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INTRODUCTION

Most of the proteins perform their function after

forming their three-dimensional (3D) structures. Knowl-

edge of protein 3D structure is, therefore, essential for

understanding the mechanisms of protein function in

atomic detail.1 Consequently, a large number of protein

structures have been determined systematically by struc-
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ABSTRACT

In comparative modeling, the quality of amino acid

sequence alignment still constitutes a major bottleneck in

the generation of high quality models of protein three-

dimensional (3D) structures. Substantial efforts have been

made to improve alignment quality by revising the substi-

tution matrix, introducing multiple sequences, replacing

dynamic programming with hidden Markov models, and

incorporating 3D structure information. Improvements in

the gap penalty have not been a major focus, however, fol-

lowing the development of the affine gap penalty and of

the secondary structure dependent gap penalty. We revis-

ited the correlation between protein 3D structure and gap

location in a large protein 3D structure data set, and found

that the frequency of gap locations approximated to an ex-

ponential function of the solvent accessibility of the

inserted residues. The nonlinearity of the gap frequency as

a function of accessibility corresponded well to the rela-

tionship between residue mutation pattern and residue

accessibility. By introducing this relationship into the gap

penalty calculation for pairwise alignment between tem-

plate and target amino acid sequences, we were able to

obtain a sequence alignment much closer to the structural

alignment. The quality of the alignments was substantially

improved on a pair of sequences with identity in the ‘‘twi-

light zone’’ between 20 and 40%. The relocation of gaps by

our new method made a significant improvement in com-

parative modeling, exemplified here by the Bacillus subtilis

yitF protein. The method was implemented in a computer

program, ALAdeGAP (ALignment with Accessibility de-

pendent GAp Penalty), which is available at http://cib.cf.

ocha.ac.jp/target_protein/.

Proteins 2011; 79:1868–1877.
VVC 2011 Wiley-Liss, Inc.

Key words: ALAdeGAP; amino acid sequence alignment;

comparative modeling; position dependent gap penalty; sol-

vent accessibility.

1868 PROTEINS VVC 2011 WILEY-LISS, INC.



tural genomics projects,2,3 with the goal of elucidating

the function of proteins known from genome sequences.

The number of experimentally determined protein 3D

structures is now over 60,000.4 The number of amino

acid sequences derived from genome sequences, however,

is over 6,000,000, much larger than that of protein 3D

structures.5 Experimentally determining all of these pro-

tein 3D structures would take a prohibitively long time,

thus computational study of protein 3D structures is

expected to help to meet this need. Template-based com-

parative modeling, based on protein family classification,

is currently the most promising method for narrowing

the gap between the number of structure known and

unknown proteins.6,7

Comparative modeling technique consists of several

component methods: a method for finding the best tem-

plate structure; a method for high-accuracy alignment;

and a method for accurately deducing side-chain confor-

mation.8 Current techniques for comparative modeling

have been significantly improved but are still rarely able

to generate a model that is comparable in quality with

structures determined by X-ray crystallography. This is

especially true for cases in which the template and target

structure share low sequence identity. The accuracy of

deducing side chain conformations has been increased by

the introduction of rotamer libraries, especially those

that contain dihedral angle-dependent chi-angle distribu-

tions with sophisticated statistics.9 It is becoming possi-

ble to precisely predict the configuration of side chains at

the active site; this is especially important in order for

model structures to be useful in ligand docking.10 Meth-

ods for identifying the best template improved signifi-

cantly with the advent of the 3D21D method,11 fol-

lowed by the PSI-BLAST12 and profile2profile meth-

ods.13–15 Using these methods, we can reliably find an

appropriate template, but there still is substantial room

for improving the alignment, that is, the residue2residue

correspondence between the template and the target

sequences.16 Especially when two sequences are only dis-

tantly related, then the sequences have undergone a rela-

tively large number of insertions and deletions, and

hence finding corresponding residue pairs becomes diffi-

cult.

Efforts dedicated to improving alignment quality have

focused primarily on improving the substitution matrix.

Some approaches have attempted to build a general sub-

stitution matrix that depends on the protein environ-

ment,17 whereas others have introduced a position-spe-

cific substitution matrix or profile,18–24 and others have

combined sequence alignment with 3D structural align-

ment.25 Adjustment of the locations of insertions and

deletions (hereafter called gaps) was also attempted in an

effort to improve the quality of alignment. Typical align-

ment methods incorporate the affine gap penalty func-

tion.26 Parameters in the equation for the affine gap

penalty were optimized to best recall the pairwise align-

ment obtained from 3D structure comparison.27 It is

assumed that the correspondence of residues in the best

sequence alignment should be the same as the correspon-

dence obtained by comparison of the 3D structures. This

assumption is especially reasonable when the sequences

are the template and the target for comparative model-

ing.

