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Liver dysfunction (LD) and liver failure are associated with poor outcome in critically ill 
patients. In patients with severe sepsis or septic shock, LD occurred in nearly 19% of 
patients. An early diagnosis of LD at time of initial damage of the liver can lead to a better 
prognosis of these patients because an early start of therapy is possible. We performed 
a second prospective study with septic patients to test a new cell-based cytotoxicity 
device (biosensor) to evaluate clinical relevance for early diagnosis of LD and prognos-
tic capacity. In the clinical study, 99 intensive care unit patients were included in two 
groups. From the patients of the septic group (n = 51, SG), and the control (non-septic) 
group [n = 49, control group (CG)] were drawn 20 ml blood at inclusion, after 3, and 
7 days for testing with the biosensor. Patients’ data were recorded for hospital survival, 
organ function, and demographic data, illness severity [acute physiology and chronic 
health evaluation (APACHE) II-, sepsis-related organ failure assessment (SOFA) scores], 
cytokines, circulating-free deoxyribonucleic acid/neutrophil-derived extracellular traps 
(cf-DNA/NETs), microbiological results, and pre-morbidity. For the developed cytotoxicity 
test, the human liver cell line HepG2/C3A was used. Patients’ plasma was incubated 
in a microtiter plate assay with the test cells and after 6 days incubation the viability 
(trypan blue staining, XTT-test) and functionality (synthesis of albumin, cytochrome 1A2 
activity) was analyzed. An impairment of viability and functionality of test cells was only 
seen in the SG compared with the CG. The plasma of non-survivors in the SG led to a 
more pronounced impairment of test cells than the plasma of survivors at inclusion. In 
addition, the levels of cf-DNA/NETs were significantly higher in the SG at inclusion, after 
3, and after 7 days compared with the CG. The SG showed an in-hospital mortality of 
24% and the values of bilirubin, APACHE II-, and SOFA scores were markedly higher at 
inclusion than in the CG. Hepatotoxicity of septic plasma was already detected with the 
liver cell-based biosensor at inclusion and also in the course of disease. The biosensor 
may be a tool for early diagnosis of LD in septic patients and may have prognostic 
relevance.
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inTrODUcTiOn

The development of liver dysfunction (LD) and liver failure in 
intensive care unit (ICU) patients have a relatively high incidence 
of 11% in all ICU patients and over 19% in patient with septic 
shock and is associated with increased in-hospital mortality 
(1–4).

Because physiological and online parameters are unable to 
diagnose LD early, laboratory parameters, like transaminases, 
albumin, and coagulation factors are commonly used, however, 
without convincing clinical data for detection of early LD (5). In 
addition, serum bilirubin is often utilized for diagnosis of (early) 
LD in critically ill patients (3); although an increase of bilirubin is 
seen late in patients, 2–3 days after initial impairment of the liver 
and other organ damages as displayed in sepsis-related organ 
failure assessment (SOFA)-, and SAPS scores (6).

LD, however, occurs as an early organ dysfunction in severe ill 
patients, e.g., in septic patients (3, 7). Experimental and clinical 
investigations have shown that impaired biliary secretion is the 
main component of early LD in systemic inflammatory response 
syndrome and sepsis (8–12).

Hepatotoxicity of inflammatory mediators like nitric oxide, 
chemokines and cytokines, endogen and exogen toxins like 
lipopolysaccharides, plasma cascade factors, and hepatic ischemia 
are the main pathophysiological factors for the development of 
LD leading to hyperbilirubinemia and intrahepatic cholestasis  
(3, 5, 10, 12–18).

In addition, activated neutrophils in response to infectious 
stimuli casting out their deoxyribonucleic acid DNA as main 
part of neutrophil-derived extracellular traps (NETs); so-called 
circulating-free deoxyribonucleic acid/neutrophil (derived) 
extracellular traps [cf-DNA/NETs; (19)]. NETs are emergency 
first-line defense mechanisms and kill microbiological patho-
gens in blood (19). Then again, high levels of NETs seem to be 
linked to multiorgan failure and sepsis (19, 20). Overwhelming 
NETs formation resulted in impaired microcirculation and organ 
damage (19).

