visually inspected in each treatment following the protocol described in
Juárez et al. (2015) including all the females that laid eggs in each experimental condition.
The egg-laying rates were normalized by dividing the number of eggs per spawn by the
females’ weight in grams. Fertilization rates were expressed as the proportion of eggs
containing embryos at the end of the incubation process, from the total eggs laid per
female. Statistical differences in egg-laying rates and fertilization rates between the Control
and the HTST-TD were evaluated by implementing Student t-tests with a statistical
significance of P < 0.05.

Sampling and dissection of oviducal glands
We replicated the sampling schedule implemented by Juárez et al. (2015): sampling began
after 2 weeks of exposure to the experimental conditions, on day 26. Females that started
the egg-laying before that day were not considered for further analysis. In the Control
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condition, four females in the mated stage (MAT24, n = 4) were sampled on day 26.
The mated stage was characterized by an OvG that received spermatophores and stored
spermatozoa in the spermathecae, according to the previous observation of the male(s)

Figure 1 Schematic drawing of the acclimation, thermal experimental design, and oviducal gland
dissection in O. maya. MAT24 for mated females at 24 �C, FER24 for fertilization in females at
24 �C, SEN24 for senescent females at 24 �C and, FER-TD for fertilization in females from the high-
temperature shock treatment with temperature decrease (HTST-TD).

Full-size DOI: 10.7717/peerj.12895/fig-1
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inserting the hectocotylus arm into the female’s mantle cavity. The onset of egg-laying
—which coincides with fertilization and precedes the senescence—was unpredictable for
each female. Therefore, a female was considered at the fertilization stage as soon as the
egg-laying was detected during the daily monitoring. At that moment, females were
sheltered in their nests and stopped feeding, whereas the OvG was presumably releasing
sperm from the spermatheca and producing secretions from its glands. The next
egg-laying female detected was sampled 1 week after she started laying her eggs, which
represented the senescence stage. This stage was characterized by an OvG that entered in
physiological (without evident secretions) and anatomical deterioration due to a phase
of programmed cell death; besides, females were also near the end of their life. This was
repeated until obtaining four samples for each stage (FER24, n = 4; SEN24, n = 4).

In the HTST-TD, females observed in the fertilization stage (FER-TD, n = 4) were
sampled from day 26 to day 51 (Fig. 1). Before OvG dissection, animals were anesthetized
by keeping them in ethanol–seawater (3%) solution for up to 4 min as indicated in the
Ethics statement. Subsequently, the reproductive system was dissected from each octopus
for each experimental condition (MAT24, FER24, SEN24, and FER-TD) and OvG samples
were cut from the peripheral gland, central gland, and spermatheca area, which were
mixed trying to obtain representative samples of the whole oviducal gland (Fig. 1 at the
bottom), and finally preserved in RNAlater solution (Thermo Fisher) at 4 �C. Once all the
samples were obtained, they were sent to the Laborario de Genómica Funcional de
Organismos Marinos of CICESE in Ensenada, BC, Mexico where they were stored at
−70 �C until RNA extraction.

RNA sequencing
RNA extraction, quantitation, and quality check were performed using the protocol,
reagents, and instruments described in López-Galindo et al. (2019b) and Juárez et al.
(2019), starting with 20–30 mg of every whole gland sample. For each experimental
condition (MAT24, FER24, SEN24, and FER-TD), a pooled sample was prepared
which consisted of 100 ng of RNA from four different individuals (n = 4). Paired-end
libraries of complementary DNA (cDNA) were prepared for each pool using the
TruSeq DNA Sample Preparation Kit v2 (Illumina, San Diego, CA, USA), following the
manufacturer’s protocol. Libraries were sequenced in the MiSeq system (Illumina, San
Diego, CA, USA) to obtain reads of 150 bp long. Libraries and sequencing were conducted
without the knowledge of treatment allocation of the pooled samples (blinding).

Bioinformatic workflow
The quality reports of raw sequence data were obtained with FastQC v0.11.6 (Babraham
Bioinformatics, Babraham, UK). Low-quality reads, ambiguous nucleotides, and
sequencing adaptors were removed using Trimmomatic v0.35 software (Bolger, Lohse &
Usadel, 2014). The transcriptome was de novo assembled using Trinity v2.4.0 (Grabherr
et al., 2011) and was deposited at DDBJ/EMBL/GenBank database under the accession
GJEO00000000. TransDecoder (Haas et al., 2013) was implemented to predict the open
reading frames (ORFs) and coding sequences (CDS) of each transcript (with a minimum
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length of 50 amino acids), which were annotated using BLASTx searches (Camacho et al.,
2009) in the UniProt database. Differential gene expression was analyzed implementing
pairwise comparisons among the physiological stages in the Control condition (i.e.,
MAT24 to FER24, MAT24 to SEN24, FER24 to SEN24), then the representative DEGs for
each stage included those obtained against the other two stages; for example, representative
DEGs of MAT24 included those obtained against FER24 plus those against SEN24,
removing the redundancy. The fertilization stages of the Control and the HTST-TD were
compared (FER24 against FER-TD); for this, Bowtie2 v2.3.2 (Langmead & Salzberg, 2012)
was used to align the reads of each library on the assembled transcriptome; RSEM v1.3.0
(Li & Dewey, 2011) to quantify transcript abundance of each library; and edgeR
(Bioconductor) for identification of differential expression at isoform level (Robinson,
McCarthy & Smyth, 2009). UniProt IDs of differentially expressed genes (DEGs) were used
for enrichment analysis of gene ontology (GO) terms and metabolic pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2012) with DAVID
v6.8 (Huang, Sherman & Lempicki, 2009). DEGs included in the best-represented GO and
KEGG categories and those associated with the regulation of OvG activity (Di Cosmo, Di
Cristo & Paolucci, 2001; Iwakoshi-Ukena et al., 2004; Di Cristo & Di Cosmo, 2007;
Minakata et al., 2009) were selected for cluster analysis and plotted in heatmaps using R
software (R Development Core Team, 2010). The analyses were performed following the
scripts and parameters set and statistical significance implemented by Juárez et al. (2019)
and López-Galindo et al. (2019b).