When aligning amino acid sequences for the purpose

of comparative modeling, the 3D structure of the tem-

plate protein is known by definition; hence, the structural

information can be reflected in the gap penalty. Lesk

et al.28 first focused on this issue by observing that,

based on the structural comparison of human and lupin

globin proteins, gaps rarely occur in the interior of heli-

cal regions of proteins. Those authors introduced a vari-

able gap penalty that was higher in the interior of helices

and strands than in regions that lacked such secondary

structures; this approach improved the resulting align-

ment. The rigorous test of the relationship between gap

location and protein 3D structure was first performed by

Zhu et al.29 on 15 protein families; a linear relation was

observed between side-chain accessibility and the fre-

quency of gaps. They used this relation and the relation

that gaps are underrepresented in regions of defined sec-

ondary structure28 to improve COMPARER, a 3D struc-

ture comparison program.30 Madhusudhan et al.31

applied these relations to variable gap penalty and

increased the accuracy of alignment from 81.0 to 84.5%

in a dataset of 238 sequence pairs with known 3D struc-

tures. Qiu and Elber32 developed a new gap penalty cal-

culation method in SSALN; this gap penalty depended

on 12 different structure types, according to the pre-

dicted secondary structure, predicted relative solvent

accessibility for each residue of the target sequence, and

the real values of the secondary structures and relative

accessibility for each residue in the template sequence.

Even after all these past efforts, the quality of the pro-

tein model still falls below the satisfactory level. Kopp

et al.33 pointed out in a summary of CASP7 (the seventh

Critical Assessment of Techniques for Protein Structure

Prediction) that alignment was by no means a solved

problem and constituted a major bottleneck in compara-

tive modeling. The CASP8 assessment of template-based

modeling identified a major challenge: locating an accu-

rate place and conformation for loops inserted into the

3D structure of template proteins.34

Here, we re-evaluated the premise of gap location in

protein 3D structures, based on a large protein dataset,

and found that the distribution of gaps in protein 3D

structures differed from those reported previously. We

examined the pure contribution of our new finding to

the improvement in sequence alignment by implementing

a new gap penalty equation into a simple pairwise align-

ment method. We found that the new method outper-

forms most of the conventional alignment methods. Our

new program will help to improve the quality of compar-
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ative modeling by providing a better alignment between

template and target amino acid sequences. The software

is available at http://cib.cf.ocha.ac.jp/target_protein/.

METHODS

A dataset of superposed protein 3D
structures

Gap locations were assigned by superposing a pair of

homologous protein structures. The homologous protein

pairs were taken from each family in SCOP 1.69 data-

set.35 We used a single domain protein in the SCOP

families included in either of the all alpha, all beta, or

alpha and beta (a/b, a1b) protein classes to minimize

the technical difficulty of superposing two structures.

Proteins with coordinates for fewer than 60 residues were

not included in our dataset. If multiple 3D structures of

proteins with identical sequence existed, then the struc-

ture determined with the best resolution was taken as the

representative. In each SCOP family, protein pairs were

chosen so as to maximize the total number of pairs and

minimize the sequence identity within each pair. Each

pair of proteins was then superimposed using Combina-

torial Extension,36 and the location of gaps was deter-

mined based on the structural alignment. Pairs without

gaps were discarded. Ultimately, we obtained 18,019

superimposed protein pairs.

‘‘Gap accessibility’’ and gap frequency
against the accessibility

‘‘Residue-wise gap accessibility’’ was defined by the

accessibility of each residue aligned in the gap region

[Fig. 1(A)]. We herein named the residue-wise gap acces-

sibility the ‘‘gap accessibility.’’ The accessible surface area

of an atom was calculated using the method of Shrake

and Rupley,37 implemented in an in-house program. The

accessibility of each residue was calculated based on the

method described by Go and Miyazawa,38 Gap accessi-

bility was categorized into bins of width w with 0.05,

and Ni, the number of gaps with a gap accessibility in

each bin, was counted. Then gi, the frequency of gaps in

each accessibility bin i, was calculated by,

gi ¼ Ni

P1=W

j¼1

Nj

: ð1Þ

To compare gi in different bins, the value should be

normalized by the frequency of residues in each bin, fi,

which is,

fi ¼ Ai

P1=W

j¼1

Aj

; ð2Þ

where Ai is the count of residues in accessibility bin i.
gi=fi is the odds ratio on finding a gap in bin i. A rule ap-

plicable for building a sequence alignment was then

deduced as an equation by observing the relationship

between the accessibility and the gap odds ratio.

