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A B S T R A C T

Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, 
which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown 
that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, 
cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights 
the need for further exploration of vitamin E’s role in managing various diseases. One particularly promising area 
is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current 
options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which 
allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and 
tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising 
candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products 
from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As 
research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new 
therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role 
in preventing and managing diseases.

1. Introduction

Vitamin E is an integral component of the human diet and is syn-
thesized solely by autotrophic organisms. Sources of vitamin E are 
abundantly present in nature, including green leafy vegetables, nuts, 
seeds, and plant oils. Tocopherols, the primary forms of vitamin E, 
exhibit a distinct distribution pattern within the plant kingdom: 
α-tocopherol predominates in green leafy plants, while γ-tocopherol is 
prevalent in non-green plant parts such as fruits and seeds (U.S. 
Department of Agriculture, Agricultural Research Service, 2019). 
Common foods that serve as sources of α-tocopherol include almonds, 
avocados, hazelnuts, peanuts, and sunflower seeds. β-tocopherol can be 
found in oregano and poppy seeds, while γ-tocopherol is abundant in 
pecans, pistachios, sesame seeds, and walnuts (U.S. Department of 
Agriculture, Agricultural Research Service, 2019). Edamame and rasp-
berries are notable sources of δ-tocopherol. In contrast, an intriguing 
hypothesis suggests that tocotrienols may undergo bioconversion into 
tocopherols, potentially serving as intermediates in the biosynthesis of 
α-tocopherol within plants (Peh et al., 2016; Pennock, 1983; Szewczyk 

et al., 2021). This hypothesis unveils a dynamic interplay between these 
vitamin E variants, adding another layer of complexity to plant physi-
ology. Tocotrienols are prominently present in the seed endosperm of 
most monocots, fruits of dicotyledonous plants, and the latex of rubber 
trees (Horvath et al., 2006; Zeng et al., 2024). Palm oil and crude oil are 
recognized for their high concentrations of tocotrienols, with levels 
reaching up to 800 mg/kg in weight, predominantly comprising 
α-tocotrienol and γ-tocotrienol isotypes (Sen et al., 2010).

2. The discovery of vitamin E

A century ago, a groundbreaking discovery at the University of 
California revealed the presence of vitamin E in green leafy vegetables, 
thanks to the pioneering work of Herbert Evans and Katherine Bishop 
(Evans & Bishop, 1922; Miyazawa et al., 2019). The compound, scien-
tifically named Tocopherol from the Greek word for “to bear offspring,” 
was chemically synthesized in 1983 (Miyazawa et al., 2019; Sen et al., 
2007). In 1964, Tocotrienol was identified by Pennock and Whittle, 
isolated from rubber (Dunphy et al., 1965; Aggarwal et al., 2010; 
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Miyazawa et al., 2019). The terminology for vitamin E encompasses 
both Tocopherol and Tocotrienols, which are characterized by their two 
rings and hydrocarbon chains.

Natural vitamin E exists in several forms: α, β, γ, and δ, differing 
based on the methyl or proton groups attached to their benzene rings 
(Mohd Zaffarin et al., 2020). Synthetically, it is produced from eight 
stereoisomers, with RRR-α-tocopherol being the most pharmacologi-
cally active form. Tocopherols have a saturated aliphatic phytyl side 
chain, while tocotrienols possess an unsaturated farnesyl side chain with 
three double bonds, as illustrated in Fig. 1. The differences in their side 
chains influence their behavior in the human body. Tocopherols inte-
grate stably into cell membranes, offering effective antioxidant protec-
tion by neutralizing free radicals and preventing oxidative damage to 
lipids, proteins, and DNA (Mesa & Munné-Bosch, 2023).