Validation of gene expression via RT-qPCR
To validate expression levels found by bioinformatic methods, DEGs with relevant
reproductive functions were selected to estimate their expression by using RT-qPCR.
Five potential reference genes were evaluated: V-type proton ATPase subunit d (VATD),
Elongation factor 1-beta (EF1β), Gelsolin-like protein 2, Heterogeneous nuclear
ribonucleoprotein D (HNR), and Ribosomal Protein L6 (RPL6). Specific primers for the
target and reference genes were designed using Primer3 (Untergasser et al., 2012). For each
stage, additional replicate samples were obtained from animals under the same
experimental conditions MAT24 (n = 4), FER24 (n = 3), SEN24 (n = 3), FER-TD (n = 3),
including MAT-TD (n = 5) and SEN-TD (n = 3). RNAs were extracted as mentioned
previously and treated with the RQ1 RNase-free DNase (Promega, Madison, WI, USA)
according to the manufacturer’s protocol. The cDNA was synthesized using the
Improm II Reverse Transcription System (Promega, Madison, WI, USA) following the
manufacturer’s instructions starting with 2 µg of RNA of each sample. The primer
amplification efficiency was estimated following the procedure of Bustin et al. (2009).
The RT-qPCR reactions were performed by triplicate following the protocol of López-
Galindo et al. (2019b) without knowledge of group allocation of the samples (blind
analysis). The stability of reference genes was evaluated using RefFinder (Xie et al., 2012).
The relative expression of target genes was estimated following the method proposed by
Hellemans et al. (2007). To assess if gene expression levels were significantly affected by the
OvG physiological stages and the HTST-TD condition a two-way ANOVA was performed
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followed by Tukey’s HSD test. A Spearman correlation for RNA-seq and RT-qPCR
expression values was performed. Analyses were performed using STATISTICA 8.0
(StatSoft, Tulsa, OK, USA), and a statistically significant difference was accepted at
P < 0.05.

RESULTS
In the Control condition, all females laid eggs at a temperature of 24 ± 1 �C, while in the
HTST-TD, females did not lay eggs at temperatures around 30 �C, they did it until the
rearing system reached temperatures below 28 �C at an average temperature of 26.1 �C.
Significant differences in the egg-laying rates (P = 8.12E−5) and fertilization rates
(P = 0.0012) were obtained between the Control and the HTST-TD. In the Control
condition, the average number of eggs laid was three times higher and the average number
of eggs laid per female’s mass (grams) was two times higher than those observed in the
HTST-TD. The average fertilization rate in the HTST-TD was 40.6 with an SD of 26.7,
while in the Control condition the average fertilization rate was 72.5 with an SD of 4.0.

Sequencing and transcriptome assembly
The RNA sequencing generated a total of 21,664,484 paired reads, with an average of
5,416,121 paired reads per library. The raw sequence reads were deposited in the
NCBI-SRA database (accession numbers: SRR13512014–SRR13512017). After the quality
filter, 19,969,819 paired reads survived (92.17%), which were utilized for transcriptome
assembly. The transcriptome consisted of 61,575 contigs with N50 of 593 and 32,348,437
assembled bases. A total of 36,136 coding sequences (CDS) were detected (Table 1).

Table 1 Sequencing and reads assembly of cDNA libraries from oviducal glands of Octopus maya at
different conditions.

Libraries Number of paired reads

MAT24 5,872,593

FER24 4,931,726

SEN24 5,507,769

FER-TD 5,352,396

Average 5,416,121

Total 21,664,484

Passed QC filter 19,969,819

Transcriptome assembly quantity

Contigs 61,575

Coding sequences 36,136

Contig length N50, nucleotides 593

Total assembled nucleotides 32,348,437

Note:
MAT, mated; FER, fertilization; SEN, senescence; number 24 indicates 24 �C; TD, heat shock treatment with temperature
decrease.
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Differential expression analysis
In the Control condition, a total of 1,719 transcripts were differentially expressed including
all the pairwise comparisons among the physiological stages, of which, 210 showed the
highest expression in MAT24, 626 in FER24, and 633 in SEN24. Gene upregulation was
shared between stage pairs: 209 transcripts by the MAT24-FER24 pair, 11 transcripts
by MAT24 and SEN24, and 30 transcripts by the FER24-SEN24 pair. In the comparison
between FER24 and FER-TD, 93 transcripts showed differential expression, of which 47
showed higher expression in FER24 and 46 in FER-TD (Fig. 2).

Functional annotation and enrichment analysis
A total of 15,145 transcripts showed significant BLASTx-hit with the UniProt database,
of which 12,678 obtained GO annotations. These annotations were analyzed to find
enriched biological processes in the transcriptome (Table 2). The higher enrichment was

Figure 2 Diagrams representing the number of upregulated transcripts in pairwise comparisons
among (A) physiological stages; and (B) between thermal conditions of O. maya oviducal
glands. Full-size DOI: 10.7717/peerj.12895/fig-2
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obtained for cilium-dependent cell motility and axoneme assembly, including genes like
SPEF2, TTLL1, TTLL3, DRC1, CCDC39, RSPH4A, DNAH1, SPAG16, and LRGUK.

In mated females of the Control condition (MAT24), DEGs enriched biological
processes like the fat-soluble vitamin metabolic process, IMP biosynthetic process,
regulation of mRNA splicing via spliceosome, and cellular biogenic amine metabolic
process. Upregulation was detected on genes encoding proteins like spermidine synthase,
diamine acetyltransferase 2, kynurenine formamidase, low-density lipoprotein
receptor-related protein 2, and the myomodulin neuropeptide; and downregulation was
observed on genes encoding the disks large-associated protein 1, brorin, and the
5-hydroxytryptamine receptor 1 (Table 3).

DEGs obtained for FER24 enriched biological processes like the regulation of
calcineurin-NFAT signaling cascade, cellular water homeostasis, regulation of male germ
cell proliferation, cellular hormone metabolic process, regulation of reproductive process,
extracellular matrix organization, and glycosylation. Upregulation was detected on
genes encoding aquaporin, calcium and integrin-binding protein 1, chorion peroxidase,
dopamine receptor 1, FMRFamide-activated amiloride-sensitive sodium channel,
peroxiredoxin-4, protein catecholamines up, 5-hydroxytryptamine receptor 1, and 16
genes included in the glycoprotein biosynthetic process GO term (Table 4), like the
beta-1,4-N-acetylgalactosaminyltransferase bre-4; by contrast, downregulation was
observed on genes encoding the 3-oxo-5-alpha-steroid 4-dehydrogenase 1, polypyrimidine
tract-binding protein 1, and the myomodulin neuropeptide.