Implementation of the gap penalty into
standard sequence alignment method

We developed a program for pairwise amino acid

sequence alignment based on the assumption that one of

the sequences has a known 3D structure (template) and

the other does not (target). A pairwise alignment by

dynamic programming was implemented as described by

Isaev,39 using the BLOSUM62 amino acid substitution

matrix40 adjusted to have non-negative elements. The

affine gap penalty26 was used, and two parameters (gap

opening and extension penalties) were adjusted by maxi-

mizing the number of correctly aligned residue pairs.

Structural alignments were considered as correct align-

ments. The gap opening penalty was set to 13, and the

gap extension penalty to 1. The program was then modi-

fied to take into account the residue accessibility in gap

opening penalty based on the gap calculation equation

given in the previous section. All possible gap opening

penalties were precalculated and stored in a gap matrix

before commencing a dynamic programming calculation.

Gap accessibility was calculated as shown in Figure 1(B).

When the gap region was a deletion of the template pro-

tein, then the gap accessibility was the average of the

accessibilities of the deleted residues. When the gap

region was an insertion to the template protein, then the

gap accessibility was the average of the accessibilities of

two flanking residues. The coefficients in the gap equa-

Figure 1
A method to obtain the accessibility (ACS) of gaps. (A) Residue-wise

gap accessibility is given by the accessibility of the residues in the gap.

(B) In the alignment, if the 3D structure of an insertion segment is
known, then the gap accessibility can be directly calculated. If the 3D

structure is unknown, then it is calculated as the average of

accessibilities of residues flanking the deletion.

A. Hijikata et al.

1870 PROTEINS



tion were determined numerically by maximizing the

number of residue pairs in the sequence alignments that

matched residue pairs in the structural alignments. The

number of structural alignments used for parameter fit-

ting was reduced from the original dataset built for the

investigation of the gap location, by eliminating pairs

with more than 90% and less than 20% sequence identi-

ties.

Comparison of the method with the
conventional ones

We used three types of scores to compare the perform-

ance of our alignment method with conventional ones.

The first is the Q-score, defined by Pei and Grishin,24

which evaluates the overall alignment quality. The Q-

score is the number of correctly aligned residue pairs in

the sequence alignment divided by the total number of

aligned residue pairs in the structural alignment; thus, its

value is between 0 and 1. The second score is an evalua-

tion of the accuracy in locating an insertion segment (Is).

pþs is the number of correctly assigned insertion segments

in the sequence alignment (Iþs ) divided by the total num-

ber of the assigned segments (Iþs 1 I�s ). The correctly

assigned segment is defined by an overlap of the seg-

ments; when the assigned segment and the segment in

the structural alignment overlap by at least one residue,

then the segment is defined as correct. The third score

evaluates the accuracy in locating an insertion point (Ip).

In this score, a three-residue window is set around the

insertion point identified by a structural alignment; if the

insertion point identified by the sequence alignment is

located in this window, then it is assigned as correct. Pþ
p

is the number of correctly assigned insertion points in

the sequence alignment (Iþp ) divided by the total number

of assigned insertion points (Iþp 1 I�p ).
From the viewpoint of comparative modeling, align-

ment can be recognized as a method for gap prediction.

Accurate prediction of Is and Ip is then a prerequisite for

modeling. Taking the modeling procedure into account,

the accuracy of the model is best measured with correct-

ness and no over-assignment of Is and Ip. We quantified

this idea in the following equations;

xs ¼ �log2p
þ
s � ð�log2p

�
s Þ;

ys ¼ �log2p
þ
s � ð�log2q

�
s Þ;

ð3Þ

where p�s ¼ I�s
�ðIþs þ I�s Þ, qþs ¼ Iþs

�
I alls , and Is

all is the

number of real insertion segments in the structural align-

ment. The ideal alignment for comparative modeling

should have xs << 0, because correctly assigned insertion

segments should outnumber incorrectly assigned seg-

ments, and ys � 0 or at least ys � 0, because assignment

of too many insertion segments significantly hampers the

comparative modeling process. Similar equations can be

applied to Ip;

xp ¼ �log2p
þ
p � ð�log2p

�
p Þ;

yp ¼ �log2p
þ
p � ð�log2q

þ
p Þ:

ð4Þ

We compared the accuracy of alignment methods for

comparative modeling based on Q-score and Eqs. (3)

and (4).