In contrast to tocopherols, tocotrienols, with their unsaturated side 
chains, penetrate and move within lipid bilayers more easily (Sen et al., 
2007; Ahsan et al., 2014; Mohd Zaffarin et al., 2020). This structural 
characteristic allows tocotrienols to reach and act within tissues more 
effectively than tocopherols, providing superior antioxidant capabilities 
and enhanced protection against oxidative stress. This stress is impli-
cated in the development of various chronic diseases, including car-
diovascular diseases and cancer (Sen et al., 2007; Shrum et al., 2023; 
Talib et al., 2024). The difference in side chain structure contributes to 
tocotrienols’ greater affinity for lipid membranes compared to tocoph-
erols (Mohd Zaffarin et al., 2020), leading to higher bioavailability in 
tissues. Moreover, vitamin E, which is present in cell membranes and 
lipoproteins, plays a role in the peroxidation of cell membrane lipids 
(Miyazawa et al., 2019; Villalón-García et al., 2022; Sezer et al., 2020). 
Tocopherols, especially α-tocopherol, are efficiently released from the 
liver into the bloodstream by α-tocopherol transfer protein (α-TTP), 
allowing their accumulation in various organs. In contrast, tocotrienols 
have a lower affinity for α-TTP and are less likely to enter the blood-
stream from the liver (Miyazawa et al., 2019). Instead, tocotrienols may 
accumulate in the brain and adipose tissue via the lymphatic system 
(Miyazawa et al., 2019; Peh et al., 2016). As vitamin E isoforms vary in 
bioavailability and metabolic processes, only α-tocopherol is selectively 
retained in plasma and tissues through the action of hepatic α-TTP, 
saturating them at approximately 90 %. Other isoforms of vitamin E are 
degraded and excreted (Jiang, 2017; Lee & Ulatowski, 2019; Szewczyk, 
Chojnacka, & Górnicka, 2021; Traber et al., 2010). Vitamin E is a potent 
antioxidant that effectively neutralizes free radicals by scavenging lost 
electrons, thereby protecting cells from oxidative damage and contrib-
uting to overall health (Institute of Medicine Panel on Dietary & Related, 
2000; Szewczyk et al., 2021). Fig. 2 illustrates the growing interest in 
vitamin E over the years.

3. Sustainability use of vitamin E

The concept of converting waste materials into valuable resources, 
commonly termed “upcycling” or “valorization,” entails the innovative 
repurposing or extraction of value from materials otherwise destined for 
disposal (Bejenaru et al., 2024). In the case of waste Tocopherol and 
Tocotrienol, which are forms of vitamin E often derived from sources 
like vegetable oils and green leafy vegetables, residual products derived 
from diverse industrial processes possess latent potential for multifac-
eted applications beyond their primary utilization (Gupta et al., 2019). 
Before the industrial era, the oil palm tree Elaeis guineensis, native to 
West and Central Africa, is known for its high yield of palmitic acid and 
has a significant vitamin E content (Kiple & Ornelas, 2000; Sen et al., 
2010; Ian, 2012; Haran et al., 2020; Loganathan et al., 2020). In the 15th 
century, indigenous communities in these regions extensively utilised 
the oil palm tree for various purposes (Ian, 2012). Palm oil was a staple 
in local diets, used for cooking as it has potent antioxidants that support 
the consistency of the oil during cooking and as a flavouring agent 
(Wattanapenpaiboon & Wahlqvist, 2003). Additionally, the oil palm 
tree was integral to traditional medicine as skin ointment and a common 
antidote to poisons (Ekwenye & Ijeomah, 2005; Owoyele, 2014). 
Recognizing the diverse applications and significant importance of palm 
oil in daily life, cultivation of the oil palm was expanded in the 19th 
century. The oil palm was introduced to Southeast Asia for commercial 
purposes, primarily to produce soap which has been used for skin in-
fections, margarine, and cooking oil for export (Ian, 2012; Sundram 
et al., 2003). Employing pioneering methodologies spanning nutra-
ceuticals, pharmaceuticals, functional foods, animal feed additives, 
biofuel production, and industrial applications, these compounds can be 
reimagined as high-value commodities (Mohamad, 2023; Szewczyk 
et al., 2021), not only capitalise on underutilised resources but also align 
with broader sustainability objectives by curtailing waste generation 
and optimizing resource utilization. The transformation of waste 
Tocopherol and Tocotrienol into coveted assets not only addresses 
environmental imperatives but also engenders novel economic oppor-
tunities across diverse sectors, thereby fostering a circular and sustain-
able economic paradigm (Ogawa & Iuchi, 2024).

