
ORIGINAL RESEARCH
published: 30 July 2019

doi: 10.3389/fnins.2019.00753

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 753

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Yansong Chua,

Institute for Infocomm Research

(A*STAR), Singapore

Michael Niemier,

University of Notre Dame,

United States

*Correspondence:

Malte J. Rasch

malte.rasch@ibm.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 12 March 2019

Accepted: 08 July 2019

Published: 30 July 2019

Citation:

Rasch MJ, Gokmen T, Rigotti M and

Haensch W (2019) RAPA-ConvNets:

Modified Convolutional Networks for

Accelerated Training on Architectures

With Analog Arrays.

Front. Neurosci. 13:753.

doi: 10.3389/fnins.2019.00753

RAPA-ConvNets: Modified
Convolutional Networks for
Accelerated Training on
Architectures With Analog Arrays
Malte J. Rasch*, Tayfun Gokmen, Mattia Rigotti and Wilfried Haensch

IBM Research AI, Mathematics of AI, Yorktown Heights, NY, United States

Analog arrays are a promising emerging hardware technology with the potential to

drastically speed up deep learning. Their main advantage is that they employ analog

circuitry to compute matrix-vector products in constant time, irrespective of the size of

the matrix. However, ConvNets map very unfavorably onto analog arrays when done in a

straight-forward manner, because kernel matrices are typically small and the constant

time operation needs to be sequentially iterated a large number of times. Here, we

propose to parallelize the training by replicating the kernel matrix of a convolution layer

on distinct analog arrays, and randomly divide parts of the compute among them. With

this modification, analog arrays execute ConvNets with a large acceleration factor that

is proportional to the number of kernel matrices used per layer (here tested 16-1024).

Despite having more free parameters, we show analytically and in numerical experiments

that this new convolution architecture is self-regularizing and implicitly learns similar

filters across arrays. We also report superior performance on a number of datasets

and increased robustness to adversarial attacks. Our investigation suggests to revise

the notion that emerging hardware architectures that feature analog arrays for fast

matrix-vector multiplication are not suitable for ConvNets.

Keywords: resistive cross-point devices, analog computing, machine learning, emerging technologies,

convolutional networks, hardware acceleration of deep learning

1. INTRODUCTION

Training deep networks is notoriously computationally intensive. The popularity of ConvNets is
largely due to the reduced computational burden they allow thanks to their parsimonious number
of free parameters (as compared to fully connected networks), and their favorable mapping on
existing graphic processing units (GPUs; Chetlur et al., 2014).

Recently, speedup strategies of the matrix multiply-and-accumulate (MAC) operation (the
computational workhorse of deep learning) based on mixed analog-digital approaches has been
gaining increasing attention. Analog arrays of non-volatile memory provide an in-memory
compute solution for deep learning that keeps the weights stationary (Yang et al., 2013; Fumarola
et al., 2016). As a result, the forward, backward and update steps of back-propagation algorithms
can be performed with significantly reduced data movement. In general, these analog arrays rely on
the idea of implementing matrix-vector multiplications on an array of analog devices by exploiting
their Ohmic properties, resulting in a one-step constant time operation, i.e., with execution time
independent of the matrix size (up to size limitations due to the device technology; Gokmen and
Vlasov, 2016).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00753
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00753&domain=pdf&date_stamp=2019-07-30
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:malte.rasch@ibm.com
https://doi.org/10.3389/fnins.2019.00753
https://www.frontiersin.org/articles/10.3389/fnins.2019.00753/full
http://loop.frontiersin.org/people/85158/overview
http://loop.frontiersin.org/people/339406/overview
http://loop.frontiersin.org/people/12755/overview
http://loop.frontiersin.org/people/465324/overview

Rasch et al. RAPA-ConvNets

Matrix-matrixmultiplications can harness this time advantage
from analog arrays, but since they are implemented as a sequence
of matrix-vector products, their execution time is proportional to
the number of such products. In other words, the time required
to multiply a matrix on an analog array of size no × ns with an
input matrix of size ns × np is not proportional to the overall
amount of compute (∝ nonsnp, as for conventional hardware; He
and Sun, 2015), but instead only scales linearly with the number
of columns of the input matrix np and is invariant with respect to
the size of the matrix stored on the analog array (no × ns).

These considerations indicate that ConvNets will not map
favorably onto hardware architectures that use analog arrays for
in-memory matrix-vector operations (Gokmen et al., 2017), as
becomes clear when one formulates the convolution operation
in terms of a matrix-matrix product (see section 2.1 for a
detailed derivation). It turns out that kernel matrices (obtained
by flattening and stacking convolution filters), are typically small,
corresponding to a small size of the analog no × ns-array. More
crucially, matrix-vector products need to be iterated np times
(the number of image patches), which is proportional to the total
number of pixels in the input image and can thus be very large,
particularly for early conv layers.

A common strategy to speed up training is to use data
parallelism, where updates over large batches of data are
computed in parallel on independent computing nodes and then
averaged (e.g., You et al., 2017). However, this is not a practical
solution to speed up training on analog arrays, since weight
updates are computed only implicitly on stationary weights in
non-volatile memory and are thus not directly accessible for
averaging (Gokmen and Vlasov, 2016).

Here, we propose a simple solution to accelerate ConvNets on
systems with analog arrays, which we call RAPAConvolution (for
Replicated Arrays with Permuted Assignment). The main idea is
to use model parallelism to reduce the overall computation time
on analog arrays (but not the amount of computation, as done
e.g., in Figurnov et al., 2016). Concretely, we propose to replicate
the kernel matrix onto nt separate analog arrays (“tiles”), and to
distribute the compute equally among the tiles (see Figure 1).
When this architecture proposed for analog arrays is simulated
on conventional hardware (as we do here), it is equivalent to
learning multiple kernel matrices independently for individual
conv layer. Thus, output pixels of the same image plane will be
in general convolved with different filters. Note that we do not
explicitly force the kernel matrices to be identical, which would
recover the original convolution operation.

In this study, we simulate the training of RAPA ConvNets in
order to validate the effectiveness of different ways to distribute
the compute among the tiles and show that it is possible to
achieve superior performance to conventional ConvNets with
the same kernel matrix sizes. We further prove analytically in
a simplified model that for a random assignment of compute
to tiles, our architecture is indeed implicitly regularized, such
that tiles tend to learn similar kernel matrices. Finally, we
find that the RAPA ConvNet is actually more robust to white-
box adversarial attacks, since random assignment acts as a
“confidence stabilization” mechanism that tends to balance
overconfident predictions.

1.1. Previous Work
Training of ConvNets with analog arrays has been previously
investigated by Gokmen et al. (2017). However, that study
focused on the effects of device inaccuracies in the analog
arrays on the final classification performance, and did not
investigate how to accelerate the run time of ConvNets by
algorithmic changes, which is our focus here. To our knowledge,
no previous work has proposed an implementation of ConvNets
that harnesses the favorable scaling properties of analog arrays for
inference and training. However, although proposed in a different
context, some previous approaches share some similarities to
ours from an algorithmic perspective. “Tiled convolutions” by
Ngiam et al. (2010) are a special case of our algorithm, where
multiple kernel matrices are used to compute pixels on a regular
grid (instead of random assignments). “Perforated convolutions”
by Figurnov et al. (2016), where some patches in the convolution
operation are dropped to accelerate run time on conventional
GPUs, are also related to our proposal. We therefore include
both methods in our experiments comparing in detail these
approaches with ours.

1.2. Analog Arrays
Currently, a number of analog array technologies are under
active development (Yang et al., 2013; Fumarola et al., 2016;
Gokmen and Vlasov, 2016; Burr et al., 2017; Ambrogio et al.,
2018), based on different device materials as candidates for
the implementation of the switching elements encoding the
modifiable synaptic weights (Burr et al., 2017). While the
exact detailed training dynamics and operations at inference
time depend on the type of device materials implementing the
weights (Gokmen and Vlasov, 2016), the main scaling properties
of analog arrays are independent of the underlying technology.
In particular, the fact that a matrix-vector multiplication (during
the forward or backward pass) and a rank-one update (weights
update) can be performed as single step operations, i.e., with
running time independent of the size of the matrix, is a general
property of analog arrays. Figure 2 illustrates how these constant
scalings are achieved by virtue of Ohm’s law and using stochastic
pulse sequences (see Gokmen and Vlasov, 2016 for details).