Implementation of multiple sequence
alignment method

In our program, a progressive multiple sequence align-

ment method27 was implemented. A guide tree was first

built based on Kimura’s distance,41 calculated from pair-

wise sequence identity, and the alignment was built pro-

gressively from the leaves to the root of the tree. If one

of the sequences being aligned had 3D structure informa-

tion, then the accessibility-dependent gap penalty was

used; if not, the fixed gap penalty was used.

RESULTS AND DISCUSSION

Gap frequency against ‘‘gap accessibility’’

The relationship between gap accessibility and gap fre-

quency was revisited using a large dataset based on

SCOP 1.69,35 from which we extracted 18,019 super-

posed protein pairs. Figure 2 shows the odds of a gap as

a function of the accessibility of residues aligned to the

gap (gap accessibility). We used bootstrap method with

1000 resamplings to estimate the standard deviations of

each plot, and found that the standard deviations were

smaller than the radius of each dot on the graph. The

distribution can be approximated by a combination of

two straight lines, as shown by the dotted lines in Figure

2. The line from gap accessibility of 0.0 to 0.6 has a less

Figure 2
Odds-ratio of a gap as a function of gap accessibility. The number

above the dot is the number of gaps (the number of residues aligned

against a gap) in each accessibility bin. Standard deviation of each plot

was determined by a bootstrap procedure with 1000 resamplings and it

turned out to be smaller than the radius of each dot.
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steep gradient than the second line from 0.6 to 1.0. Gap

accessibility of 0.6 seems to be a critical point where the

relationship between gap frequency and gap accessibility

changes. The similar trend in gap accessibility was found

even when we divided the data in different sequence

identity ranges (data provided in the Supporting Infor-

mation). The physicochemical meaning of this critical

point is unknown. So far, we could not find any obvious

relationship between gap accessibility and, for instance,

secondary structure that may account for the observed

change in slope in figure. We speculate that this change

in gradient may correlate with a change in the packing

density of the residues in proteins.

The first line crosses gi/fi51.0 at a gap accessibility of

�0.3, which means that an accessibility of 0.3 is the

point where gap preference switches: gaps are underre-

presented between accessibility of 0.0 and 0.3, and over-

represented at accessibilities greater than 0.3. Go and

Miyazawa38 demonstrated that the variability of amino

acid residues in the process of protein evolution differs

around an accessibility of 0.27. Specifically, they showed

on eight representative proteins that residues which

remained invariant over the course of evolution were

overrepresented in sites where accessibility was no more

than 0.27. Both their result and ours indicate that struc-

tural changes in the interior of protein (accessibility less

than �0.3) are significantly suppressed during evolution,

presumably due to constraints required to maintain pro-

tein 3D structures.

For the gap penalty calculation in sequence alignment,

it is preferable to obtain the gap penalty using a single

continuous equation for accessibility. We fit the plot with

a linear and logarithmic regression lines. Linear regres-

sion of the plots resulted in y 5 2.25x 1 0.35 (residual

error 5 0.96), whereas natural log regression of the plots

resulted in log y 5 1.55x 2 0.50 (residual error 5 0.21).

The distribution of the frequency of the gap can be rea-

sonably expressed via a logarithmic equation. The gap

penalty should be in inverse relation to the gap fre-

quency; hence, we used an exponential equation to

deduce the gap penalty for sequence alignment.

The logarithmic relationship between gap accessibility

and gap odds ratio has not been previously reported.

Zhu et al.29 was the first to analyze the relationship

between accessibility of residues and the frequency of

gaps and showed a linear relation between them. The dis-

crepancy may stem from differences in the size and types

of dataset used. Our dataset contains many types of pro-

teins from a large number of protein families.

Gap penalty equation

We found the logarithmic relationship between gap

location and gap accessibility in the previous section. To

reflect this relationship to the gap penalty, which should

be the inverse of the gap frequency, we used the follow-

ing equation for the accessibility-dependent gap opening

penalty G;

G ¼ b � expð�a � accessibilityÞ ð5Þ

where accessibility was calculated as shown in Figure

1(B), and both a and b are parameters fit to maximize

Q-score, the recall rate of structural alignments. The

extension gap penalty was kept at 1.