4. Potential role of Tocopherol and Tocotrienol

The historical trajectory of Tocopherol and Tocotrienol research 
traces its roots to the early 1920s, playing a vital role in human health. 
The exploration of this compound dates back to the early 20th century 
when researchers began to recognize the importance of specific dietary 
factors in preventing deficiency diseases. Insufficient levels of this 
vitamin are now acknowledged as a prominent factor in the onset of 
severe degenerative conditions, such as ataxia, muscle degeneration, 
Duchenne muscular dystrophy, and infertility (Aggarwal et al., 2010; 
Kemnic & Coleman, 2023). Filer and Mason were the first researchers to 
demonstrate the vital role of vitamin E in protecting unsaturated fatty 
acids from in vivo oxidation, while also conducting studies on the re-
percussions of vitamin E deficiency in rhesus monkeys. This research 
marked the initial exploration of such deficiency studies in any primate 
species, including humans (Bell, 1987; Dinning & Day, 1957; Filer et al., 
1949; Mason & Telford, 1947). Each year brings forth a multitude of 
novel therapies developed using the unique properties of vitamin E, 
making it a promising agent in addressing diverse diseases, as shown in 
Fig. 3.

Tocopherols, particularly d-α-Tocopherol (RRR-α-Tocopherol), 
characterized by their chromanol ring and phytyl tail, have long been 
recognized for their high bioavailability and established antioxidant 
properties, making them a cornerstone of vitamin E research (Kuchan 
et al., 2018; Traber & Atkinson, 2007). In contrast, Tocotrienols, 
although historically overshadowed in vitamin E research, offer distinct 
biological activities that have garnered increasing attention. Structur-
ally, Tocotrienols differ from Tocopherols by possessing an isoprenoid 

Fig. 1. The phytochemistry of Tocopherol and Tocotrienol. Retrieved from 
Chin & Ima-Nirwana (2012) and recreated using Biorender.com.

F. Latib et al.                                                                                                                                                                                                                                    Food Chemistry: Molecular Sciences 9 (2024) 100224 

2 

http://Biorender.com


tail with three unsaturation points, which imparts unique functional 
properties to these compounds (Miyazawa et al., 2019; Ranasinghe 
et al., 2022; Sen, Khanna, & Roy, 2006). This structural variation confers 
upon Tocotrienols potent neuroprotective, antioxidant, anti-cancer, and 
cholesterol-lowering effects, which have been demonstrated in 
numerous preclinical and clinical studies (Sen, Khanna, & Roy, 2006, 
2007; Shrum et al., 2023; Talib et al., 2024). Despite their lower oral 
bioavailability compared to Tocopherols, Tocotrienols have shown 
promising efficacy in protecting neurons against neurotoxic insults and 
modulating various signaling pathways implicated in disease patho-
genesis (Ranasinghe, Mathai, & Zulli, 2022; Sen, Khanna, & Roy, 2007). 
These insights underscore the importance of evaluating the roles of 
Tocopherols and Tocotrienols in health and disease and exploring their 
distinct contributions to human physiology (Table 1), paving the way for 
novel therapeutic interventions and personalized approaches to 
healthcare (Sen, Khanna, & Roy, 2007).