2. METHODS

2.1. Convolution With Replicated Kernel
Matrices
Following common practice (e.g., Chetlur et al., 2014), the
convolution of a filter of size kh × kw over an input image of size
h× w × cin can be formulated as a matrix-matrix multiplication
between an np × k im2col matrix I, constructed by stacking all
np (typically overlapping) image patches bi of size kh × kw ×

cin in rows of length k = khkwcin. We can then write I =
(

b1, . . . , bnp
)T

≡
(

bTi
)

i∈{1,...,np}
. The matrix I is then multiplied

by the k×cout kernel matrixK, where cout is the number of output
channels (i.e., the number of filters). The resultM = IK is of size
np× cout, and is finally reshaped to a tensor with size h̃× w̃× cout,
to reflect the original image content.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

FIGURE 1 | The amount of compute for the example ConvNet (respective for the 3 layers). Blue areas (k × cout) indicate the size of the kernel matrices. Computing

time for analog arrays is proportional only to np and peaks at the first layer, while the amount of compute is O(npkcout) (the volume of the red cuboid; MACs in titles)

and peaks at the second layer. For each layer, our approach distributes the compute onto multiple replica of the kernel matrix residing on distinct arrays (“tiles”),

indicated as tilings of the red cuboids into nt = (16, 4, 1) small boxes, respectively. Since tiles are trained independently and in parallel, the compute time on analog

arrays effectively becomes constant across layers (same height across layers; note, however, that the number of output channels of the convolution does not change).

Our tiling schemes refer to the way individual image patches are assigned to the tiles.

FIGURE 2 | Computing matrix-vector multiplications and rank-one updates with an analog arrays using Ohm’s property (adapted with permission from Gokmen and

Vlasov, 2016). (Left) An input vector is encoded as a sequence of voltage signals and is applied to the weights, which are represented by the conductivity of the

crossbar elements (RPU: resistive processing unit), resulting in a series of multiply-and-accumulate operations, whose results are represented by the output currents.

(Right) A parallel rank-one update of all the matrix elements can be achieved by application of random trains of voltage pulses at both ends of the array. If each

weight is being updated only if pulses coincide on both terminals of the corresponding cross-point, the resulting update will on average coincide with the outer

product between the vectors encoding the pulse probabilities (see Gokmen and Vlasov, 2016 for further details).

In most ConvNets, conv layers are alternated with some form
of pooling layers, that reduce the spatial size typically by a
factor of 2 (the pool stride; Gu et al., 2018). Thus, for the next
convolutional layer, np is reduced by a factor of 4 (square of the
pool stride). On the other hand, because output channels become
the input channels to the following layer, the size of K changes as
well (see Figure 1).

Our approach to parallelize the compute on analog arrays
consists in using nt kernel matrices Kj instead of just one K for

a given conv layer, and distributing the patches bi equally among

them, so that at any given time nt matrix-vector products can
be processed in parallel. Each of the np patches is assigned to
exactly one subset Sj ⊂ {1, . . . , np} (all of roughly equal size,
|Sj| ≈ np/nt), and the individual array tiles effectively compute

the sub-matricesMj = IjKj =
(

bT
l

)

l∈Sj
Kj. How the image patches

are divided into the subsets Sj is what we call “tiling scheme”
(see below).

The final result is then obtained by re-ordering the rows
according to their original index. In summary, with sl = j if
l ∈ Sj, we can write Mtiled =

(

bT
l
Ksl

)

l∈{1,...,np}
. Note that if all Kj

are identical, the tiled convolution trivially recovers the original
convolution. If we assume that each kernel matrix Kj resides
on a separate analog array tile, and all resulting IjKj operations
can be computed in parallel, the overall computation is sped
up by a factor of nt (neglecting the effort of the assignment,
since that can be done efficiently on the digital side of the mixed
analog-digital system).

However, if all Kj are learned independently and without
explicit synchronization (a prerequisite for embarrassingly
parallel execution) filters corresponding to the same output

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

FIGURE 3 | Illustrated is the output of a conv layer for different tiling schemes (nt = 4, cout = 1). Each output pixel might be computed with a kernel matrix from a

different array tile (colors; white means zeros).

channel might in general be non-identical, which implies that
Mtiled 6= M. Thus, learning all Kj in parallel might negatively
impact accuracy. In the following, we test how different tiling
schemes affect the overall accuracy.We use the following schemes
(compare to Figure 3).

2.1.1. Image-Based Tiling
This tiling scheme consists in collecting all patches that contain
pixels from a particular image region into a common subset Sj.
If the image is a square with sides of length n and the number of
tiles nt is a square number, nt = q2, the patch bi centered at pixel
position (xi, yi) with xi, yi ∈ {0, . . . , n−1} is assigned to the subset
Ssi , with si =

⌊ qxi
n

⌋

+ q
⌊ qyi

n

⌋

+ 1. Note that image patches at the
border will generally contain pixels from the neighboring regions.
We thus call this scheme “image w/overlap.” Alternatively, the
pixels from other regions can be set to zero (as if padded in case
of separate sub-images), and we call this scheme “image w/pad.”

2.1.2. Alternate Tiling
If the image is again a square and nt = q2, one could put image
patches that are neighboring to each other into different subsets,
so that neighboring image patches are assigned to alternate tiles.
Specifically, si = (xi mod q) + q (yi mod q) + 1. This tiling is
similar to the “tiled convolution” approach suggested by Ngiam
et al. (2010) as a way to improve the learning of larger rotational
and translational invariances within one convolutional layer.

2.1.3. Random Tiling
An alternative way of distributing np image patches onto nt
kernel matrices, is to let the Sj be a random partition of the set
{1, . . . , np}, with each of the Sj having (roughly) the same size.
We investigate two cases: one where the partition is drawn once
at the beginning and fixed the remainder (“random fixed”), and
the case where we sample a new partition for each train or test
image (“random”).

2.1.4. Perforated Convolution
An alternative way to speed up convolutions, is to simply
train a single kernel matrix with only a fraction np/nt of the
data (Figurnov et al., 2016). As a result many output pixels will
have zero value. Thus, in this scheme we randomly draw a subset
S of np/nt indices and set the rows for which i /∈ S to 0,
as described for Ngiam et al. (2010). We resample S for each

image during training and use all available image patches during
testing. Note that in this scheme only a single kernel matrix
is used.

2.2. Network Parameters Used in the
Experiments
We perform a battery of proof of concept experiments using
a small standard ConvNet on 3 datasets: CIFAR-10, CIFAR-
100 (Krizhevsky and Hinton, 2009), and SVHN (Netzer et al.,
2011). The network1 consists of three conv layers with kernel
size 5 × 5, and intermediate pooling layers of stride 2. We
tried several options for the first two pooling layers (see Results
section), whereas the last pooling layer is fixed to an average
pooling. The first two conv layers are followed by lateral response
normalization, and the last conv layer is followed by a fully
connected layer. We also use a very small weight decay (0.0001
times the learning rate) if not otherwise stated and mini-batch
of 10, train for > 400 epochs and report the minimal test
and train errors (as average over five consecutive epochs). The
learning rate λ is annealed in a step-wise manner every 25,
100, or 300 epochs with a factor λγ , and multiple settings were
tested (settings were identical for experiments that were directly
compared). If multiple runs on the datasets were made with
different learning rate settings, we report the best test error. We
found that λ = 0.005 for no tiling, and λ = 0.025 for tiling,
seemed to work best (with λγ = 0.1, step size 300 epochs, trained
for 700 epochs). Note that the number of updates is effectively
reduced per array tile, which can be in part compensated by
increasing the learning rate. We additionally use a constant
“warm up” period of 1 or 5 epochs with a learning rate reduced
by a factor of 20.