In SEN24, DEGs enriched biological processes like the cellular hormone metabolic
process, iron ion homeostasis, cellular response to growth factor stimulus, lipid metabolic
process, and oxidation-reduction process. Upregulation was observed on the
retinoid-inducible serine carboxypeptidase, retinol dehydrogenase 14, 3-oxo-5-alpha-
steroid 4-dehydrogenase 1, and matrix metalloproteinase-19; while downregulation was
observed on genes encoding the chorion peroxidase, galectin-3, protein catecholamines up,

Table 2 Functional enrichment of biological processes for the whole oviducal gland transcriptome of
Octopus maya.

GO Term P-value FE

GO:0060285 cilium-dependent cell motility 1.39E−04 5.51

GO:0035082 axoneme assembly 7.24E−04 4.01

GO:0000722 telomere maintenance via recombination 4.69E−04 3.08

GO:0006383 transcription from RNA polymerase III promoter 6.50E−04 2.99

GO:0075733 intracellular transport of virus 5.96E−04 2.53

GO:0006396 RNA processing 4.18E−06 2.42

GO:0090630 activation of GTPase activity 1.50E−04 2.30

GO:0006283 transcription-coupled nucleotide-excision repair 4.20E−04 2.25

GO:0016925 protein sumoylation 2.09E−04 2.01

GO:0060271 cilium morphogenesis 5.97E−05 2.01

Note:
GO, gene ontology; FE, fold enrichment.
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Table 3 Functional enrichment for differentially expressed genes in oviducal glands of Octopus
maya at each condition.

GO term FE P-value

MAT24

fat-soluble vitamin metabolic process 30.28 3.83E−03

IMP biosynthetic process 20.18 8.90E−03

negative regulation of RNA splicing 13.76 4.01E−04

cellular biogenic amine metabolic process 12.75 3.44E−03

cellular amine metabolic process 9.18 1.95E−03

regulation of mRNA splicing, via spliceosome 6.49 2.15E−03

extracellular structure organization 4.07 3.32E−03

alpha-amino acid metabolic process 3.41 4.68E−03

nucleotide biosynthetic process 3.32 1.00E−02

DNA replication 3.06 8.77E−03

FER24

positive regulation of calcineurin-NFAT signaling cascade 31.33 2.96E−03

regulation of male germ cell proliferation 18.80 9.45E−03

positive regulation of cholesterol efflux 18.80 9.45E−03

cell volume homeostasis 13.05 4.04E−04

water homeostasis 12.53 3.23E−03

hydrogen peroxide catabolic process 11.39 4.34E−03

phagocytosis, engulfment 9.64 7.17E−03

protein hydroxylation 9.64 7.17E−03

serine family amino acid biosynthetic process 8.95 8.92E−03

retinoid metabolic process 7.23 1.19E−03

muscle organ morphogenesis 6.53 6.42E−03

cellular hormone metabolic process 4.95 6.65E−03

positive regulation of cell-substrate adhesion 4.70 8.28E−03

regulation of reproductive process 4.14 6.40E−03

cellular amino acid catabolic process 3.86 2.11E−03

extracellular structure organization 3.69 9.70E−05

extracellular matrix organization 3.30 9.64E−04

reactive oxygen species metabolic process 3.03 9.28E−03

glycosylation 2.83 7.98E−04

glycoprotein metabolic process 2.42 1.70E−03

SEN24

regulation of microvillus organization 58.80 8.40E−04

cellular hormone metabolic process 9.28 4.09E−04

retinoid metabolic process 9.05 9.22E−03

iron ion homeostasis 8.91 2.18E−03

transition metal ion transport 7.06 1.47E−03

hormone metabolic process 5.35 1.84E−03

cellular response to growth factor stimulus 3.27 3.18E−04

lipid metabolic process 1.99 3.69E−03

(Continued)
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FMRFamide-activated amiloride-sensitive sodium channel, and the cAMP-responsive
element modulator. The top differentially expressed genes (DEGs) among the different
physiological stages were plotted and clustered in a heatmap (Fig. 3). In this heatmap, the
conditions MAT24 and FER-TD were grouped due to similar gene expression patterns.

In the comparison between FER24 vs FER-TD, DEGs enriched biological processes
like the extracellular matrix disassembly, plasma membrane organization, regulation of
cell adhesion, signaling, and cell communication. In FER-TD, we detected upregulation
on genes encoding the CAD protein, matrix metalloproteinase-19, myomodulin
neuropeptide, and tetraspanin-18; whereas strong downregulation was detected on
the gene encoding the lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase.

Table 3 (continued)

GO term FE P-value

FER24 vs FER-TD

extracellular matrix disassembly 26.13 7.08E−02

plasma membrane organization 7.56 5.45E−02

regulation of cell adhesion 5.75 8.79E−02

single-organism membrane organization 3.45 9.63E−02

signaling 1.72 7.87E−02

Note:
GO, gene ontology; FE, fold enrichment; MAT24, mated; FER24, fertilized; SEN24, senescence; all at 24 �C. FER-TD,
fertilized and exposed to the heat shock treatment with temperature decrease.

Table 4 Transcripts corresponding to the glycoprotein biosynthesis process upregulated in the FER24 condition.

Transcript ID UniProt ID Gene name Protein name

TRINITY_DN43413_c0_g1_i1 ALG8_HUMAN ALG8 Probable dolichyl pyrophosphate Glc1Man9GlcNAc2 alpha-1,3-
glucosyltransferase

TRINITY_DN13830_c0_g1_i5 B3GN5_PIG B3GNT5 Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase

TRINITY_DN13397_c0_g2_i3 BRE4_CAEBR bre-4 Beta-1,4-N-acetylgalactosaminyltransferase bre-4

TRINITY_DN5237_c0_g1_i1 CANT1_HUMAN CANT1 Soluble calcium-activated nucleotidase 1

TRINITY_DN16173_c0_g2_i10 D19L1_HUMAN DPY19L1 Probable C-mannosyltransferase DPY19L1

TRINITY_DN16072_c0_g1_i2 EDEM2_HUMAN EDEM2 ER degradation-enhancing alpha-mannosidase-like protein 2