5. Bridging current interest with a future therapeutic target in 
glaucoma

Around 1525 BCE, delving into the intriguing historical landscape of 

Ancient Egypt reveals a substantial focus on ocular health, particularly 
in the Ebers Papyrus (Andersen, 1997). Human eyes are a masterpiece of 
complexity, consisting of three million cones (responsible for trans-
mitting color), one hundred million rods (sensitive to low-light condi-
tions), and 1.5 million ganglion cells (Sánchez López de Nava et al., 
2023). Human vision can be susceptible to various diseases due to ge-
netic, environmental, and lifestyle factors. Ocular diseases encompass a 
broad spectrum of disorders affecting various components of the eye, 
ranging from the cornea to the retina. Approximately 80 % of in-
dividuals experiencing blindness reside in developing nations, primarily 
in rural regions where access to eye-care facilities is limited or 
underutilized (Wang et al., 2013). Glaucoma, a prevalent ocular disor-
der characterized by elevated intraocular pressure (IOP) and subsequent 
optic nerve damage, poses a substantial global health concern. Despite 
advancements in treatment, current glaucoma therapies encounter sig-
nificant limitations, including undesirable side effects and inadequate 
efficacy (Davis et al., 2016; Garcia-Medina et al., 2020; Marcus et al., 
2019). Building on the wealth of Vitamin E research, which includes 47, 
691 publications since 1927, Tocopherol and Tocotrienol are being 
explored as alternatives for treating glaucoma by reducing intraocular 
pressure. Recognizing the extensive knowledge amassed in the field, the 

Fig. 2. The interest in vitamin E research was published in PubMed from 1972 to 2024.

Fig. 3. The discovery potential of vitamin E.
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focus is now on these vitamin E constituents to provide a novel 
perspective on glaucoma management. Table 2 summarizes studies that 
highlight the potential roles of Tocopherol and Tocotrienol as thera-
peutic agents in ocular diseases.

6. Integrating omics approaches in understanding the 
antioxidative properties of vitamin E

Tocotrienols and tocopherols are well-established for their anti-
oxidative properties. The use of omics technologies, such as genomics, 
proteomics, metabolomics, and transcriptomics, offers powerful tools 
for comprehensively studying biological systems. These technologies 
can analyze the molecular components of food waste and by-products, 
revealing valuable insights into their composition and potential appli-
cations. When combined with the exploration of Vitamin E derivatives, 
omics technologies present exciting opportunities for addressing unmet 
needs in glaucoma management. The antioxidant activity of vitamin E is 
mediated by the phenolic hydroxyl group, which quickly donates 
hydrogen to peroxyl radicals, leading to the formation of a stable lipid 
species (Lü et al., 2010). Vitamin E itself becomes a relatively unreactive 
free radical, as the unpaired electron is delocalized into the aromatic 
ring. The efficiency of this protection is regulated by two factors: first, 
the molecule’s mobility in membranes, determined by its aliphatic tail; 
and second, the number of methyl groups on the chromanol ring, with 
each methyl group enhancing antioxidant activity (Celik et al., 2013; 
Fujisawa & Kadoma, 2005; Phaniendra et al., 2015; Rimbach et al., 
2010).

In this context, vitamin E can scavenge peroxyl radicals, effectively 
neutralizing them to generate hydroperoxides. Lipid peroxyl radicals are 
produced during lipid peroxidation. Following an initiating event, such 
as a reactive oxygen species, a hydrogen molecule is extracted from a 

Table 1 
The role of Tocopherol and Tocotrienol in a spectrum of diseases.

Therapies Role Reference

Anti-radiation ● α-Tocopherol preserves the 
hematopoietic system, crucial 
for averting radiation-induced 
cytopenia and aiding blood 
cell recovery. It serves as a 
chain-breaking antioxidant, 
halting the lipid peroxidation 
reactions.

● δ-Tocotrienol shields mouse 
bone marrow and human 
CD34+ cells from radiation 
damage through Erk 
activation, emphasizing its 
protective role via mTOR 
survival pathways.

(Felemovicius et al., 1995; 
Li et al., 2010; Ranasinghe 
et al., 2022; Satyamitra 
et al., 2011; Sovira et al., 
2020)

Anti-cholesterol ● Vitamin E entirely prevents 
cholesterol-induced athero-
sclerotic lesions and the 
expression of CD36 mRNA.