The dataset we used for parameter fitting was a subset

of the dataset we observed the relationship between gap

frequency and accessibility. From the original dataset

with 18,019 protein pairs, we selected 1519 pairs. The

pairs were selected to avoid multiple appearances of the

same protein, and to have lower sequence identity. The

distribution of amino acid sequence identity in the

selected dataset is shown in Figure 3; the whole list of

pairs of proteins with sequence identity is provided in

the Supporting Information. We checked the frequency

of gaps against the accessibility in this small dataset and

found similar characteristics to those we discussed in the

previous section (data not shown). The new dataset does

not contain a pair with identity less than 20% (Fig. 3).

Gap penalty parameter fitting

A brute force parameter search was performed in the

range 1.0 � a, b � 39.0 with an interval of 1.0. This

search revealed that a 5 2.0 and b 5 33.0 achieved a Q-

Figure 3
Distribution of sequence identity in the protein pair dataset used for

gap penalty parameter fitting. The horizontal axis indicates bins for

identity ranges. Sequence identity was calculated based on the

correspondence of residues assigned by structural alignment. All protein

pairs are shown in the Supporting Information.

A. Hijikata et al.
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score of 0.910. Q-score was sensitive to a, because all the

parameter sets with a Q-score of 0.91 had a 5 2.0. We

then further searched for the parameter set in the range

2.0 � a � 3.0 and 31.0 � b � 33.0 with an interval of

0.1 and found that a 5 2.1 and b 5 32.8 were the best

set, with Q-score 5 0.911. This score means that 374,784

matches in the alignment are correct, out of the 411,337

matches in 3D structure comparison. The original imple-

mentation of the alignment with affine gap penalty

resulted in a Q-score of 0.870. We also implemented a

gap penalty with a linear relationship with accessibility

and obtained a maximum Q-score of 0.902. Hence, the

introduction of gap penalty with exponential relation

against the accessibility improved the alignment by about

4%. The percentage seems small, but 4% corresponds to

�15,000 residue matches in 1519 protein pairs. Improve-

ment of the match in �10 residues (515,000/1519) in

one protein pair can coincide with an improvement of

loop location by relocating a gap in the alignment. The

impact of this is exemplified in the last section. The pro-

gram with the best parameters was named ALAdeGAP

(ALignment with Accessibility dependent GAp Penalty),

and it is freely available at http://cib.cf.ocha.ac.jp/target_

protein/.

Performance comparison: comparison with
ClustalW and MAFFT

ClustalW42 and MAFFT21 are two of the most widely

used sequence alignment methods among molecular biol-

ogists; hence, we first compared the performance of ALA-

deGAP to those two methods. The other reason we chose

those two alignment methods is that those programs can

be used for pairwise alignment and can be run without

sequence profiles. The comparison, therefore, can be

made purely on the basis of adjusting the gap penalty.

For the performance comparison, we used protein pairs

which were not included in SCOP 1.69, because the pa-

rameters in ALAdeGAP were adjusted using SCOP 1.69

and using a protein pair in SCOP 1.69 for the perform-

ance comparison blurs objectivity of the test. In addition,

ALAdeGAP concentrates on improving the location of

gaps; alignments with many gaps tend to have low

sequence identity. We, therefore, compared performance

on sequence pairs of low sequence identity. The number

of protein pairs in the dataset were as follows: 66 pairs

with identity of 15% < x � 20%, 75 pairs with identity

of 20% < x � 25%, 66 pairs with identity of 25% < x �
30%, 72 pairs with identity of 30% < x � 35%, and 59

pairs with identity of 35% < x � 40% range. The result

of Q-score comparison is shown in Figure 4. In all these

ranges, ALAdeGAP outperformed the other two methods.

The difference may seem marginal, but note that ALAde-

GAP adjusts the location of gaps, but improvement in

the gap location does not dramatically improve Q-score,

because this metric reflects the number of residue2resi-

due pairs rather than the difference in gap location. The

significance of the improvement of the alignment by

adjusting gap location can be observed in individual

cases of alignment; we will describe a specific example in

the last section. Note that MAFFT has the worst per-

formance in the 35240% range; this may be a conse-

quence of using this method for pairwise alignment, an

application that was not anticipated by its developers.