TRINITY_DN16442_c0_g2_i1 FUCTA_DROME FucTA Glycoprotein 3-alpha-L-fucosyltransferase A

TRINITY_DN14002_c0_g1_i1 G3ST2_MOUSE Gal3st2 Galactose-3-O-sulfotransferase 2

TRINITY_DN11335_c0_g1_i1 GALT9_CAEEL gly-9 Probable N-acetylgalactosaminyltransferase 9

TRINITY_DN3280_c0_g1_i1 GCNT1_MOUSE Gcnt1 Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-
acetylglucosaminyltransferase

TRINITY_DN10779_c0_g1_i1 GOGA2_RAT Golga2 Golgin subfamily A member 2

TRINITY_DN16242_c0_g1_i8 LRP2_HUMAN LRP2 Low-density lipoprotein receptor-related protein 2

TRINITY_DN29933_c0_g1_i1 MGT4B_DANRE mgat4b Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B

TRINITY_DN11201_c0_g1_i1 PMGT1_HUMAN POMGNT1 Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1

TRINITY_DN10762_c0_g1_i1 STT3A_BOVIN STT3A Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit STT3A

TRINITY_DN7997_c0_g1_i1 TMM59_MOUSE Tmem59 Transmembrane protein 59

Note:
These transcripts were upregulated in oviducal glands of fertilized Octopus maya females in the Control condition (24 �C).
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By contrast, FER24 showed higher expression of genes encoding brorin, galectin-3,
epidermal retinol dehydrogenase 2, neuroendocrine convertase 1, and spectrin beta chain.
The top DEGs between the Control and the HTST-TD conditions were plotted and
clustered in a heatmap (Fig. 4). In this heatmap, the conditions SEN24 and FER-TD
showed similar expression patterns and were grouped, another group consisted of MAT24
and FER24.

Figure 3 Heatmap of top DEGs among the physiological stages of oviducal glands of O. maya. Row
labels indicate the UniProt IDs of the best BLASTx hit for each transcript. MAT24 for mated females at
24 �C, FER24 for fertilization in females at 24 �C, SEN24 for senescent females at 24 �C and, FERTD for
fertilization in females from the HTST-TD. Values in log2(TPM+1).

Full-size DOI: 10.7717/peerj.12895/fig-3
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A third heatmap was constructed for transcripts related to the regulation of the OvG
activity (Fig. 5). In this heatmap, stronger expression differences were evident in genes
encoding the 5-hydroxytryptamine receptor 1 (5HT-7), cAMP-dependent protein kinase
regulatory subunit (PKAR), cAMP-responsive element modulator (CREM), dopamine
receptor 1 (Dop1R1), FMRFamide-activated amiloride-sensitive sodium channel
(FanaCh), protein catecholamines up (Catsup), and steroid 17-alpha-hydroxylase/17,20
lyase (CYP17A1) showing all an expression peak at the fertilization stage (FER24); and

Figure 4 Heatmap of top DEGs from the comparison betweenO. maya oviducal gland samples of the
Control condition against samples of the HTST-TD. Row labels indicate the UniProt IDs of the best
BLASTx hit for each transcript. MAT24 for mated females at 24 �C, FER24 for fertilization in females at
24 �C, SEN24 for senescent females at 24 �C and, FERTD for fertilization in females from the HTST-TD.
Values in log2(TPM+1). Full-size DOI: 10.7717/peerj.12895/fig-4
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myomodulin (MYOM) which was upregulated in MAT24 and FER-TD. In this heatmap,
the conditions MAT24 and FER-TD were grouped due to similar expression patterns.
Annotations of upregulated transcripts in each reproductive stage are shown in Table S1.
The list of all transcripts used in heatmaps including their gene products is shown in
Table S2.

Validation of gene expression by RT-qPCR
Three different gene expression patterns were represented: the upregulation in MAT24
was represented by the genes MYOM and SAT2; the upregulation in FER24 by Ptx,
Dop1R1, PRDX4, and Catsup; and the upregulation in SEN24 by the genes MMP-19
and SRD5A1. Primer efficiency ranged from 92.1 to 109.8, the annealing temperatures,

Figure 5 Expression heatmap for regulatory genes of oviducal glands’ activity inO. maya at different
conditions. Row labels indicate the UniProt IDs of the best BLASTx hit for each transcript. MAT24 for
mated females at 24 �C, FER24 for fertilization in females at 24 �C, SEN24 for senescent females at 24 �C
and, FERTD for fertilization in females from the HTST-TD. Values in log2(TPM+1), ���DEGs (fold
change > 2, false discovery rate < 0.05). Full-size DOI: 10.7717/peerj.12895/fig-5
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product sizes, and sequences of each primer pair are shown in Table 5. The elongation
factor 1 beta (EF1B) and the ribosomal protein L6 (RPL6) showed higher stability and were
used as reference genes. Gene expression values estimated by RNA-Seq and RT-qPCR
methods showed a significant Spearman correlation (P-value = 0.009). A scatter plot with
linear regression representing the correlation between RNA-Seq and RT-qPCR gene
expression values is provided as Fig. S1.

In the RT-qPCR estimation, the gene SAT2 showed a higher expression in the mated
stage (MAT24) but the differences were not significant. The MYOM gene showed a
significant effect for the interaction of factors (P = 0.0304) with higher expression in
MAT24 and FER-TD (Fig. 6A). The genes with an expected peak in the fertilization stage
showed significant effect for the “stage” factor (Catsup, P = 0.0029; Dop1R1, P = 0.0064;
Ptx, P = 0.0161; PRDX4, P = 0.0002) with higher expression in fertilized females. However,
the gene Catsup also showed a significant effect of the “treatment” factor (P = 0.0219)
with higher expression in the Control (Fig. 6B). The genes with a bioinformatic peak in the
senescence stage (SEN24) MMP-19 and SRD5A1 showed in the RT-qPCR a significant
effect for the “stage” factor with higher expression in senescent females (both P < 0.0001);
they also showed significant effect due to the interaction of factors (P = 0.0284 and 0.0001

Table 5 Primers for target and reference genes of Octopus maya oviducal glands used in RT-qPCR.