● Tocotrienols reduce serum 
cholesterol levels and inhibit 
enzymes in the cholesterol 
biosynthetic pathway, 
including, 3-hydroxy-3-meth-
ylglutaryl coenzyme A 
(HMGCoA) reductase and 
cholesterol 7 α-hydorxylase.

(Catalgol & Ozer, 2012; 
Qureshi & Qureshi et al., 
1991; Xiong et al., 2023)

Anti- 
cardiovascular 
disease

● α-Tocopherol reduces lipid 
peroxidation, monocyte 
proatherogenicity, and 
platelet aggregation.

● γ-Tocopherol eliminates 
peroxynitrite-derived reactive 
nitrogen species (RNS).

● Tocotrienol stabilizes 
proteasomes, ensuring the 
balance of survival and 
apoptotic signals, promoting 
myocardial health.

(Das et al., 2008; Devaraj 
& Jialal, 1998; Kaul et al., 
2001; McCarty, 2007; Pei 
et al., 2015; Qureshi et al., 
2011; Ramanathan et al., 
2018; Sovira et al., 2020)

Anti- 
neurological 
diseases

● α-Tocotrienol and 
γ-Tocotrienol enhance 
tyrosine hydroxylase (TH) 
expression, dopamine (DA) 
neurons, and striatal fibers in 
6-OHDA-induced rats.

(Kumari et al., 2021)

Anti- 
inflammatory

● α-tocopherol lowered the 
inflammatory level as 
observed by reduced 
macrophage infiltration and 
JNK/c-Jun signalling.

● γ-Tocopherol efficiently traps 
inflammation-induced elec-
trophiles, detoxifying nitrogen 
dioxide (NO2) and peroxyni-
trite to form 5-nitro- 
γ-tocopherol.

(Christen et al., 1997; 
Demirel-Yalciner et al., 
2021)

Anti- 
osteoporosis

● Vitamin E scavenges and 
neutralizes free radicals, 
preventing their activation of 
the NFκB transcription factor. 
It lowers bone-resorbing cyto-
kine levels and inhibits NFκB 
activation by boosting inter-
nal antioxidative enzymes in 
the bone.

(Ahmad et al., 2005; 
Nazrun et al., 2012; Wong 
et al., 2019)

Table 1 (continued )

Therapies Role Reference

Anti-diabetes ● Tocopherols enhance the 
retinal blood flow and 
alleviates renal dysfunction in 
type 1 diabetes, without 
changing the glycated 
haemoglobin levels.

● Tocotrienol-rich fraction 
improves blood glucose, 
lipids, and oxidative stress in 
streptozotocin-induced dia-
betic rats, preserving aortas, 
reducing glycosylation end 
products, and enhancing gly-
cemic control.

● Beta-tocotrienol intake 
significantly associates with a 
reduced risk of type 2 diabetes 
mellitus.

(Budin et al., 2009; Bursell 
et al., 1999; Chin et al., 
2011; Montonen et al., 
2004; Pang & Chin, 2019; 
Wan Nazaimoon & Khalid, 
2002)

Anti-eye diseases ● Tocopherols intercept 
lipoperoxidation product 
formation by scavenging free 
radicals and shielding the 
retina from oxidative injury.

● Tocotrienol reduces oxidative 
and nitrosative stress in 
catarctogenesis formation.

(Abdul Nasir et al., 2014; 
Edwards et al., 2022; 
Shrum et al., 2023; Zapata 
et al., 2008)

Anti-asthma ● α-tocopherol (antagonist of 
PKCα activity) and 
γ-tocopherol (agonist of PKCα 
activity) directly bind to the 
C1a regulatory domain of 
PKCα. Thus, regulating 
leukocyte modulating during 
allergic inflammation.