To verify the clinical relevance, especially for (early) diag-
nosis of LD of a new cell-based test device [biosensor; (21)], 
we conducted a second prospective study with septic patients 
including cytokines-, and cf-DNA/NETs measurement. In a 
smaller first study, we showed that plasma of septic patients 
caused an impairment of functionality of hepatocytes in the 
cytotoxicity test compared with postoperative non-septic con-
trols and healthy volunteers (22). The biosensor was actually also 
used for therapy monitoring of LD and liver failure in critically 
ill patients (23), for evaluation of experimental models of liver 
failure, and monitoring of hepatotoxicity of drugs and procalci-
tonin (PCT) (24–27).

MaTerials anD MeThODs

subjects and Procedures
Approval for the study from the responsible ethics committee 
(University of Rostock; II HV 16/2005) was obtained and for 
all included patients written informed consent was received. 
Furthermore, the study was carried out under the principles of 
the Declaration of Helsinki and good clinical practice.

Between June 2005 and May 2008, 51 septic patients were 
included in the study after screening in the two-perioperative 
ICUs of the University Hospital of Rostock for fulfilling the 
criteria of septic shock or severe sepsis (28). Organ dysfunction 
was defined according to the criteria of the PROWESS study 
(29); bilirubin levels >34.2 µmol/l (2 mg/dl) for at least 48 h was 
the criteria for LD (2, 3). The exclusion criteria were pre-existing 
liver disease, age under 18 years, pregnancy, HIV infection, and 
participation in another study. The control group (CG, n = 48) 
was included postoperative patients without signs of sepsis, 
without pre-described liver disease, and an ICU stay longer than 
24 h were included.

From each patient, 20 ml blood was obtained for testing with 
the biosensor and screening for blood parameters, cytokines, 
and circulating-free deoxyribonucleic acid/neutrophil-derived 
extracellular traps (cf-DNA/NETs) at inclusion, after 3, and 
after 7 days. Patients were followed up to assess hospital survival 
and organ function; demographic data, illness severity, SOFA–
acute physiology and chronic health evaluation (APACHE)-II, 
cytokines, microbiological results, and pre-morbidity were 
documented (Table 1).

cell cultures and Biosensor Methods
For the hepatocytes-based cytotoxicity assay, the human hepato-
cyte cell line HepG2/C3A (American Type Culture Collection 
CRL-10741) was used. The cells were cultivated at 37°C in a 
5% CO2 humidified incubator with Dulbecco’s modified Eagle’s 
medium (GIBCO Life Technologies, Eggenstein, Germany), 10% 
fetal bovine serum (FBS, PAA Laboratories, Pasching, Germany), 
1% antibiotics solution (penicillin G: 10,000 IE/ml/streptomycin: 
10  mg/ml; PAA), and 1% 200  mM l-glutamine (PAA). Cell 
concentrations and vitality were determined by trypan blue 
(0.4%; Sigma, Seelze, Germany) staining technique using a 
C-Chip Neubauer improved hemocytometer (peqlab, Erlangen, 
Germany).

For testing the hepatotoxicity of patients’ plasma, the 
cells were seeded in 24-well microtiter plates in a density 
of 250,000 cells/well. Then, the cells were incubated for 3 days 
with 1  ml heparinized plasma from the subjects following a 
3-day incubation period with fresh medium (1 ml). Cells and 
cell culture supernatants were obtained for the measurement of 
viability (XTT-test: dehydrogenases activity in the mitochon-
dria, trypan blue staining: cell-count and vitality), cytochrome 
1A2 activity, and synthesis of albumin. All test batches from 
test subjects and measurements were taken twice and a medium 
control was added.