Transcript Protein name E Tm Size Primers

TRINITY_DN22438_c0_g1_i1 3-oxo-5-alpha-steroid 4-dehydrogenase 1 109.8 60 119 CGGAAACCTAACGAAACAGG

GACCAGCATGCAATAGCAAA

TRINITY_DN16362_c4_g6_i1 Chorion peroxidase 97.3 60 116 CGGCTTATCACGACGGTTAT

GCATTTTGCGTTGAAAGGTT

TRINITY_DN14910_c0_g1_i2 Diamine acetyltransferase 2 90.5 60 127 ACCCACCTTCTGTTGATGATCT

ACCAATGGTCCTGTGCTTAGT

TRINITY_DN12903_c1_g1_i1 Dopamine receptor 1 91.4 60 120 GGCTGTGACCTCGACATCAA

GTGTTGCTGAGCCGTACTGT

TRINITY_DN12984_c0_g1_i1 Matrix metalloproteinase-19 94 60 150 TGACGAAGAATGGACTGCAA

TGGAAATCCTTCACGAAACC

TRINITY_DN32740_c0_g1_i1 Myomodulin neuropeptides 1 97.2 62 118 GCAGTGGACCATTCCTTGAT

TTTTCGAAGCCATTTTGTCC

TRINITY_DN16150_c1_g1_i4 Peroxiredoxin-4 100.9 60 107 ATGGCCAAGATTCTGAAGGA

CACCACGAAACAAAGGAGGT

TRINITY_DN15757_c0_g1_i2 Protein catecholamines up 98.4 60 114 TTGGGTCTGCGAGTCTTCTT

AGCCATTCTCACAGCGAAGT

Reference (Xu & Zheng, 2018) 60S ribosomal protein L6 92.1 60 171 GGAAGGCACAAGGGAAAGCG

CCTGGCTGGGATCTGAACCT

Reference (Juárez, 2016) Elongation factor 1B 95.3 60 108 TGATGTCAAACCATGGGACG

AGAGGTGCTAACTTGGACGC

Note:
E, primer efficiency; Tm, annealing temperature; Size, product size in base pairs.
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Figure 6 Relative expression of target genes (RT-qPCR, average and standard deviation) at different
conditions of oviducal glands of O. maya. Comparison between the Control temperature (24 �C) and
HTST-TD. MAT, mated; FER, fertilization; SEN, senescence. Relative expression (fold change, FC) was
calculated using the 60S ribosomal protein L6 and Elongation factor 1 B as reference genes (values in
Log10 scale). The expected gene expression patterns (A, B, and C) were estimated in the Control con-
dition by bioinformatic methods. Full-size DOI: 10.7717/peerj.12895/fig-6
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respectively), and SRD5A1 showed significant effect due to the “treatment” factor
(P = 0.0104) with the highest expression in SEN24 (Fig. 6C).

DISCUSSION
Mated stage
Before the fertilization, the spermatozoa stored in the OvG must be reactivated (De Lisa
et al., 2013). Important genes involved in the axoneme assembly and cilium motility such
as SPEF2, TTLL1, TTLL3, DRC1, CCDC39, RSPH4A, DNAH1, SPAG16, and LRGUK
were detected in the OvG transcriptome. Mutations in these genes have been associated
with sperm immobility and male infertility, which suggests that they are essential for
fertilization (Leigh et al., 2009; Berg et al., 2011; Onoufriadis et al., 2014; Pereira et al.,
2017; Wu et al., 2016; zur Lage, Newton & Jarman, 2019; Takeuchi et al., 2020).
The expression of this set of genes in the OvG suggests that spermatozoa are stored in
spermathecae without functional tails or disassembled and that flagellar components
involved in sperm motility are reassembled there just before fertilization. Interestingly, in
the spermathecae epithelium, spermatozoa are immobilized with their heads inserted
within the mucosa, while the tails are not visible (Di Cosmo, Di Cristo & Paolucci, 2001;
Olivares et al., 2017).

Females of Octopus vulgaris can store sperm in their OvG for up to 10 months
(Mangold, 1987), which implies that during this prolonged period, the spermatozoa
integrity depends on the protective molecular mechanisms of the female. For example, the
upregulation of the AFMID gene, encoding the kynurenine formamidase, in mated females
of O. maya may contribute to the protection of spermatozoa since it is important to
eliminate toxic metabolites (Dobrovolsky et al., 2005).

In mated O. maya females, genes associated with the synthesis of the biogenic amines
spermine and spermidine like SAT2 and SRM (Chen et al., 2003; Wu et al., 2007) were
upregulated. In mammals, spermine and spermidine play a protective role for spermatozoa
since they inhibit the glycation and fragmentation of sperm DNA in the epididymis
(Méndez & Sauer-Ramírez, 2018). These biogenic amines also have a key role in the
precise timing for successful fertilization; seminal spermine prevents premature
capacitation and acrosome reaction (Rubinstein & Breitbart, 1991). Moreover, in vitro
studies showed that spermine enhances the activity of seminal maltase, which increases
glucose utilization by spermatozoa (Sheth & Moodbidri, 1977). High spermine and
spermidine levels may be required in the OvG of mated females to maintain the integrity of
spermatozoa and to inhibit fertilization until it is induced by environmental and metabolic
signals. In this species, such a mechanism could guarantee a precise temporality for
sperm activation and fertilization of eggs (Wells & Wells, 1959; O’Dor & Wells, 1978; Di
Cristo, 2013). Interestingly, genes encoding the 5-hydroxytryptamine receptor 1 (serotonin
receptor) and the gonadotropin-releasing hormone receptor (GnRHR) showed a lower
expression at the mated stage (MAT24), suggesting that these receptors are not required
before fertilization in the OvG under optimal thermal conditions.