Performance comparison: comparison with
PROMALS on SABmark

PROMALS is one of the best multiple sequence align-

ment programs for distantly related sequences.24 The

performance of ALAdeGAP and PROMALS was com-

pared on SABmark benchmark, a set of paired protein

sequences that covers the entire known fold space.43

SABmark provides a ‘‘super-family’’ set and a ‘‘twilight-

zone’’ set. The original idea of the SABmark benchmark

set is to compare the accuracy in assigning residue-to-

residue correspondence in the ‘‘super-family’’ set and is

to compare the accuracy in detecting remote homologues

in the ‘‘twilight-zone’’ set. ALAdeGAP is not aiming for

remote homologue detection, and hence we only used

the ‘‘super-family’’ set for this benchmark.

The result of the comparison based on Eqs. (3) and

(4) is shown in Figure 5. The performance of ClustalW42

is also shown. The horizontal axis is equal to the loga-

rithm of the number of correct gap assignments divided

by the number of incorrect gap assignments. A negative

value indicates that the number of correct gap assign-

ments exceeds the number of incorrect assignments. The

vertical axis is equal to the logarithm of the ratio of cor-

rectly assigned gaps in all of the gaps assigned by

Figure 4
Comparison of the alignment performance among ALAdeGAP (our

newly developed method), ClustalW42 and MAFFT.21
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sequence alignment, divided by the ratio of correctly

assigned gaps to the total number of real gaps assigned

by structural alignments. A positive value indicates over-

assignment, and a negative value indicates under-assign-

ment. Zero is the best value on the vertical axis and neg-

ative is better than positive for the purposes of compara-

tive modeling. Too many (and mostly incorrect) assign-

ments of gaps in the protein 3D structure may hamper

the modeling procedure. The best alignment for compar-

ative modeling needs to have as many as correct gap

assignments; hence the alignment should reside in or

close to the area where both values are negative. The pro-

tein pairs in the benchmark set were categorized into

sequence identity bins, and performance was compared

Figure 5
A performance comparison among ALAdeGAP, PROMALS,24 and ClustalW42 on the SABmark benchmark superfamily set.43 The performance was

compared based on Is (A) and Ip (B). See Eqs. (3) and (4) in the Methods section for the definition of each score. Pairs of protein superfamily

sequences in the SABmark superfamily set were classified into five-percent sequence identity bins, from 15220% to 55260%. The performances of

the three different alignment methods were tested on sequence pairs in each bin, and performance scores were plotted. The dots are connected in

ascending order of sequence identity. Note that a method with a line running into or close to the (2,2) region is considered to be the best.

A. Hijikata et al.
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on the set of protein pairs in each bin. Each bin was

numbered from 1 to 9 in ascending order of sequence

identity; each dot in the graph corresponds to a result of

comparison in each bin and is numbered accordingly.

The plots for ALAdeGAP (solid black line), and Clus-

talW (broken grey line) started at lower right in both

insertion segment (Is) score (A) and insertion point (Ip)

score (B), and ran to the upper right in (A) and upper

left in (B). The general trends of the both plots are simi-

lar. The trend of the plot for PROMALS (dotted black

line) is different from the other two: the plot generally

stays in the upper left region in (A) and (B). The inter-

pretation of the lower right region (1,2) is that the

number of false gap assignments exceeds that of true gap

assignments, but the number of assigned gaps is less than

the number of the real gaps. The interpretation of the

upper right region (1,1) is that the number of false gap

assignments exceeds that of true gap assignments, and

the number of assigned gaps is greater than the number

of real gaps. The interpretation of the upper left region

(2,1) is that the number of true gap assignments

exceeds the number of false gap assignments, but the

number of assigned gaps is greater than the number of

real gaps. Note that ALAdeGAP is the only method that

goes through or runs close to the (2,2) region, where

the number of true gap assignments exceeds the number

of false gap assignments and the number of assigned

gaps is less than the number of real gaps.

Figure 5 shows that neither the conventional methods

nor ALAdeGAP can achieve the best alignment method

for comparative modeling, but ALAdeGAP is closest to

optimal. PROMALS does have good value on the hori-

zontal axis but has a tendency to over-assign gaps in all

sequence identity ranges. ALAdeGAP runs into or close

to the (2,2) region for pairs with sequence identity

between 20 and 40% in Is, and runs close to (2,2)

region for pairs in a similar identity range in Ip. ALAde-

GAP is well suited for alignment for the purpose of com-

parative modeling of a sequence pair in this range. In the

parameter fitting dataset, we put stress on increasing the

number of data in this range, because improvement in

comparative modeling in this range of sequence identity

is mostly in need. The apparent good performance

between 20 and 40% identity range may be related to

this abundance of aligned sequences in this particular

range (Fig. 3).