The output channel setting of the network is 32, 32, 64 for
the conv layers, respectively. Thus, for CIFAR-10 the network
has 79328 weights (including biases) only in the conv layers. For
tiling with nt = (16, 4, 1) tiles, the number of convolutional
weights are increased to 192,704. To compare this against a
network of roughly the same number of weights, we increase
the number of channels for the non-tiled network to 54, 64, 64,

1We used the “Full” network from the Caffe cifar10 examples, except changing the

sigmoid activations to ReLU and ensuring that pooling is done after the activation

function.

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 753

https://github.com/BVLC/caffe/tree/master/examples/cifar10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

which yields 193032 weights (“enlarged” network). However,
note that for this larger network the amount of compute is
actually increased, whereas the amount of compute of the tiled
network is identical to the original ConvNet.

For training we used standard stochastic gradient descent
with 32 bit floating point precision if not otherwise stated.
We use moderate image augmentations (mirroring and
brightness changes) if not stated otherwise. All experiments are
implemented in the Caffe2 framework (Jia et al., 2014) (using
custom C++/CUDA operators, where necessary).

Finally, in addition to the usual pooling methods (max-
pooling, average-pooling and stochastic pooling, reviewed e.g., in
Gu et al., 2018), we also applied mixed pooling to get the benefits
of both max and average pooling. In particular, similar to Yu
et al. (2014), we use a learnable combination of average and max-
pooling, with mixture parameters per channel αk ∈ [0, 1]. To
enforce these parameter limits, we set αk ≡ 1

1+eµβk
and train the

βk with µ = 10 fixed. Initial values are βk = 2/µ to ensured
a bias toward max-pooling, which works best on the datasets
used here.

3. RESULTS

Our aim here is to systematically quantify the relative impact
of the convolutional tiling architecture on performance, not
to reach state-of-the-art accuracy on the tested datasets. We
therefore examine a relatively small standard ConvNet with 3
conv layers (see section 2.2).

As described, only the number np of input patches per layer
determines the run time on analog arrays. We thus divide the

compute of each conv layer onto nt array tiles, so that the
number of image patches per tile, np/nt , is constant. Since
we have np = (1024, 256, 64) across the three layers, we use
nt = (16, 4, 1) tiles for the 3 conv layers, respectively. Note
that this architecture achieves perfect load-balancing across
the conv layers, because each tile in the network learns a
separate kernel matrix using 64 image patches per image. See
Figure 4 for an illustration of this architecture in the case of
random tiling.

3.1. Main Experimental Results
We tested the performance of this setup on the three
datasets with and without tiling, and compared different tiling
schemes using floating point (FP) precision (see Table 1, FP
columns). The main results from these experiments are: (1)
Random tiling achieves the best performance among all tiling
schemes; (2) Across datasets, random tiling comes close or
actually beats the regular ConvNet with no tiling; (3) Simply
subsampling the input images is not sufficient to explain the
high performance of random tiling, since the perforated scheme
generally performed poorly.

Our experiments show that random tiling matches or even
outperforms the original network (see Table 1, “random” vs.
“no tiling”). The performance of the random tiling network in
Table 1 (“random”) is obtained by sampling only one random
assignment of patches to tiles during test. However, for each test
image, we can also generate multiple predictions, each generated
by a different random assignment, and take as final output the
majority vote of all predictions (similarly e.g., to Graham, 2014).
We find that the performance gain due to majority voting can

FIGURE 4 | Network architecture for “random” tiling. Three convolution layers are interleaved with pooling and activation. Note that only the convolutional layers are

displayed, and the final stages (including the final pooling layer and the fully connected layer) are omitted in the diagram, since they identical to the original network.

The first conv layer (“Conv1”) uses 16 different kernel matrices (indicated with the different colors) and the image patches are randomly distributed among these (with a

new random permutation drawn for each image). The second conv layer (“Conv2”) uses 4 different kernel matrices (indicated with colors) and patches are similarly

randomly distributed among those. The last conv layer (“Conv3”) uses just 1 kernel matrix as for normal conv layers. The number of replicated kernel matrices per

layer are chosen to match computing times in each layer on analog arrays.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

TABLE 1 | Best test (train) error [%] (determined by an average of 5 consecutive

training epochs) for different tiling schemes across datasets.

Tiling \ Data CIFAR-10 SVHN CIFAR-100

Precision FP RPU FP RPU FP RPU

Random fixed 24.7 (4.0) 24.2 (3.5) 11.4 (2.4) 11.3 (0.3) 55.6 (19.1) 59.7 (37.4)

Random 17.3 (6.8) 19.1 (13.8) 7.3 (4.2) 7.8 (5.8) 48.4 (31.8) 54.1 (45.6)

Voting 16.3 (6.8) 17.1 (13.8) 6.5 (4.2) 6.2 (5.8) 47.7 (31.8) 51.3 (45.6)

Image w/

overlap

22.6 (0.1) 22.5 (3.1) 10.4 (3.1) 10.4 (0.7) 53.1 (35.3) 58.0 (37.5)

Image w/pad 24.1 (0.7) 25.5 (9.2) 11.3 (6.2) 12.5 (2.6) 54.3 (29.0) 60.6 (43.9)

Alternating 21.1 (4.1) 20.4 (4.6) 9.4 (3.1) 9.4 (1.2) 52.3 (19.0) 54.4 (36.3)

No tiling 18.5 (6.2) 19.1 (9.3) 9.1 (3.0) 9.3 (3.0) 48.3 (26.6) 52.5 (39.1)

Perforated 27.2 (22.2) 32.6 (29.6) 8.9 (11.6) 11.1 (18.4) 63.9 (50.4) 76.5 (62.3)

Enlarged 16.1 (0.0) 17.5 (5.1) 9.1 (0.7) 8.7 (0.5) 47.0 (20.5) 50.1 (30.5)

Best tiling method is marked in bold. Note that random tiling with majority vote is

consistently the best tiling method and matches or reaches superior performance to the

original non-tiled ConvNet. The last three rows are control conditions without replication

of the kernels. FP columns: floating point results. RPU columns: RPU hardware-aware

simulation that includes various device-to-device variation, noise and imprecision, as well

as a simulated weight update with finite pulse widths. Note that device switching behavior

is assumed to be noisy but ideally balanced on average (RPU model as described in

Rasch et al., 2019). Results are qualitatively similar to the floating point simulation, except

that the finite weight states, limited precision, and noise generally cause a slight drop

in performance for both original non-tiled ConvNet and the tiled versions, in particular

for the more challenging CIFAR-100 dataset. For RPU simulations, we turned off the

weight decay, because it would not be straight-forward to implement in RPU hardware.

Parameters: learning rate varied from λ = 0.0005 to λ = 0.05 for each condition, reduced

every 300 epochs by 10, and 700 training epochs (best result taken).

be considerable (see “random voting” column in Table 1; voting
over 9 predictions).

That a tiled network architecture could in principle
outperform the original ConvNet, can be understood when
considering that replicating kernel matrices onto multiple
tiles effectively increases the number of free parameters in the
network (here by about a factor of 2.5, see section 2.2). Thus an
approximate upper limit of the performance of the tiled networks
can be obtained by comparing the performance to a non-tiled
network with a similar number of free parameters arranged in
conventional fashion (by increasing the number of channels per
layer). It is important to note in this comparison that, despite
having more free parameters, the amount of compute (i.e., the
number of MAC operations) of the tiled network is nevertheless
identical to the original non-tiled ConvNet. In contrast, if the
number of channels in the original network is enlarged, the
number of MACs, and thus the run time on a digital processor,
increases as well.