The test of metabolism of ethoxyresorufine (Molecular Probes, 
Eugene, OR, USA) to resorufine was used for measurement of the 
activity of cytochrome P450 1A2; following the protocol of Kelly 

Abbreviations: ALAT, alanine aminotransferase; APACHE, acute physiology and 
chronic health evaluation; ASAT, asparagine aminotransferase; ATCC, American 
Type Culture Collection; cf-DNA, circulating-free deoxyribonucleic acid; CG, 
control group; ICU, intensive care unit; IL, interleukin; LPS, lipopolysaccharides; 
NETs, neutrophil-derived extracellular traps; PCT, procalcitonin; SG, septic group; 
SIRS, systemic inflammatory response syndrome; SOFA, sepsis-related organ 
failure assessment; TNF, tumor necrosis factor.
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and Sussman (30). Resorufine concentration in the supernatants 
was determined at 530 nm (excitation), and 584 nm (emission) 
using a fluorescence multiwell plate reader (Fluoroskan Ascent 
Lab Systems, Vienna, VA, USA). Concentrations were estimated 
against a resorufine standard curve.

Albumin was measured from cell culture medium superna-
tant, carried out by a nephelometrical method (Immage 800, 
Beckman Coulter GmbH, Krefeld, Germany).

The XTT-test (Roche Diagnostics GmbH, Mannheim, 
Germany) was used following the describing of Scudiero et  al. 
(31). At the start of XTT-determination 2 × 100 µl cell suspension 
as duplicate were transferred to a transparent 96-well plate. After 
adding 100 µl XTT-reaction reagent per well the absorbance of 
formazan was read at a wavelength of 450 nm on a microplate 
reader (Anthos Reader 2001, Anthos Labtec Instruments, 
Austria) after 1 h.

cytokines and cfDna/neTs Measurement
Interleukin (IL)-1 beta, IL-6, IL-10, and tumor necrosis factor 
(TNF)-alpha were measured in patients’ serum with commercial 
ELISA kits as described by the supplier (BioSource International, 
Camarillo, CA, USA).

The quantification of cf-DNA/NETs was performed with a 
fluorescent assay (Leukocare AG, Munich, Germany). A green 
fluorescent dye binds DNA and the intensity of fluorescence 
(emission at 530 nm wavelength; Fusion, PerkinElmer, Monza, 
Italy) correlates with the amounts of DNA. The measurement 
range was between 50 and 3,000  ng/ml (20, 32). A calibration 
curve was conducted with a defined calf thymus DNA (Sigma, 
Taufkirchen, Germany) in all measurements. Former studies have 
shown that healthy volunteers had cf-DNA/NETs levels less than 
150 ng/ml (20).

statistical analysis
The results are expressed as the median with 0.25–0.75 quartile 
and are displayed as box plots in the figures. Nonparametric 
analyses were used after (negative) testing of normal distribution 
(with the Kolmogorov–Smirnov test; SPSS, Chicago, IL, USA). 
Statistical significance was analyzed with the Kruskal–Wallis 
one-way, the two-tailed Mann–Whitney U-test, the Friedman-
test, and the Wilcoxon-test. Correlations between different 
parameters were tested with the Spearman’s-rho test. Statistical 
significance was assumed when the p-value was <0.05.

resUlTs

survival, Organ Functions, laboratory 
Parameters, and clinical characteristics 
of Patients
The in-hospital mortality of the septic group (SG) was 23.5% 
(between day 3 and 20, n = 51). Two patients of the CG died in the 
hospital (4%, n = 48). All patients were surgical patients with the 
exception of three patients in the SG. In general, the patients of 
the SG fulfilled the criteria of septic shock; only 5.9% had severe 
sepsis. The septic patients were included in the study on average 
0.5 ± 0.8 (0.2/0.8) days after beginning of severe sepsis or septic 
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TaBle 3 | Cytokines values at inclusion, and after 3 days in the septic- (SG, n = 51), septic survived- (SSG, n = 39), septic none survived- (SNSG, n = 12), and CG 
(n = 48); (median/0.25–0.75 quartile).