(Cook-Mills & Avila, 
2014; McCarty, 2007)

F. Latib et al.                                                                                                                                                                                                                                    Food Chemistry: Molecular Sciences 9 (2024) 100224 

4 



C–H bond that has been weakened by its proximity to an electron- 
withdrawing double bond found in polyunsaturated fatty acids, result-
ing in the formation of a carbon-centered radical (Niki, 2014; Valgimi-
gli, 2023). During this process, the lipid undergoes molecular 
rearrangement to a conjugated diene structure, and O2 is added to the 
carbon-centered radical, producing a lipid peroxyl radical (Ayala et al., 
2014; Niki, 2014; Valgimigli, 2023). This radical is extremely reactive 
and, if not quenched, will combine with a neighboring polyunsaturated 
fatty acid, resulting in another initiating event and thereby propagating 
lipid peroxidation (Chaudhary et al., 2023; Endale et al., 2023; Nam, 
2011). Vitamin E acts as a peroxyl radical scavenger, inhibiting this 
chain reaction, which is why it is referred to as a chain-breaking lipid 
antioxidant. Without vitamin E activity, a single initiating event may 
result in the formation of thousands of lipid peroxides, which would be 
detrimental to the biological membrane’s function.

Vitamin E does not function alone; rather, it is part of a network of 
redox antioxidants. A recent study suggests that the properties of 
vitamin E’s long-chain metabolites (LCMs) are similar to those of vita-
mins A and D (Bartolini et al., 2021; Kluge et al., 2021; Liao et al., 2022; 
Neukirch et al., 2021; Schubert et al., 2018). The molecular similarity 
between vitamin E metabolites and those of vitamins A and D (such as 9- 
cis-retinoic acid and 1,25(OH)2D3) suggests the existence of previously 
unknown vitamin E-specific receptors (Bartolini et al., 2021; Kluge et al., 
2021; Liao et al., 2022; Neukirch et al., 2021; Schubert et al., 2018). This 
idea is supported by findings on the regulatory activities of vitamin E 
metabolites. In recent years, tocopherols and tocotrienols have gained 
popularity as evidence of their ability to prevent common ailments has 
emerged (Abraham et al., 2019; Azzi, 2017; Constantinou et al., 2020; 
Ramanathan et al., 2018; Shibata et al., 2016, 2017; Szewczyk et al., 
2021; Tan et al., 2018; Uchida et al., 2018; Waniek et al., 2017; Wong 
et al., 2017; Wu et al., 2020).

Studies on anti-inflammatory effects often focus on the ability of 
vitamin E metabolites to regulate pro-inflammatory enzymes. Cyclo-
oxygenase (COX), which catalyzes the synthesis of pro-inflammatory 
eicosanoids, plays a critical role in regulating the inflammatory 
response and contributes to the development of chronic diseases 
(Ricciotti & FitzGerald, 2011; Sheppe & Edelmann, 2021). α-Tocopherol 
metabolites (α-9′-COOH and α-13′-COOH) have been shown to decrease 
COX-1 and COX-2 activity, which produces pro-inflammatory eicosa-
noids (Jiang, 2014; Park et al., 2022). The α-tocopherol metabolite 
α-13′-COOH, in particular, acts as a competitive COX inhibitor and has a 
higher affinity for cyclooxygenases than other tocopherol forms (Pein 
et al., 2018). This metabolite also reduces inflammation by inhibiting 5- 
lipoxygenase (5-LO), which initiates the creation of immunomodulatory 
lipid mediators (Pein et al., 2018). It is proposed that vitamin E operates 
catalytically, efficiently reducing its free radical (chromanoxyl) form 
after quenching lipid radicals back to their native state (Rimbach et al., 
2010). This catalysis occurs through interactions between water- and 
lipid-soluble molecules via both nonenzymatic and enzymatic pathways, 
which regenerate vitamin E from its tocotrienoxyl or tocopheroxyl 
radical back to tocotrienol and tocopherol, respectively. Vitamin C 
directly regenerates vitamin E, while thiol antioxidants like glutathione 
and lipoic acid renew vitamin E indirectly through vitamin C (Higgins 
et al., 2020; Ryan et al., 2010; Traber & Stevens, 2011). When these 
systems work together to maintain a low steady-state concentration of 
vitamin E radicals, vitamin E loss or consumption is minimized (Higgins 
et al., 2020; Ryan et al., 2010; Traber & Stevens, 2011).