We do indeed find that this enlarged network achieves
a performance comparable or better than the random tiling
network with voting (compare Table 1 “random voting” with
“no tiling enlarged”) in both CIFAR datasets. In the SVHN
dataset, however, the enlarged network actually still performs
worse than the random tiling method, showing that the
randomness in the tiling network helps to regularize its
increased set of parameters very well (see also theoretical
analysis below).

3.2. Simulation With Reduced Precision on
Simulated RPU Arrays
Analog resistive crossbar arrays suffer from a number of
inaccuracies and noise sources due to analog circuitry and
device material non-idealities, as has been previously investigated
extensively (Gokmen and Vlasov, 2016; Gokmen et al., 2017,
2018; Haensch et al., 2019). Our comparison of the tiling
networks above was done in floating point precision. Thus,
while we do not expect that tiling networks solve any known
performance impacts due to hardware non-idealities, it is
nevertheless important to assert that they do not introduce
new challenges and that our tiling comparison results are
qualitatively reproduced when simulated in a more analog
hardware realistic fashion.

We thus repeated the analysis by using the same RPU
array model and compensatory measures described in Rasch
et al. (2019), which is based on the RPU model and hardware
specifications from Gokmen and Vlasov (2016), Gokmen et al.
(2017), and Gokmen et al. (2018), except that the number of
device states are increased by 4 (i.e., minimal update pulse width
1wmin = 0.00025, compare to Gokmen and Vlasov, 2016) and
that the switching behavior of the devices is ideally symmetric
on average for simplicity. Note that this RPU array model
has saturating weight bounds (with device-to-device variation),
stochastic update pulse train generation (see Figure 2), device-
to-device and cycle-to-cycle variation in the update pulse widths,
cycle-to-cycle additive noise, and limited dynamic input-output
range, among others (see e.g., Gokmen et al., 2018 for a detailed
description), and thus models many of the inaccuracies and
noise sources that plague analog arrays. We further assume
that each kernel replica occupies a separate crossbar array (of
sufficient size and exact dimensions), each having exclusive
access to analog-digital converters (ADC and DAC resolution
are assumed to be 9 and 7 bit, respectively) and have the same
hardware specifications.

With this RPU arraymodel, we repeated the comparison of the
tiling networks across all datasets (see Table 1, “RPU” columns).
We find that analog imprecisions and variations introduce an
increase in test error of only up to a few percentage points
compared to training in floating point precision (Table 1, “FP”
columns). As can be expected, error increases mostly for the
more challenging dataset CIFAR-100. While the exact test error
achieved by the RPU simulations will depend on the devicemodel
chosen (e.g., the number of material states, switching behavior),
the ranking between the tiling methods as described above for FP
precision is robustly preserved, with random tiling with voting
still showing up as the best method for all datasets, matching or
beating the performance of the original ConvNet.

3.3. Increasing Number of Tiles
An advantage of random tilling over alternating and image-
based tiling is that it is straightforward to use with an arbitrary
number of tiles per layer, that does not for instance necessarily
correspond to a square number (see Methods for definition of
the tiling methods). Thus one can easily increase the number
of tiles per layer to achieve even higher theoretical run-time on

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

analog RPU arrays. Note that it is advisable to use a number of
tiles per layer that balances the number of patches processed by
each tile. Since the number of patches reduces by 4 per layer in
our example networks, a favorable tile number setting would be
e.g., nt = (64, 16, 4), respectively, for the three layers, which then
would theoretically run 64× faster than the original ConvNet
on analog RPU arrays, with perfect load-balancing among the
convolutional layers.

To test the effect of increasing the number of tiles in the case
of the random tiling method, we increased the number of tiles
proportionally in each layer, up to reaching 1,024 tiles in the first
layer, 256 in the second, and 64 in the third layer (see Figure 5A).
We don’t notice any deterioration of test performance due to
overfitting compared to the 16 tiles case up until 128 tiles in the
first layer. Interestingly, test error actually improves when the
increase in number of tiles is moderate (Figure 5B), indicating
that the regularization property of the architecture is enough to
prevent overfitting, presumably because the 3rd conv layer now
also uses multiple kernel replica.

Unsurprisingly though, increasing the number if tiles even
further starts to hurt test performance. For instance, using more
than 128 in case of CIFAR-10, results in an increase in test error,
presumably because the number of samples per tile becomes too
small and kernel replicas too noisy. We set the weight decay to
zero in this comparison, to prevent the less frequently updated
weights (in case of larger tile numbers) to decay faster to zero.
Whether e.g., adjusting the learning rate or weight decay with the
number of tiles per layer or other compensatory measures might
recover some of the lost accuracy for very high tile numbers, is a
direction for further research.

3.4. Regularization and Filter Similarity
Across Tiles
Since replicated kernel matrices are trained independently, it is
interesting to examine the similarity of the filters at the end of
training, which would hint at the degree of regularization of the
replicated kernel across tiles. Note that only for identical filters
across tiles, the original convolution is recovered.

For the random tiling scheme, where the input distribution
across tiles should tend to be very similar on average across
training epochs, different replicated filters are predicted to be
more similar. This should however not be the case for other tiling
schemes, where the mapping of image regions to tiles is fixed
throughout training. Indeed, if we quantify the average similarity
of the learned filters across array tiles (computing the average
correlation coefficients between all pairs across tiles, averaged
over output channels) we find low values for all tiling schemes
trained with max-pooling, except for the random tiling scheme
(see Figure 6A, max pooling).

In general, two main factors tend to implicitly force kernel
matrices to become similar during training: (a) input patch
similarity across tiles, and (b) specificity of the error-signal
across tiles.

To test these effects we run additional experiments (with
floating point precision) on strongly augmented datasets with
different pooling methods.

3.4.1. Explicit Regularization by Strong Data

Augmentation
We further analyze the self-regularizing property that tiling
confers to our architecture. Since regularization helps mitigate
overfitting when the number of model parameters is large
compared to the training dataset, a natural way of doing this
is to quantify the test performance after enlarging the training
dataset size. For this we use data augmentation by random scaling
and jittering of the input images, a common regularization
technique that is very effective in dealing with small datasets
in object recognition tasks (e.g., see Perez and Wang, 2017
for a recent comparison). When we apply such a strong data
augmentation (random scaling by up to 130%, scale jittering, and
random cropping), we find that test errors are indeed reduced
significantly across datasets and methods (see Table 2, column
“M”; we also varied pooling methods, see below).

Indeed, our results using the strongly augmented datasets
show that other tiling methods are now much closer in
performance in comparison to the random tiling method (e.g.,
in Table 2 compare “random” vs. “random fixed” for mixed
pooling “X”). This is understandable, because now the input data
is explicitly regularized, and the implicit regularization due to
random tiling is less necessary. However, we nevertheless find
that random voting is consistently the best among tiling methods
(see Table 2 bold values) across datasets. Interestingly, with
explicit regularization through data augmentation the alternating
tiling method performs also very well, beating the other tiling
methods without voting. However, the alternating tiling method
only yields robust results in case of mixed pooling and diverges
for other pooling methods in our experiments.

The original non-tiled ConvNet also gains in performance
thanks to data augmentation, in particular for the more
challenging CIFAR-100 dataset, where data is very limited
and augmentation prevents overfitting. Typically, we find that
the best tiling methods (random voting and alternating) still
approximately match or outperform the original non-tiled
ConvNet, but performance does not exceed in the enlarged
ConvNet, which no longer suffers from overfitting (see Table 2).

Note, however, that when using analog arrays, the number
of channels can be increased without increasing the run time
(assuming sufficient device resources), because of the described
scaling laws of analog arrays. Thus, one can always increase
the number of channels of a tiled ConvNet on an analog
arrays (up to the device resource limits) to increase the
accuracy performance further without incurring a decrease in
run time.