cytokine 
(pg/ml)

at inclusion after 3 days

sepsis group (n = 51) cg (n = 48) sepsis group (n = 51) cg (n = 48)

sg (all) ssg snsg sg (all) ssg snsg

IL-1 beta 3.9 (2.4–4.5) 5.8 (2.5–6.5) 2.7 (2.5–2.9) 2.5 (2.4–2.6) 2.5 (2.3–2.6) 2.6 (2.4–2.8) 2.4 (2.2–2.9) 2.6 (2.5–2.7)
IL-6 268 (106–557.5)+,° 268 (116.5–557.5)#,° 226 (98–501.5)§,° 78 (42.1–143)° 45.3 (25.9–90.5) 48.2 (27–89) 42.3 (25.4–155.9) 30.5 (22.1–58)
IL-10 11.1 (2.4–25.9)+ 12.3 (3.8–24.1)#,° 4.6 (2.5–33.3) 2.5 (2.3–8.6) 7.5 (2.4–12)+ 7.2 (2.3–11.9)# 7.9 (2.5–17.5)§ 2.5 (2.2–2.6)
TNF-alpha 20.4 (12.9–32.2)+,° 20.4 (13.9–29.8)#,° 20.7 (11.2–41.9)§,° 7.7 (5.7–9.7) 14.7 (10.2–19.9)+ 15.5 (11.2–19.9)# 10.8 (7.1–23.2) 6.6 (5.6–9.7)

Statistically significant (p < 0.05): #between SSG and CG (U-test); §between SNSG and CG (U-test); +between SG and CG; °between inclusion and day 3.
IL, interleukin; TNF, tumor necrosis factor; CG, control group.

TaBle 2 | Source of primary infection and results of microbiological analysis in 
the septic group (SG, n = 51).

source of  
primary  
infection

Peritonitis Wound-
infection/ 
abscess

Pneumonia Urogenital  
infection

Patients (n) 24 7 20 1

Microbiological  
results

Wound-/ 
intraoperative-

swap

Blood 
culture

Bronchial 
lavage/ 
tracheal 
secrete

Urine- 
culture

Fungi (n) 11 1 0 0
Gram-positive  
bacteria (n)

10 3 1 1

Gram-negative  
bacteria (n)

11 3 12 2
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shock. In the SG, the median age (years) was 63.4 (53.2/72.9) 
and in the CG 68.3 (61.9/68.9); 24% of the SG- and 31% of the 
CG-patients were female.

Summaries of laboratory parameters and the results of the 
APACHE II-, and SOFA scores at inclusion, on days 3, and 7 
of the CG, and the SG are displayed in Table 1. In the SG, the 
APACHE II was 32 at inclusion (CG: 9). The SOFA scores and 
the values of bilirubin, lactate, ammonia, creatinine, urea, PCT, 
leukocytes, and prothrombin time differed significantly between 
the SG and the CG at inclusion, and on day 3; the non-survivors 
of the SG had more pathologically values than the survivors.

Twenty-five patients of the SG (49%) developed acute kidney 
injury, and 31.4% (16 patients) needed renal replacement therapy 
(continuous methods). Criteria for LD (2, 3) were fulfilled in 17 
patients (33.3%) of the SG at inclusion, in 16 patients (31.4%) 
after 3 days, and in 7 patients (13.7%) after 7 days. Five patients 
with LD at inclusion died during the hospital stay.

The sources of primary infection and results of microbiologi-
cal analysis in the SG are displayed in Table 2. The predominant 
sources of infection were peritonitis, wound infections, and 
pneumonia; in only 68.6% of septic patients, the microbiological 
tests provided valuable findings.

cytokines and cfDna/neTs Measurement
All values of IL-1-beta, TNF-alpha, and IL-10 were below 21 pg/ml  
(as median) in the SG and CG (Table 3). Higher levels of IL-6 
were found in the SG; interestingly, the survivors had higher 

values of IL-6 than the non-survivors. A significant decrease of 
IL-6 and TNF-alpha was only seen in the SG between inclusion 
and day 3.