The lifecycle of octopuses is characterized by a physiological transition from the growth
to the reproductive phase: after reaching enough energy reserves during the growth phase,
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the female stops feeding and dedicates exclusively to egg-laying and egg-care (O’Dor &
Wells, 1978; Di Cristo, 2013). Such transition seems to be mediated by regulatory
neuropeptides and catecholamines (Di Cristo, 2013; Wang & Ragsdale, 2018). These
regulatory peptides are typically abundant in non-mated (growing) individuals which
display hunting and active feeding (Wang & Ragsdale, 2018). Interestingly, the high
expression of specific neuropeptides opposes certain reproductive events. In the OvG of
O. maya, the myomodulin neuropeptide was upregulated in the MAT24 condition.
The RT-qPCR estimation confirmed that, in optimal thermal conditions, a decrease in the
expression of the MYOM gene coincided with the onset of fertilization. Myomodulin has
been detected in mollusk of genera like Aplysia (Cropper et al., 1987, 1991; Brezina et al.,
1995), Lymnea (Kellett et al., 1996), Haliotis (York et al., 2012), Helix (Greenberg et al.,
1997), and Sepia (Zatylny-Gaudin et al., 2016). This neuropeptide has been associated with
the modulation of feeding rates and muscle contractions (Cropper et al., 1987, 1991;
Brezina et al., 1995; Kellett et al., 1996; Greenberg et al., 1997). More recently, a role of
myomodulin in the regulation of egg-laying was suggested, since it was detected in the
OvG of Sepia officinalis (Zatylny-Gaudin et al., 2016) and showed an upregulation before
the spawning in Haliotis asinina females (York et al., 2012), which coincides with was
found in the present study. Structurally, the oviducal glands consist of mixed layers of
muscular and connective tissue vascularized and innervated (Peterson, 1959; Budelmann,
Schipp & von Boletzky, 1997; Olivares et al., 2017; Anadón, 2019). Myomodulin is an
important regulatory neuropeptide in the multi-messenger innervation of the sexual
organs with muscle tissue in mollusks, including the glands (De Lange, Joosse & Van
Minnen, 1998; Koene, 2010). Thus, it is possible that during the mated stage the OvG has
greater vascularization and innervation, and therefore a higher expression of myomodulin,
as was observed.

Fertilization stage
Downregulation of the myomodulin gene was observed in FER24 and strengthens the idea
that the downregulation of some neuropeptides precedes reproductive events in Octopus
(Wang & Ragsdale, 2018). In the OvG of O. maya, it seems that myomodulin must be
downregulated for the onset of fertilization.

In the O. vulgaris female, fertilization is partially controlled by steroid hormones like
progesterone and 17β-estradiol, whose levels fluctuate through the reproductive phase
(Di Cosmo et al., 1998; Di Cosmo, Di Cristo & Paolucci, 2001; Tosti et al., 2001). These
hormones are associated with the growth and differentiation of the reproductive system,
including the OvG, and the remobilization of spermatozoa (Di Cosmo, Di Cristo &
Paolucci, 2001; Tosti et al., 2001). In the present study, a high expression of the Mpra gene
was detected in the OvG of fertilized females (FER24); this gene encodes the membrane
progestin receptor alpha, which binds to progesterone (Zhu et al., 2003); this coincides
with was found in O. vulgaris (Di Cosmo et al., 1998) and suggests that the role of sex
steroids in the control of reproduction could be a more generalized adaptation among
octopus species. Another endocrine gene upregulated in the fertilization stage was the
CYP17A1, encoding the steroid 17-alpha-hydroxylase/17,20 lyase, which participates in
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the metabolism and synthesis of steroid hormones (Auchus, Lee & Miller, 1998; Strauss,
Modi & McAllister, 2014; Petrunak et al., 2014; Yoshimoto et al., 2016). These results
suggest that OvGs metabolize and secrete steroid hormones to coordinate the activity of
different organs for successful fertilization and egg-laying. Alternatively, Di Cristo &
Di Cosmo (2007) proposed that sex steroids in the OvG may play a role in sustaining the
production and secretion of the mucoproteins and mucopolysaccharides that coat the eggs.
Authors also suggested that cyclic AMP (cAMP) modulates the secretory activity of the
OvG (Di Cristo & Di Cosmo, 2007). In the present study, we detected upregulation on
genes encoding the cAMP-dependent protein kinase regulatory subunit (PKAR) and
cAMP-responsive element modulator (CREM) at the fertilization stage. This suggests a
high secretory activity of the OvG during the fertilization stage. Moreover, the CREM gene
has been associated with male fertility (Pati, Meistrich & Plon, 1999; Yanagimachi et al.,
2004).

The expression of putative sperm genes was conspicuous during the fertilization stage.
For instance, the Catsup gene encoding the protein catecholamines-up showed an
upregulation in FER24. This protein is a zinc ion transmembrane transporter; involved
in the zinc ion influx required for sperm capacitation and fertilization in mammals
(Kerns, Zigo & Sutovsky, 2018; Kerns et al., 2018). Likewise, CIB1 and PRDX4 which are
key genes for male fertility (Yuan et al., 2006; Iuchi et al., 2009), were upregulated at the
fertilization stage. Furthermore, transcripts of the Drip gene, encoding aquaporin also
showed upregulation in FER24. It is well known that aquaporins are essential for male
fertility since they are responsible for the regulation of sperm volume, which is crucial for
fertilization. They are also important for the osmotic adaptation of the spermatozoa to
different microenvironments until reaching the egg, and for maintaining the osmotic
homeostasis for both male and female gametes during fertilization (Delgado-Bermúdez,
Ribas-Maynou & Yeste, 2022; Yeung et al., 2009; Ribeiro et al., 2021). The high expression
of sperm genes during the fertilization stage is evidence of the synchronized reactivation of
the sperm that was stored in the spermathecae.

A key step in fertilization (internal or external) is the interaction between male and
female gametes (i.e., gametic compatibility). The union of the spermatozoon to the
extracellular matrix of the egg is mediated by gamete recognition proteins (GRPs)
which have an important influence on the reproductive success of taxa with external or
internal fertilization (Panhuis, Clark & Swanson, 2006; Kosman & Levitan, 2014).
In our study, the ZAN gene encoding zonadhesin showed upregulation in the fertilization
stage. Zonadhesin is a sperm protein that binds to the pellucid zone in a species-specific
manner in mammals (Hardy & Garbers, 1995; Gao & Garbers, 1998; Bi et al., 2003;
Tardif et al., 2010; Springate & Frasier, 2017). At the same time, LGALS3 which
encodes galectin-3 was upregulated. Galectin-3 is a lectin that also participates in the
binding of spermatozoa to the pellucid zone (Mei et al., 2019); therefore, in an analogous
approach, ZAN and LGALS3 may cooperate in the union of male and female gametes in
this octopus species.