3.4.2. Specificity of Error-Signal Across Tiles
To also investigate the effect of similarity of the error-signal
received by different tiles, we conduct a series of experiments
replacing the first two max-pooling layers with other types of
pooling (average, mixed, or stochastic pooling, see later for
explanation). The type of pooling operation determines how
backpropagated errors are propagated to the inputs. In the case
of average pooling (followed by ReLU), all tiles contributing to
a positive pixel value in a pooling region will receive the same
error signal, whereas for max-pooling only the output pixel with

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

FIGURE 5 | Increasing the tile number in case of the random tiling method. (A) Test error (with majority voting from 9 predictions) is plotted vs. training epochs for the

CIFAR-10 dataset. Note that increasing number of tiles moderately beyond 16 results in even better test error, because of better regularization. However, learning is

slower and very high tile numbers (> 128) fail to reach a competitive test error with this learning rate scheduling. (B) Best test error [relative to the random tiling

network with nt = (16, 4, 1)] across datasets. Parameters: λ = 0.05, halving the learning rate every 100 epochs. No weight decay.

FIGURE 6 | Similarity of learned kernel matrices Kj for the first convolution. (A) Similarity of Kj for different tiling methods and different pooling in case of

CIFAR-100+.Similarity is computed by averaging the correlation coefficients between all pairs of corresponding filters across filter replicas and than averaging over all

filters per layer. Plotted is the average similarity over the tiled conv layers. Compare to Table 2 for corresponding performances. (B) Selection of 10 out of 32 filters

(rows of Kj ; reshaped) for all array tiles for average pooling and random tiling method trained on CIFAR-100+. Filters are very similar across tiles. (C) Like B but for

mixed pooling and alternating tiling. Test error (42.4%) is similar to (B) (43.2% with voting). However, filters are very different across the 16 tiles.

TABLE 2 | Best test error [%] (determined by an average of 5 consecutive training epochs) for tiling schemes when datasets are strongly augmented.

Tiling \ Data CIFAR-10+ SVHN+ CIFAR-100+

Pooling M A X S M A X S M A X S

Random fixed 74.1 85.1 17.3 57.4 35.8 28.5 7.0 37.0 66.6 77.7 43.9 75.0

Random 17.5 18.3 17.6 24.3 7.6 8.3 7.4 14.0 44.0 45.3 44.2 51.3

Voting 15.8 17.4 15.7 21.3 6.0 7.3 5.9 10.3 40.6 43.2 41.2 47.4

Image w/overlap 17.6 19.0 17.5 24.6 7.2 7.9 7.2 11.5 45.8 46.5 45.7 53.0

Image w/pad 20.9 22.5 20.6 29.9 9.4 10.3 9.2 19.0 48.5 49.5 48.6 57.5

Alternating 79.8 87.9 15.3 57.8 31.3 45.1 6.7 39.6 64.8 64.2 42.4 85.0

No tiling 16.0 16.5 15.1 22.9 6.7 7.5 7.0 10.9 43.4 43.1 42.6 50.0

Perforated 33.6 35.2 31.0 54.9 13.6 15.1 12.5 44.6 65.0 65.2 67.3 92.4

Enlarged 13.0 14.1 13.0 18.9 5.7 6.4 6.0 9.0 40.5 40.9 40.3 46.2

Separated for different pooling methods (M: max pooling, A: average pooling, X: mixed pooling, S: stochastic pooling) for the first two layers (last is average pooling). The three best tiling

and pooling combinations per dataset are marked in bold. The last 3 rows are comparisons with conventional non-tiled networks. Parameters: λ = 0.025, reduced every 300 epochs

by 10, and 700 training epochs. Floating point precision is used.

the maximal value per pooling region is selected and used to
only update the one corresponding tile. A trade-off between
these effects can be achieved by learnable mixture between max

and average pooling which we call mixed pooling. Finally, we
also tested stochastic pooling, where a random output pixel
in the pooling region is selected, and thus all pixels (and the

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

corresponding tiles) will receive similar updates on average over
the training process.

We find that all pooling methods induce some degree of
similarity in the case of random tiling (see Figure 6A). As
expected, the highest similarity is for average and stochastic
pooling, and tiling methods where a 2 × 2 pooling region
typically contains pixels that are computed with different kernel
replica (compare to Figure 3). Indeed, stochastic and random
pooling also induce filter similarity in other tiling methods,
in particular “random fixed” and “alternating.” However, both
methods struggle to converge with these pooling methods (see
Table 2), suggesting that some diversity among replicated kernel
matrices might be advantageous. In Figures 6B,C, example filters
are plotted for the first convolutional layer (having 16 tiles) in
case of CIFAR-100 (strongly augmented). Both methods, random
tiling with average pooling and alternating with mixed pooling,
show similarly good test errors. However, the similarity of the
kernels across tiles is strikingly different.

3.4.3. Reduction of Tiled Network to the Original

Architecture
It might be problematic for certain applications to retain multiple
kernel matrices per conv layer. Thus, one might want to recover
the original network, after benefiting from the training speedup
of the tiled network.

If the filters are very similar (as with average or stochastic
pooling, see Figure 6A) just taking a kernel matrix of any tile
recovers the original convolution andwith a performance close to
that of the original network (see Table 3 “random,” column “A”).

Another way to reduce the tiled model for mixed or max-
pooling, is to select among all replica the filters that most often
“wins” the maximum pooling on the training set. These can
then be combined to form a single kernel matrix. An alternative
simpler way is to just select across tiles the filter with the highest
norm, since that indicates a filter that is more often used and
updated, and therefore less subject to the weight decay penalty.

We tested these reduction techniques and found only in case
of random tilings a slightly worse but still acceptable test error
of the reduced model when compared to the conventionally
trained ConvNet (see Table 3). The reduction to the original
network seems to work best for random tiling with average
pooling, which has a good compromise between performance
and kernel similarity. It needs to be investigated further whether a
smarter kernel selection during reduction, possibly together with
a short retraining process, could recover the full accuracy of the
non-tiled ConvNet.

However, note, that reducing the random tiling network to the
original architecture also removes the benefits of accelerated run
time on analog arrays, the performance gain by majority voting,
and the robustness to adversarial attacks (investigated below).

3.5. Theoretical Analysis: Implicit
Regularization of Random Tiling
It is rather intriguing that our random tiling scheme achieves
a performance that is comparable or even better than the
standard ConvNet. One might have expected that as many as
16 replicated kernel matrices for one conv layer would have

incurred overfitting. However, empirically we see that random
tiling actually tends to display less overfitting than the standard
ConvNet. For example for the SVHN data set in Table 1, we see
that e.g., the enlarged standard ConvNet (no tiling) achieves a test
error of 9.1% with a training error close to zero, while random
tiling has a better test error rate of 7.3% (without voting) with
higher training error (4.2%). In this section, we give a formal
explanation of this phenomenon and show in a simplified model,
a fully-connected logistic regression model, that replicating an
architecture’s parameters over multiple “tiles” that are randomly
sampled during training acts as an implicit regularization that
helps to avoid overfitting.

A logistic regression is a conditional distribution over outputs
y ∈ {0, 1} given an input vector x ∈ R

d and a set of paramters
θ ∈ R

d. The exponential family distribution form of the logistic
regression is

p(y|x, θ) = exp
(

y x · θ − A(x · θ)
)

,

where A(z) ≡ − log(1 − σ (z)) and σ (z) ≡ (1 + exp(−z))−1 is
the logistic function. Note that this expression is equivalent to
the more common form p(y = 1|x, θ) = σ (x · θ). Training a
logistic regression consists in finding parameters that minimize
the empirical negative log-likelihood,

lx,y(θ) = − log p(y|x, θ),

over a given set of N training examples (xi, yi), resulting in the
minimization of the loss:

L(θ) =

N
∑

i=1

lxi ,yi (θ).