The values of cf-DNA/NETs were significantly higher in the 
SG than in the CG at inclusion, after 3, and after 7 days (Figure 1). 
A significant decrease of cf-DNA/NETs levels from inclusion to 
day 7 was observed in the survivors of the SG, but not in the 
non-survivors and in the CG.

results of the hepatocyte-Based 
cytotoxicity Tests
At inclusion, after 3, and 7  days the vitality and the cell count 
(Figure 2), the activity of mitochondrial dehydrogenase (XTT-test, 
Figure 3), and the metabolism of ethoxyresorufine (cytochrome 
1A2 activity, Figure  4) were significantly decreased in the SG, 
compared to the test results of the CG. These impairments of 
viability and function of test cells were more pronounced in  
non-survivors of the SG compared with survivors only at inclu-
sion (Figures  2–4). By contrast, the synthesis of albumin was 
impaired later and also pronounced in non-survivors of the SG 
after 3 and 7 days in SG compared to the CG (Figure 3).

correlation analysis at inclusion
Correlations between the hepatocyte-based cytotoxicity test 
parameters with bilirubin, alanine aminotransferase (ALAT), 
asparagine aminotransferase (ASAT), and ammonia were not 
observed. Significant negative correlations were found between 
the cytochrome 1A2 activity, the XTT-test, the vitality, and the 
cell count with the APACHE II-, and SOFA scores, lactate, and 
PCT (ρ between −0.3 and −0.5, p < 0.05). In addition, correla-
tions were observed between the cytochrome 1A2 activity with 
TNF-alpha, IL-6, and IL-10 (ρ between −0.3 and −0.4, p < 0.001); 
the levels of TNF-alpha also correlated with the results of the 
XTT-test and the vitality (ρ = −0.3, p < 0.01).

The values of bilirubin correlated with the APACHE II-, SOFA 
scores, and lactate (ρ = +0.3, p < 0.01).

Significant correlations were found between the values of  
cf-DNA/NETs with the APACHE II-, and SOFA scores, and PCT 
(ρ between +0.4 and +0.6, p < 0.001) and with the cytochrome 
1A2 activity, the XTT-test, the vitality, and the cell count  
(ρ between −0.3 and −0.5, p < 0.05).

The measured cytokines did not correlate with ALAT, ASAT, 
and ammonia; however, the cytokines IL-6, IL-10, and TNF-alpha 
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FigUre 1 | The values of circulating-free deoxyribonucleic acid (cf-DNA, 
median/0.25–0.75 quartile) at inclusion, after 3, and 7 days in the survivors 
(n = 39) and the non-survivors (n = 12) of the septic group and in the 
non-septic control group (CG) (n = 48). *p < 0.05 versus CG (Mann–Whitney 
U-test). °p < 0.05 between inclusion and day 7 (Wilcoxon-test).

FigUre 2 | Cell count and vitality (trypan blue staining, median/0.25–0.75 quartile) of HepG2/C3A cells incubated with plasma from survived and non-survived 
septic patients and non-septic control patients at inclusion, after 3, and 7 days. *p < 0.05 versus control group (Mann–Whitney U-test).

FigUre 3 | Results of the XTT-test (dehydrogenases activity in the mitochondria) and albumin synthesis of HepG2/C3A cells incubated with plasma from survived 
and non-survived septic patients and non-septic control patients at inclusion, after 3, and 7 days displayed as median/0.25–0.75 quartile. *p < 0.05 versus control 
group (Mann–Whitney U-test). °p < 0.05 between inclusion and day 7 (Wilcoxon-test).
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correlated with bilirubin (ρ between +0.2 and +0.4, p < 0.05), 
PCT (ρ between +0.4 and +0.6, p < 0.001), lactate (ρ between 
+0.3 and +0.5, p < 0.01), APACHE II- (ρ between +0.4 and +0.6, 
p  <  0.001), and SOFA- (ρ between +0.4 and +0.7, p  <  0.001) 
scores.

DiscUssiOn

clinical characteristics of study cohort, 
Outcome, and serum Bilirubin
In this study, we included 51 patients in general septic shock 
and observed a relatively low in-hospital mortality of 23.5% in 
comparison to other studies (33, 34). The time point of inclusion 
in the study after the beginning of septic shock was early in our 
mainly surgical patient cohort.