After the fertilization, the egg envelope (chorion) hardens (Wells, 1978); this process
is crucial to block polyspermy in internal fertilization, protecting the embryo from
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mechanical damage and preventing bacterial infections (Wang et al., 2021). The hardening
of the egg envelope requires the activity of the chorion peroxidase, encoded by the Ptx
gene. This peroxidase is essential for the cross-link of chorion proteins and participates in
chorion melanization (Mindrinos et al., 1980; Margaritis, 1985; Li, Hodgeman &
Christensen, 1996; Han, Li & Li, 2000; Konstandi et al., 2005, 2006; Li & Li, 2006;
Wang et al., 2021). In the present study, the Ptx gene peaked at the fertilization stage of
O. maya.

Later, eggs are coated with a slime that is composed of mucoproteins secreted from
the peripheral gland and a sulfonated mucopolysaccharide from the central gland
(Froesch & Marthy, 1975). Mucoproteins are heavily glycosylated containing O-linked
oligosaccharide chains that are covalently attached to serine or threonine residues of their
polypeptide backbones (Brockhausen & Stanley, 2015). In these proteins, glycosylation
begins with the addition of N-acetylgalactosamine by a large family of UDP-GalNac:
polypeptide N-acetylgalactosaminyltransferases (Clausen & Bennett, 1996). In the
present study, it was detected a set of 16 genes involved in the glycoprotein biosynthetic
process and glycosylation process (ALG8, B3GNT5, bre-4, CANT1, DPY19L1, EDEM2,
FucTA, Gal3st2, gly-9, Gcnt1, Golga2, LRP2, mgat4b, POMGNT1, STT3A, and
Tmem59) including N-acetylgalactosaminyltransferases, showing upregulation in FER24.
Therefore, this set of genes may be crucial for slime synthesis and important for normal
egg-laying in O. maya.

Finally, the eggs enter the distal oviduct and are transported by peristalsis, one behind
the other. In the Control condition, the receptors of serotonin (5HT-7), and dopamine
(Dop1R1) were upregulated during the egg-laying in the OvG of O. maya females.
Interestingly, serotonin and dopamine were identified as stimulating neurotransmitters
that induce spawning in bivalves (Arendse, Pitcher & Griffiths, 2018; Gibbons & Castagna,
1984; Braley, 1985; Osada, Matsutani & Nomura, 1987; Deguchi & Osada, 2020). In this
sense, the high expression of these receptors at the fertilization stage suggests that
serotonin and dopamine are required to induce egg-laying also in O. maya females.
Clusters of eggs and slime are then released; the female molds an egg string and fixes
the end of the string to a suitable substrate (Froesch & Marthy, 1975).

Senescence stage
Once fertilization and egg-laying were finalized, there was a downregulation of important
reproductive genes mentioned above, including Ptx, Catsup, FanaCh, CREM, and
LGALS3. On the other hand, one of the genes with the highest expression in SEN24
was the SRD5A1. This gene encodes the 3-oxo-5-alpha-steroid 4-dehydrogenase 1, which
participates in the metabolism of steroid hormones like progesterone. The expression
of SRD5A1 highly increased from the fertilization to senescence stage suggesting that
fertilization and egg-laying may terminate due to an enzymatic depletion of progesterone.
On the other hand, this enzyme participates in the synthesis of allopregnanolone, a
neuroactive metabolite of progesterone that acts in the brain (Tsutsui & Haraguchi, 2016).
In senescent O. maya females, the OvGs may release this steroid into the bloodstream to
reach the central nervous system.
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Another gene highly expressed in senescent females was the MMP-19 encoding the
matrix metalloproteinase-19, which participates in the degradation of the extracellular
matrix. This gene has been associated with wound healing and tissue remodeling (Nagase
& Murphy, 2013), which may be part of the natural senescence process. In senescent
females of O. vulgaris, O. mimus, and O. maya (present study), the OvG notably shrank
compared to the previous fertilization stage (Cuccu et al., 2013; Olivares et al., 2017), which
may imply a tissue remodeling process.

Effect of high temperatures on fertilization stage
FER-TD and MAT24 were grouped in the cluster analyses for DEGs among the stages,
and a set of regulatory genes. In these genes, the expression levels in FER-TD resemble
those of the previous stage (MAT24) of the Control, suggesting that certain processes were
delayed due to the HTST-TD. This supports the idea that octopus females under thermal
stress can delay certain reproductive processes until temperatures become favorable
(Juárez et al., 2015).

In the cluster analysis of DEGs between the Control and the HTST-TD, which are
those directly affected by the thermal stress, FER-TD was grouped with the senescence
condition SEN24 of the Control. This grouping may be related to a high physiological
deterioration of the gland in FER-TD, which resembles that of the senescence stage. There
was no grouping between FER24 and FER-TD in any dendrogram, confirming that
thermal stress drastically affected gene expression in the oviducal glands during the
fertilization stage.

In O. maya, the temperature is an important modulator of fertilization and egg-laying
rates. These rates are significantly reduced by temperatures above 27 �C (Juárez et al.,
2015), and in the males, temperatures around 30 �C provoke damages in testis and
spermatozoa (López-Galindo et al., 2019a, 2019b). Gene expression changes in the OvG
caused by temperature may be the cause of the reduced fertilization and egg-laying rates
observed in this species.

Previously, we discussed the inhibitory role for fertilization of the myomodulin
neuropeptide in MAT24, and that the MYOM gene must be downregulated to initiate
fertilization. However, under thermal stress this gene was not downregulated during
the fertilization stage, instead, it was highly expressed. In gastropods, this bioactive
neuropeptide potentiates muscular contractions (Cropper et al., 1987; Kellett et al., 1996;
Greenberg et al., 1997). Similarly, the gene encoding the APGW-amide neuropeptide
(cerebral peptide 1) significantly increased its expression under thermal stress. This
neuropeptide also potentiates muscle contractions in bivalves and gastropods
(Minakata et al., 1991; Henry, Zatylny & Favrel, 2000), and in the OvG of O. vulgaris,
where a function in the oviduct contractility was proposed (Di Cristo & Di Cosmo, 2007).
Therefore, we can hypothesize that in O. maya the coordinated release of myomodulin
and APGW-amide may keep the proximal oviduct contracted for longer periods, limiting
the passage of eggs from the ovary to the OvG, thus reducing the fertilization rate under
high temperatures as was observed in this octopus species (Juárez et al., 2015). This
hypothesis should be evaluated in future research.
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Essential genes for successful fertilization were downregulated in the HTST-TD; for
instance, the gene LGALS3, which participates in the union of the spermatozoon to the
extracellular matrix of the egg (Mei et al., 2019) showed high levels in the Control
condition but was downregulated in the HTST-TD. Similarly, the gene VWC2,
encoding the brorin protein, was highly expressed in the optimal temperature and
downregulated in the HTST-TD; brorin is also involved in cell adhesion (Manabe et al.,
2008).