We model random tiling by assuming that every parameter θl
is being replicated over nt tiles. Correspondingly, every time θl
is being accessed, a parameter θ

sl
l
with sl randomly sampled in

{1, . . . , nt} is retrieved. We write θ
s ≡ (θ

sl
l
)l and s ≡ (sl)l. As

a result training can be expressed as the minimization of the
average loss,

〈

L(θ s)
〉

s
=

N
∑

i=1

〈

lxi ,yi (θ
s)

〉

s

,

where the angular brackets 〈·〉s indicate averaging over the
process of randomly sampling every parameter θl from a tile sl.
With the above, we get

〈

L(θ s)
〉

s
= −

N
∑

i=1

(

yi xi · θ̄ −
〈

A
(

x
i · θ s

)〉

s

)

= L(θ̄)+ R({θ s}),

where θ̄ is the vector whose components are the parameters
averaged across tiles, i.e., θ̄l = 〈θ

sl
l
〉s, and

R({θ s}) =

N
∑

i=1

(

〈

A
(

x
i · θ s

)〉

s
− A

(

x
i · θ̄

))

.

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

TABLE 3 | Best test error [%] when reducing the tiled network to the original convnet structure by forming a single kernel per layer from the replicas (best of following filter

selection methods: norm-based, random tile, first tile, or random filters of any tile).

Tiling \ Data CIFAR-10+ SVHN+ CIFAR-100+

Pooling M A X S M A X S M A X S

Random fixed 72.2 83.7 32.5 51.3 48.8 34.8 22.8 23.5 80.6 89.9 66.4 70.6

Random 22.1 20.1 24.0 24.1 17.4 9.4 16.5 13.9 48.2 47.9 52.0 51.3

Image w/overlap 61.6 52.3 57.7 47.9 25.9 21.1 21.0 27.4 90.7 86.1 91.5 78.6

Image w/pad 74.5 60.9 71.5 53.7 59.1 45.9 51.0 36.9 92.8 87.8 92.3 82.2

Alternating 81.0 87.0 38.7 53.8 53.8 60.1 31.0 32.7 91.6 86.5 72.5 83.4

Note that only random tiling with re-shuffling results in easy reduction to the original ConvNet, in particular when using average pooling. Some performance impact is however present,

equaling approximately 2–5 test error percent points increase for the three datasets, compared to the results of directly training the non-tiled network (also with average pooling method;

data from Table 2). Best tiling and pooling combination per dataset is marked in bold.

The term R({θ s}) that falls out of this calculation has the role
of a regularizer, since it does not depend on the labels yi. In a
sense, it acts as an additional cost penalizing the deviations of
the replicated parameters θ

s from their average value θ̄ across
tiles. This tendency of the replicated parameters to move toward
the mean counteracts the entropic pressure that training through
stochastic gradient descent puts on the replica to move away
from each other (see e.g., Zhang et al., 2018), therefore reducing
the effective number of parameters. This implicit regularization
effect explains why, despite the apparent over-parametrization
due to replicating the parameters over tiles, our architecture does
not seem to overfit more than its standard counterpart. It also
explains the tendency of the tiles to synchronize causing the filters
to become similar (Figure 6).

3.6. Robustness Against Adversarial
Examples
We can gain further intuition on the role of the regularizer
R({θ s}) by developing its first term as a Taylor series up to second
order around xi · θ̄ , analogously to what is done in Bishop (1995),
Rifai et al. (2011), and Wager et al. (2013). This results in:

R({θ s}) ≈
1

2

N
∑

i=1

A′′
(

x
i · θ̄

)

∑

l

(xil)
2 Vars(θ

sl
l
)

=
1

2

N
∑

i=1

pi(1− pi)
∑

l

(xil)
2 Vars(θ

sl
l
),

where Vars(θ
sl
l
) is the variance of the parameter θl across tiles,

and pi = σ

(

x
i · θ̄

)

is the predicted probability that yi = 1

when considering the parameter mean θ̄ . This penalty R({θ s})
can be interpreted as trying to compensate for high-confidence
predictions (for which the term pi(1−pi) is small) by diminishing
the pressure on Vars(θ

sl
l
) to be small. As a result, samples

x
i’s for which the prediction will tend to be confident will
be multiplied by weights θl that will display a relatively large
variability across replica, which in turn will tend to reduce the
degree of confidence.

This “confidence stabilization” effect raises the intriguing
possibility that random tiling mitigates the weaknesses due
to a model excessively high prediction confidence. The

efficacy of adversarial examples, i.e., samples obtained with
small perturbations resulting in intentional high-confidence
misclassifications, is such a type of weakness that plagues several
machine learning models (Goodfellow et al., 2014). Our analysis,
suggests that random tiling should help immunize a model
against this type of attacks, by preventing the model from being
fooled with high confidence.

We verify the theoretical prediction that random tiling

increases the robustness to adversarial samples by using the

Fast Gradient Sign Method (FSGM; Goodfellow et al., 2014)

to attack a network trained on CIFAR-10 with max-pooling

(see performance results in Table 1). In particular, we computed

the accuracy drop from all correctly classified images in the

test set, due to a perturbation by noise in the direction of
the signed error gradient with strength ǫ (Goodfellow et al.,
2014). Following Cisse et al. (2017), we computed the drop in
accuracy as a function of the signal-to-noise ratio resulting from
adversarial noise (see Figure 7). At a noise level corresponding
to the threshold of human perception, ǫ ≈ 33 (according to
Cisse et al., 2017), we find that random tiling reduces the gap
to perfect adversarial robustness by around 41%. In comparison,
other learning methods, such as Cisse et al. (2017) or enhancing
training examples with adversarial gradients (Goodfellow et al.,
2014) reduces the gap on CIFAR-10 by around 6% and 54%,
respectively (using their baseline, compare to Cisse et al., 2017,
Table 1). For other datasets, results are qualitatively similar,
for instance, in case of CIFAR-100+ (strongly augmented) our
original network reaches 25% at ǫ ≈ 33, which improves to
62% with random tiling, and thus improves the gap by 49%. In
comparison, the method in Cisse et al. (2017) improves the gap
on CIFAR-100 only by 10 or 28%, respectively (depending on
whether using enhanced training examples). While the networks
used here are not the same as those used in Cisse et al.
(2017), our results still suggest that random tiling significantly
improves robustness, with no loss in performance or extra
training examples.

A strategy to further improve robustness is to increase the
number of tiles in the random tiling network. If we set nt =

(128, 32, 8) the network still trains fine with similar test error
(see Figure 5). However, now robustness to adversarial attacks
is significantly improved, reaching an accuracy of 83.97% for
ǫ ≈ 33 (see Figure 7; dashed line), which translates to a

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

FIGURE 7 | Tiling improves robustness to adversarial examples. Here, the

random tiling network and the original (enlarged) ConvNet, all trained on the

CIFAR-10 dataset (see Table 1), were tested on adversarial robustness. Note

that using more kernel matrix replicas (here up to 128 for the first convolution)

increases the robustness further.

reduction of the gap to perfect robustness by 64%. Note that,
although the nt = (128, 32, 8) network has now about 20 times
more convolutional weights than the original non-tiled network,
it trains well and does not overfit (training error 15%) and,
neglecting peripheral costs and assuming parallel execution of all
analog array tiles in a layer, would execute a training epoch 128
times faster than the original network.

4. DISCUSSION

4.1. Considerations About Algorithmic
Generality and Specific Hardware
Architectures
Here we proposed a modification of ConvNets that is amenable
to a highly parallelizable implementation onto upcoming mixed
analog-digital hardware.

Our considerations were mainly developed in the specific
context of mixed analog-digital hardware, i.e., systems composed
of digital computing unit and analog arrays (e.g., cross-point
device arrays such as the RPUs described in Gokmen and Vlasov,
2016), that compute vector-matrix products in the analog domain
with non-volatile memory elements, and convert results back
into digital space where memory and compute in floating point
precision is available. However, our proposal is valid for general
systems where matrix-vector multiplications and rank-1 matrix
updates can be performed in constant time (i.e., irrespective of
the matrix size), and it is in fact agnostic to the implementational
details of these operations.