Liver dysfunction or liver failure occurred in 33.3% (n = 17) 
of the patients in the SG at inclusion; five patients with LD at 
inclusion died during the hospital stay. The rate of LD was 
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FigUre 4 | Metabolism of ethoxyresorufine to resorufine (activity of 
cytochrome 1A2, median/0.25–0.75 quartile) of HepG2/C3A cells incubated 
with plasma from survived and non-survived septic patients and non-septic 
control patients at inclusion, after 3, and 7 days. *p < 0.05 versus control 
group (Mann–Whitney U-test).
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much higher in our septic study cohort in comparison to other 
studies (3, 4). Interestingly, the seven other non-survivors in 
the SG did not show an increase of bilirubin at inclusion and 
we found only low correlations between morbidity and degree 
of multiorgan failure as displayed by the APACHE-II-, SOFA 
scores, and values of lactate with the results of serum bilirubin.

hepatocyte-Based cytotoxicity Tests and 
role of cytokines
In the state of severe sepsis or septic shock, the functionality of 
hepatocytes is partly decreased (5). The aim of this study was to 
test the direct hepatotoxicity of plasma from septic patients in 
a standardized hepatocyte-based cytotoxicity test in a second 
biosensor study (24–27).

In this study, we saw an impairment of viability and func-
tionality of test cells after incubation with plasma from patients 
in general septic shock. The cytochrome 1A2 activity, the 
XTT values (activity of mitochondrial dehydrogenases), the 
cell count, and the vitality were significantly lower in the SG 
compared to the CG at inclusion, after 3, and after 7 days. In 
addition, the plasma of non-survivors in the SG led to a more 
pronounced impairment of test cells than the plasma of survi-
vors at inclusion. These results support the aim of the study that 
the cell-based biosensor used may be a tool of early diagnosis 
for LD and has prognostic value. In addition to this thesis, we 
found significant negative correlation between the cytochrome 
1A2 activity, the XTT-test, the vitality, and the cell count with 
the APACHE II- and SOFA scores, lactate, and PCT at inclusion. 
By contrast, the albumin synthesis in test cells seems to be a 
late changing parameter and is not valuable for early detection 
of LD.

In this study, correlations between static liver markers like 
bilirubin with the results of the hepatocyte cytotoxicity test 

parameters at inclusion were not seen. This may be due to the fact 
that bilirubin and other classical liver parameters increase late  
in LD or liver failure, especially in septic patients (6).

The impairment of cell function and viability seen in HepG2/
C3A after incubation with septic plasma can be caused by endog-
enous and exogenous toxins, drugs, and metabolites (15, 35, 36).  
In addition, pro-inflammatory and anti-inflammatory cytokines 
modulate and impair the function of hepatocytes. We tested the 
patients’ plasma at inclusion, and after 3 days for IL-1 beta, TNF 
alpha, IL-6, and IL-10. The values of measured cytokines were 
relatively low, but higher in the SG than in the CG; only the 
values of IL-6 were markedly increased at inclusion in the SG 
but decreased after day 3.

Due to relative low values of cytokines with exception of 
IL-6, we observed only a few correlations between cytokines 
and parameters of the biosensor: between the cytochrome 1A2 
activity with TNF-alpha, IL-6, and IL-10 at inclusion and results 
of the XTT-test, and the vitality with the levels of TNF-alpha also 
at inclusion.

Many cytokines, mainly the pro-inflammatory cytokines 
TNF-alpha, IL-1 beta, and IL-6, cause an impairment or 
dysregulation of the viability, the function, and apoptosis of 
human hepatocytes and hepatocyte cell lines, e.g., in HepG2/
C3A cells [for review, see Ref. (35–48)]. These impairments 
of hepatocytes lead to dysfunction of mitochondria, to a 
decreased level of negative acute phase proteins like albumin, 
and a decreased activity of some P450 cytochromes includ-
ing CYP 1A2 (35, 36, 40, 49). The lower values of biosensor 
parameters found in the cells incubated with septic plasma 
may be explained partly by the effects of pro-inflammatory 
cytokines on the sensor cells.