In a comparison between PROMALS and ALAdeGAP

based on Q-score, PROMALS outperformed ALAdeGAP

(data not shown), but this is because of the difference in

the information used by each program. PROMALS incor-

porates sequence information obtained by PSI-BLAST.12

The performance of PROMALS is far better than ALAde-

GAP when the sequence identity of the protein pair is

less than �20%. ALAdeGAP is not based on profile,

whereas PROMALS makes use of this information; this

causes a difference in performance in the low sequence

identity range. The developers of PROMALS further

improved the alignment by incorporating structural

alignment into a multiple sequence alignment (PRO-

MALS3D).25 As PROMALS3D directly incorporates in-

Figure 6
3D structure of Bacillus subtilis yitF based on ALAdeGAP alignment between yitF and Escherichia coli GlucD (A) and on ClustalW alignment

between yitF and GlucD (B). Amino acid sequence identity is �19%. The model was built by MODELLER.46 In either figure, the colored chain is

the modeled structure, and the white chain is the structure determined by X-ray crystallography. Yellow dotted circles emphasize the differences in

both structures. The structure is viewed in the direction of the active site. In B, the active site is covered by an inappropriately modeled loop. The

figure was drawn using PyMOL.47
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formation about multiple protein 3D structures, we did

not compare the ALAdeGAP alignment with the PRO-

MALS3D alignment; in comparative modeling, the target

protein 3D structure would by definition never be known

beforehand.

Application of ALAdeGAP to hypothetical
protein YitF

Comparative modeling with improved gap location in

the template2target alignment is expected to have higher

chance of guiding protein function annotation in the

right direction. In the Bacillus subtilis genome, there were

about 2850 genes (70%) without known functions at the

time of genome sequencing.44 The names of these genes

are prefixed by ‘‘y’’ (‘‘y’’ genes), and determination of

their biological functions has been ongoing since their

first annotation. YitF gene encodes a protein belonging

to the enolase superfamily and annotated as mandelate

racemase, but the function has not been verified. Possible

orthologues of yitF only exist in the Bacillus genus; ho-

mologous proteins in other genera have low amino acid

sequence identity, which implies that an accurate multi-

ple sequence alignment is hard to obtain. We modeled

the 3D structure of Bacillus subtilis yitF using Escherichia

coli D-glucarate dehydratase (GlucD) 3D structure45

(PDB ID, 1jdf) as a template. A pairwise alignment was

built using ALAdeGAP or ClustalW, and the structures

were built with MODELLER46 (Fig. 6). The sequence

identity was �19%. The most crucial difference between

the two alignments was found at the sequence around

the active sites. The 3D structure of Bacillus subtilis yitF

was later determined in a structural genomics project

(PDB ID, 2gdq) and we can assess the accuracy of the

model. The difference in overall Ca root mean square

deviations was slight, 4.8 Å for ALAdeGAP model and

5.5Å for ClustalW model. However, due to the inappro-

priate location of gaps in the alignment, the active site of

the protein was covered by a loop in the ClustalW model,

and one of the a helices was melted to a loop [Fig.

6(B)]. A prediction of the substrate for this enzyme

based on the ClustalW model would therefore be mis-

leading.

CONCLUSION

We built ALAdeGAP, a new sequence alignment

method for comparative modeling. The method is based

on the characteristics of protein evolution, namely the

gap (insertion and deletion of residues) occurs more fre-

quently on the surface of protein 3D structures. We

found that the relation between the frequency and acces-

sibility of gap region is nonlinear. By incorporating this

dependency, ALAdeGAP can improve the location of

gaps in the alignment when the sequence identity is

between �20 and �40%, a range in which standard

methods tend to misplace gaps. We have already imple-

mented our new method to enable multiple sequence

alignment. The details of the application of the method

will be explained elsewhere. Current threading methods

also suffer from precisely locating gaps, namely determi-

nation of the precise boundaries of the different elements

of secondary structure for the target sequence. Our find-

ing here may indicate a possible benefit, when this gap

affinity score could be properly incorporated onto the

existing threading algorithms.
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