Computing a matrix-matrix product in such systems, on the
other hand, is typically relatively slow, since it is not computed
in constant time but sequentially as a number of matrix-vector
products. Clearly, this type of hardware has a speed advantage

in regimes where weight matrices are large and the number of
matrix-vector products is small, which is not the case for the
first few convolutional layers (when mapped to matrix-matrix
products with the im2col, or lowering operation).

Our algorithm can be interpreted as a method to represent
convolutions in a way so that it can computed on multiple
analog arrays in parallel without requiring memory movement
of the weight matrices. This new representation harnesses
the computational advantage and saturates the utilization of
hardware architectures that implement constant-time matrix-
vector products in non-volatile memory.

Our solution, RAPA-ConvNet, relies on the main idea of
randomly dividing the computation load corresponding to
one convolution operation among multiple independently and
simultaneously trained kernel matrices. Remarkably, we find
that this stochastic strategy yields no loss in accuracy, in
particular, when utilizing a majority voting strategy for border
line predictions. If executed on parallel analog arrays in a mixed
analog-digital system, our architecture achieves a theoretical
speedup that is linear in the number kernel replica used for
the first convolution layer, and amounts to at least 16 times
acceleration in our numerical experiments.

Note that this dramatic theoretical acceleration factor assumes
that the run time of the system is not limited by the memory
operations and computations on the digital part.Whether this is a
reasonable assumption depends on additional factors, such as the
concrete hardware implementation and the (noise) specifications
of the analog part, all of which are beyond the scope of the
current paper, which focuses on the algorithmic and functional
aspect. However, since the central step of our algorithm consists
in randomly assigning rows of the input data to different RPU
arrays, the main computational overhead is due to the need of re-
shuffling the np row-indices for each image, which can be done
in linear time in the digital domain. Thus, the digital overhead
is quantifiably small, in particular considering that the indices re-
shuffling operation could be relaxed to re-shuffling only every few
images with likely no impact on accuracy.

In this paper our goal was to propose RAPA-ConvNets, and
provide algorithmic analysis and verification of the method.
Therefore we focused on simulated analog RPU arrays in
the ideal situation, where matrix-vector products could be
computed noiselessly at floating point precision. This is clearly
not realistic in an analog setting, due to the inaccuracies
plaguing individual device elements, cycle-to-cycle update noise,
update asymmetries, as well as limited resolution and bounded
range of the analog-digital converters. These inaccuracies are in
fact known to impact the training performance, as extensively
analyzed in previous work (Gokmen et al., 2017). RAPA-
ConvNets do not solve the learning difficulties due to such
inaccuracies introduced by an analog computing implementation
of ConvNets. Our work here instead focuses on the solution
of a fundamental algorithmic limitation faced by the use of
analog arrays for ConvNets. Our modified ConvNet architecture
in particular solves a bottleneck in the run time scaling law
of analog arrays, allowing for accelerated training through
parallelization. To however test whether non-idealities of the
analog compute would impact our conclusions, we performed

Frontiers in Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

additional simulations using an RPU base linemodel as described
in Rasch et al. (2019) and found that results are very similar in
the case of more realistic RPU simulations. We thus conclude
that our RAPA-ConvNets does not add any qualitative different
requirements on the specification of the analog array device
elements beyond those discussed in previous work, in e.g.,
Gokmen et al. (2017).

4.2. Empirical Verification of
RAPA-ConvNets
We studied and validated the principles of our architecture
in a small standard ConvNet. However, we expect the
tiling architecture to be applicable also to larger ConvNets
(e.g., Krizhevsky et al., 2012), because they generally successively
reduce the spatial size with depth through pooling (Gu et al.,
2018) and thus have a similar pattern of the amount of compute
per layer as our example network (Figure 1). For instance, an
efficient tiling of the architecture in Krizhevsky et al. (2012)
would be nt = (17, 4, 1, 1, 1). This would achieve perfect load-
balancing across the 5 conv layers on analog arrays. Note that,
if set up in this way, the whole network (including the fully
connected layers) can additionally be pipelined across image
batches (Ben-Nun and Hoefler, 2018), because the duration of
computation would be identical for each of the conv layers
(irrespective of the different filter sizes and number of channels).

There are many different approaches to accelerating deep
learning using current hardware (Ben-Nun and Hoefler, 2018).
Our approach is motivated by the constraints of mixed-analog
digital hardware and the desire to emphasize its advantages. In
our tiling approach, although the total amount of compute in the
network is kept constant (contrary to e.g., methods that perforate
the loop Figurnov et al., 2016, or use low-rank approximations
or low precision weights, reviewed in Gu et al., 2018), the
number of updates per weight is nevertheless reduced, which
might generally affect learning curves. In our experiments, when
increasing the number of tiles per layer to more than 128,
weight update becomes too scarce, and the final performance
indeed drops to a level that majority voting does not seem to
rescue. To what degree additional techniques, such as learning
rate adjustment or training time increase, could recover the
performance drop for a large number of tiles, is subject of
future research.

4.3. Comparison of Random Tiling to Other
Tiling Methods
We found that, compared to other tested tiling methods, random
tiling generally yields superior performance, when employing
majority voting. The run time increase during inference due
to majority voting could be minimized by implementing this
mechanism only in the case of “uncertain” output predictions
(as judged from the magnitude of the softmax layer output).
Moreover, majority voting could be implemented in an iterative
fashion, such that the fast initial prediction of the first network
evaluation could be progressively combined with increasing
evaluations gradually contributing to the accuracy of themajority
vote. This mechanism can be fine tuned to trade-off prediction
time and energy consumption with accuracy, similarly to what
was for instance proposed in Martí et al. (2016).

We found that other tiling methods improved when using
strong augmentation techniques. This is to be expected, because
the data augmentation shuffles the image in space and thus
mirrors the random-sampling of the RAPA-ConvNet. As a result,
the other tiling methods with fixed spatial mapping of image
patches to tiles are better regularized and behave more similar
to the random tiling network. Thus, strong data augmentation
can to some degree reduce the need for randomly distributing
image patches.

Among the alternative tiling methods examined, the
alternating tiling method yielded lowest test error. Thus, it
seems that a fixed local spatial relation of patches per tile
distribution (that is approximately translation invariant across
the image plane) can be advantageous. However, we found
that in many simulations alternating tiling did not converge,
and only came close or matched random tiling (with majority
vote) in case of strong data augmentation and mixed pooling.
Clearly, the self-regularization property of the random tiling
method has advantages, in particular, when data is limited or
data augmentation is not available. Moreover, it is not clear how
to use the alternating method when tile numbers increase in an
arbitrary (non-quadratic) fashion.

Finally, only for RAPA-ConvNets it is possible to reduce the
tiled network to the non-tiled architecture, although performance
is still somewhat impaired compared to training the original
ConvNet directly. However, the alternative tiling methods that
we tested caused performance of the reducedmodel to deteriorate
to unacceptable levels.

4.4. Self-Regularization by Random
Assignments
Besides our empirical verification of the RAPA-ConvNets, we also
provide a theoretical analysis of our algorithm that explains its
properties by connecting the random assignment across tiles with
an implicit form of regularization, and, additionally, reveals a
“confidence stabilization” effect resulting in increased robustness
toward adversarial attacks.

Several regularization procedures based on randomization
have been proposed in the literature: dropout and dropconnect
are popular recent ones, and see Gu et al. (2018) for a
recent review. Our finding that randomly splitting convolutions
among several parallel tiles has a regularization effect is
thus in line with this body of work. However, randomness
in these regularization methods is typically restricted to the
training phase, whereas the network architecture is fixed during
testing. In contrast, because in our case the main goal of
the randomization procedure is to speed up the computation
through parallelization, random tiling is carried out both a
training and at test time.