Although the activity of OvG is partially regulated by steroid hormones (Di Cosmo et al.,
1998; Di Cosmo, Di Cristo & Paolucci, 2001), our results suggest that these glands also play
a role in the biosynthesis and release of hormones. In this regard, under the optimal
temperature, an upregulation of the Pcsk1 gene was detected, while it was downregulated
in the HTST-TD. This gene encodes the neuroendocrine convertase 1 and is involved
in the conversion of secretory precursor proteins to bioactive polypeptides (Morash,
Soanes & Anini, 2011). According to our results, the processing of prohormones in the
OvG of O. maya females is related to fertilization, and the downregulation of the Pcsk1
gene could modulate this process under thermal stress. Another gene with strong
downregulation in FER-TD was the B3GNT5, which encodes the Lactosylceramide 1,3-N-
acetyl-beta-D-glucosaminyltransferase. In mice, the knock-out of this gene provokes a
series of reproductive defects, therefore it is a key gene for successful reproduction (Kuan
et al., 2010).

Ecological implications of a temperature-driven inhibition of
fertilization in O. maya
Elevated temperatures caused gene expression changes in the oviducal gland that may
be associated with the low fertilization and egg-laying rates observed in this octopus
species (Juárez et al., 2015). The negative regulation of fertilization rates under elevated
temperatures may be a strategy that prevents excessive thermal stress for embryos and
hatchlings, which can improve populations’ fitness (Juárez et al., 2015, 2016; Caamal-
Monsreal et al., 2016); but at the same time, such a mechanism makes this species
vulnerable to ocean warming and interannual thermal anomalies. Stational upwelling
pulses modulate the thermal conditions at the Northeast region of the peninsula,
maintaining suitable temperatures for octopus reproduction all year long, but its influence
weakens towards the Western region, where sea temperature rises especially during
thermal anomaly events (Angeles-Gonzalez et al., 2017). The incidence of thermal
anomalies has been associated with a decrease in yields of the octopus’ fishery in the
Yucatan Peninsula, especially in the Western region (Noyola Regil et al., 2015; Angeles-
Gonzalez et al., 2017). In an ocean warming scenario or during thermal anomalies,
octopuses from Western Yucatan Peninsula may move away into deeper environments
or towards the upwelling zone, looking for cooler waters. This may alter ecological
interactions and increase the mortality rate if the species finds additional predators or
competitors while reaching such environments. In this scenario, the O. maya fishery may
decline due to a reduction in fertilization and egg-laying rates, but also because the
population could migrate to deeper waters reducing the species catchability, or because of a

Juárez et al. (2022), PeerJ, DOI 10.7717/peerj.12895 23/35

http://dx.doi.org/10.7717/peerj.12895
https://peerj.com/


higher mortality rate (Ángeles-González et al., 2021). In this regard, the octopus
aquaculture—with stringent temperature control—can emerge as the best alternative for
octopus’ production.

Limitations of the study and recommendations for further research
In the sequencing step, it is recommended to use at least three biological replicates per
condition (or more, if the funding allows it) to enhance the statistical power of the analysis,
especially to detect DEGs with low expression (Williams et al., 2014; Honaas, Altman &
Krzywinski, 2016). However, due to funding constraints, we implemented the biological
averaging approach by using pooled samples per condition in the sequencing step
(Honaas, Altman & Krzywinski, 2016) and utilized biological replicates to validate the
expression of key genes through RT-qPCR analysis. This low-cost strategy provided
valuable insights into the physiology and thermal stress response in the oviducal gland of
O. maya.

On the other hand, considering that the oviducal gland consists of multiple sections
with specialized tissues (Froesch & Marthy, 1975; Olivares et al., 2017; Anadón, 2019), we
recommend, in further research, the use of single-cell transcriptomics to better understand
the role of each section in the glands’ physiology.

CONCLUSIONS
At optimal temperatures, key reproductive genes in the OvG control the onset of
fertilization and egg-laying: Before fertilization, the upregulation of genes encoding the
myomodulin neuropeptide and enzymes for the synthesis of spermine and spermidine
may prevent premature fertilization. In the OvG of mated and fertilized females,
upregulation of genes related to the assembly and motility of the spermatozoa flagellum
indicates the metabolic and transcriptomic reactivation of sperm. During fertilization,
genes encoding the receptors of serotonin, dopamine, and progesterone were highly
expressed. Likewise, fertilization was favored by the expression of genes that play a role
in the interaction of male and female gametes. Other important genes for the reproductive
process like Ptx, Catsup, FanaCh, and CYP171A, and those involved in the synthesis of
eggshell mucoproteins were conspicuous at this stage under optimal thermal conditions.
In senescent females, genes involved in fertilization were downregulated and those
involved in the metabolism of steroid hormones like the SRD5A1 were highly expressed.

The fertilization rate decreased in the HTST-TD; this coincided with the upregulation of
neuropeptides like myomodulin and APGW-amide, downregulation of genes involved
in the adhesion between spermatozoa and eggs like galectin-3 and brorin, and
downregulation of the neuroendocrine convertase 1 gene. This regulation may be required
to reduce the fertilization rate under high temperatures which are stressful for embryos
and hatchlings of this species, therefore the species may be highly vulnerable to ocean
warming.

Finally, some proteins associated with the fertilization process in O. maya have not been
previously detected in other invertebrates, to our knowledge. Although, they have been
found in vertebrate taxa, where they exhibit homologies in the molecular mechanisms to
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achieve fertilization and leave offspring. The reproductive proteins involved in the
fertilization process evolve rapidly, partly due to the type of fertilization (internal or
external) and the reproductive system (see Table 1 in Turner & Hoekstra (2008)). Thus, the
adaptive evolution of functionally reproductive proteins is contrasting between the
external fertilization species (mediated by simple gamete proteins) and internal
fertilization species (involving complex interactions between multiple proteins) (Turner &
Hoekstra, 2008).
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