For our hepatocyte-based cytotoxicity test, we worked with 
the well-characterized cell line HepG2/C3A (50). The cell line 
is commonly used for toxicological studies (51, 52) and shows 
many functionalities after stimulation comparable with normal 
human hepatocytes [for review, see Ref. (30, 44, 48, 50, 53–60)]. 
Therefore, the HepG2/C3A cell line is a source for bioartficial 
liver support systems (61).

In a previous work from our research group, the testing of 
antimycotics (caspofungin, anidulafungin, and fluconazole) 
with HepG2/C3A cells compared with human primary isolated 
hepatocytes provided similar results regarding cytochrome 1A2 
activity, vitality, and activity of mitochondrial dehydrogenase  
[for review, see Ref. (24)].

role of cf-Dna/neTs in sepsis and  
liver Failure
NETs play a diametrical role in sepsis (19). As part of the innate 
immune system NETs quickly trap and neutralize microbes in 
tissues and blood (19). Then again, NETs also lead to damage 
of inflamed tissues as carrier of molecules with autodestructive 
immune effector functions, e.g., extracellular DNA, elastase, 
myeloperoxidase, lactoferrin, pentraxin, and bactericidal/
permeability-increasing protein (19). During early stage sepsis, 
activated neutrophils traps and accumulate primarily in the 
sinusoids of the liver (38). The NETs in the liver sinusoids 
cause tissue- and endothelial damage resulting in denuding of 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


7

Sauer et al. Hepatotoxicity of Septic Plasma

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1448

the endothelium and allows platelets to enter the space of Disse 
(37). These mechanisms lead to extravasated platelet aggregation. 
NETs and platelet aggregation result in thrombosis and impaired 
blood flow in the liver sinusoids and seem to be an important 
cause of LD in sepsis (37).

In line with results of former studies (19, 20, 39), the values of 
NETs were increased in the septic patients, more pronounced in 
non-survivors and compared with the non-septic control patients 
in our study. We also saw correlations between morbidity and 
degree of multiorgan failure displayed in the APACHE-II, and 
SOFA scores and the values of cf-DNA/NETs in concordance 
with other studies (20, 39). Interestingly, we could also observe 
correlations of some parameters of the biosensor and the values 
of the cf-DNA/NETs at inclusion that may support the diagnostic 
capacity of the biosensor for LD in sepsis.

limitations of the study and summary
The test time with the hepatocyte-based biosensor of 3–6 days 
in this study is not suitable for early diagnosis of LD. However, 
by optimization of the biosensor, the incubation time has mean-
while been able to have reduced to 20  h (unpublished data). 
By technical improvements of the cell culture system (shaking 
instead of a resting system) and the increase of the concentra-
tion of FBS in the cell culture medium, we achieved comparable 
viability and functionality of sensor cells in human plasma 
after incu bation times of 6  days and of 20  h. The reduction 
of test time is an important condition for usability in clinical  
practice (Appendix).

Plasma of healthy volunteers was not tested in the presented 
analysis. In our former study, the values of the hepatocyte-based 
test were comparable and without significant difference between 
healthy volunteers and the postoperative non-septic CG (22).

In conclusion, hepatotoxicity of septic plasma was already 
detected with the liver cell-based cytotoxicity at inclusion 
and also in the course of disease. The causes of these cellular 
impairments need further basic science and clinical investiga-
tions. The influence of NETs on the development of liver failure 
in septic patients seems to be an interesting approach. Higher 
levels of cf-DNA/NETs and impairments in all parameters of 
the hepatocyte biosensor were associated with a worse outcome 
in this study. Since bilirubin is a late parameter in LD and only 
markedly increased in advanced liver damage (5, 6), cf-DNA/
NETs- and hepatocyte-based biosensoring may help to detect 

“subclinical” liver damage with prognostic relevance; further 
clinical validation, especially for usefulness as early diagnostic 
tools for LD, are necessary.
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