It has been found recently, although in a different context,
that some forms of randomness during testing are indeed well
suited for mitigating adversarial effects (Xie et al., 2017), which
is similar to our finding. However, while the authors randomize
only on the input level (image resizing or random padding), our
architecture has builtin randomness in the convolutional layer, so
that no change in the input images needs to be made to achieve
the adversarial robustness.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 753

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rasch et al. RAPA-ConvNets

4.5. Conclusion
Here, we evaluated a modified ConvNet architecture, that shows
accelerated run time benefits when employed on upcoming
hardware systems that can perform vector-matrix products in
constant time with analog arrays. We found that the algorithmic
modifications necessary to parallelize the convolution operation
result in no appreciable loss in training performances compared
to the original network. Furthermore, we found that random
assignment of the compute to replicated kernel matrices have
added advantages, such as improved accuracy by majority voting,
adversarial robustness, and self-regularization. Our investigation
thus suggests to revise the pessimistic notion that mixed analog-
digital hardware cannot be used to accelerate ConvNets.

Finally, an interesting future research direction is how the
performance of RAPA ConvNets could be further improved by
increasing the convolution filter size or the number of filters
per layer. Remarkably, this type of modifications, which are

generally avoided on GPUs for reasons of efficiency, would not
alter the overall run time on upcoming mixed analog-digital
hardware technology.

DATA AVAILABILITY

The datasets analyzed for this study can be found in the respective
references as given in the main text.

AUTHOR CONTRIBUTIONS

MRa, TG, and MRi conceived the original ideas. MRa
implemented and ran the simulations. MRi developed the
theoretical analysis. MRa, TG, MRi, and WH analyzed and
interpreted results and revised the manuscript. MRa and MRi
drafted the manuscript.

REFERENCES

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., Nolfo, C.,

et al. (2018). Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature 558:60. doi: 10.1038/s41586-018-0180-5

Ben-Nun, T., and Hoefler, T. (2018). Demystifying parallel and distributed deep

learning: an in-depth concurrency analysis. CoRR abs/1802.09941.

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization.

Neural Comput. 7, 108–116. doi: 10.1162/neco.1995.7.1.108

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., et al.

(2014). cuDNN: efficient primitives for deep learning. CoRR abs/1410.0759.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017). “Parseval

networks: improving robustness to adversarial examples,” in International

Conference on Machine Learning (Sydney), 854–863.

Figurnov, M., Ibraimova, A., Vetrov, D. P., and Kohli, P. (2016). “Perforatedcnns:

acceleration through elimination of redundant convolutions,” in Advances in

Neural Information Processing Systems (Barcelona), 947–955.

Fumarola, A., Narayanan, P., Sanches, L. L., Sidler, S., Jang, J., Moon, K.,

et al. (2016). “Accelerating machine learning with non-volatile memory:

exploring device and circuit tradeoffs,” in Rebooting Computing (ICRC), IEEE

International Conference on (San Diego, CA: IEEE), 1–8.

Gokmen, T., Onen, M., and Haensch, W. (2017). Training deep convolutional

neural networks with resistive cross-point devices. Front. Neurosci. 11:538.

doi: 10.3389/fnins.2017.00538

Gokmen, T., Rasch, M. J., and Haensch, W. (2018). Training lstm

networks with resistive cross-point devices. Front. Neurosci. 12:745.

doi: 10.3389/fnins.2018.00745

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training

with resistive cross-point devices: design considerations. Front. Neurosci.

10:333. doi: 10.3389/fnins.2016.00333

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv e-prints arXiv:1412.6572.

Graham, B. (2014). Fractional max-pooling. CoRR abs/1412.6071.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent

advances in convolutional neural networks. Pattern Recogn. 77, 354–377.

Haensch, W., Gokmen, T., and Puri, R. (2019). The next generation of

deep learning hardware: analog computing. Proc. IEEE 107, 108–122.

doi: 10.1109/JPROC.2018.2871057

He, K., and Sun, J. (2015). “Convolutional neural networks at constrained

time cost,” in Computer Vision and Pattern Recognition (CVPR), 2015 IEEE

Conference on (Boston, MA: IEEE), 5353–5360.

Jia, Y., Shelhamer, E., Jeff, D., Karayev, S., Long, J., Ross, G., et al. (2014).

Caffe: convolutional architecture for fast feature embedding. arXiv e-prints

arXiv:1408.5093

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images

(Master’s thesis). University of Toronto, Toronto, ON, Canada.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe), 1097–1105.

Martí, D., Rigotti, M., Seok, M., and Fusi, S. (2016). Energy-efficient neuromorphic

classifiers. Neural Comput. 28, 2011–2044. doi: 10.1162/NECO_a_

00882

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).

“Reading digits in natural images with unsupervised feature learning,”

in NIPS Workshop on Deep Learning and Unsupervised Feature Learning

(Granada).

Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng, A. Y. (2010). “Tiled

convolutional neural networks,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 1279–1287.

Perez, L., and Wang, J. (2017). The effectiveness of data augmentation in image

classification using deep learning. CoRR abs/1712.04621.

Rasch, M. J., Gokmen, T., and Haensch, W. (2019). Training large-scale ANNs on

simulated resistive crossbar arrays. CoRR abs/1906.02698.

Rifai, S., Glorot, X., Bengio, Y., and Vincent, P. (2011). Adding noise to

the input of a model trained with a regularized objective. CoRR abs/1104.

3250.

Wager, S., Wang, S., and Liang, P. S. (2013). “Dropout training as adaptive

regularization,” in Advances in Neural Information Processing Systems (Lake

Tahoe), 351–359.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. L. (2017). Mitigating adversarial

effects through randomization. CoRR abs/1711.01991.

Yang, J. J., Strukov, D. B., and Stewart, D. R. (2013). Memristive devices for

computing. Nat. Nanotechnol. 8:13. doi: 10.1038/nnano.2012.240

You, Y., Zhang, Z., Hsieh, C., Demmel, J., and Keutzer, K. (2017). Imagenet

training in minutes. CoRR abs/1709.05011.

Yu, D., Wang, H., Chen, P., and Wei, Z. (2014). “Mixed pooling for convolutional

neural networks,” in International Conference on Rough Sets and Knowledge

Technology (Shanghai: Springer), 364–375.

Zhang, Y., Saxe, A. M., Advani, M. S., and Lee, A. A. (2018). Energy-entropy

competition and the effectiveness of stochastic gradient descent in machine

learning. CoRR abs/1803.01927.

Conflict of Interest Statement: All authors were employed by company IBM.

Copyright © 2019 Rasch, Gokmen, Rigotti andHaensch. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2019 | Volume 13 | Article 753

https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.3389/fnins.2017.00538
https://doi.org/10.3389/fnins.2018.00745
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1162/NECO_a_00882
https://doi.org/10.1038/nnano.2012.240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	RAPA-ConvNets: Modified Convolutional Networks for Accelerated Training on Architectures With Analog Arrays
	1. Introduction
	1.1. Previous Work
	1.2. Analog Arrays

	2. Methods
	2.1. Convolution With Replicated Kernel Matrices
	2.1.1. Image-Based Tiling
	2.1.2. Alternate Tiling
	2.1.3. Random Tiling
	2.1.4. Perforated Convolution

	2.2. Network Parameters Used in the Experiments

	3. Results
	3.1. Main Experimental Results
	3.2. Simulation With Reduced Precision on Simulated RPU Arrays
	3.3. Increasing Number of Tiles
	3.4. Regularization and Filter Similarity Across Tiles
	3.4.1. Explicit Regularization by Strong Data Augmentation
	3.4.2. Specificity of Error-Signal Across Tiles
	3.4.3. Reduction of Tiled Network to the Original Architecture

	3.5. Theoretical Analysis: Implicit Regularization of Random Tiling
	3.6. Robustness Against Adversarial Examples

	4. Discussion
	4.1. Considerations About Algorithmic Generality and Specific Hardware Architectures
	4.2. Empirical Verification of RAPA-ConvNets
	4.3. Comparison of Random Tiling to Other Tiling Methods
	4.4. Self-Regularization by Random Assignments
	4.5. Conclusion

	Data Availability
	Author Contributions
	References