7. Possible targets in management of glaucoma

Glaucoma comprises a collection of eye conditions that can damage 
the optic nerve, leading to vision impairment and, if not addressed, 
eventual blindness (Dietze et al., 2024). The primary characteristic of 
glaucoma is an elevation in intraocular pressure (IOP), which refers to 
the pressure within the eye (Raja et al., 2022). The root cause of this 
condition lies in the compromised drainage of aqueous humor, a clear 

Table 2 
Studies Related to Tocopherol and Tocotrienol in Ocular Diseases.

Disease Findings References

Tocopherol Glaucoma ● In addition, 
tocopherols function 
as neuroprotective 
agents, 
vasoregulators, 
endothelial cell 
survival time extender 
in rabbits, and shield 
the cell membranes of 
photoreceptor cells.

● Alpha-tocopherols 
also modifies retinal 
vascular dysfunction 
resulting from 
hyperglycemia.

(Chaudhry et al., 
2022)

Cataract ● Lipid oxidation levels 
were low in the 
vitamin E group and 
high in the GSH and 
GPx antioxidant.

● Chick embryos are 
protected against 
glucocorticoid- 
induced cataract 
development by the 
potent antioxidant 
vitamin E.

(Vurmaz et al., 2021)

Diabetic 
retinopathy

● Reduce reactive 
oxidative stress and 
inhibit angiogenesis.

● Diabetic retinopathy is 
linked to increased 
levels of reactive 
oxygen species such as 
the overproduction of 
superoxide radical 
anion, hydroxyl 
radical, hydrogen 
peroxide (H2O2), and 
singlet oxygen.

● Mean serum vitamin E 
levels that were 
significantly lower in 
diabetic retinopathy 
than those of those 
without.

(Ruamviboonsuk and 
Grzybowski, 2022; 
Sies and Jones, 2020; 
Gao et al., 2023)

Tocotrienol Cataract ● Reduce the cataract’s 
onset and progression.

● It was suggested that 
reducing lenticular 
nitrosative and 
oxidative stress might 
prevent cataracts by 
decreasing lens aldose 
reductase activity, 
oxidative-nitrosative 
stress, and NF-κB acti-
vation, which would 
lower iNOS expression 
and calpain activity.

(Sharma et al., 2022)

Diabetic 
Retinopathy

● Reduced the retinal 
NFκB activation, IL-1β, 
IL-6, TNF-α, IFN-γ, 
iNOS, and MCP- 
reduced retinal 
expression of VEGF, 
IGF-1, and HIF-1α 
lowers retinal cell 
death, and conserved 
the retinal layer thick-
ness and retinal 
venous diameter.

(Sadikan et al., 2022; 
Sadikan et al., 2023)
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fluid produced by the eye to regulate IOP and nourish ocular structures 
(Praveen et al., 2022). In glaucoma, dysfunction in the drainage system, 
specifically the trabecular meshwork or Schlemm’s canal, results in 
insufficient outflow of aqueous humor, leading to an increase in IOP 
(Sharif et al., 2023) and subsequent damage to the optic nerve.

Elevated IOP exerts mechanical stress on the optic nerve, jeopard-
izing its blood supply and damaging nerve fibers (McDowell et al., 
2022). Since the optic nerve is responsible for transmitting visual in-
formation from the retina to the brain, any impairment to it can result in 
vision loss (Coleman-Belin et al., 2023). Fig. 4 visually represents the 
progression of glaucoma.

To date, our understanding of the specific pathways through which 
tocotrienols and tocopherols interact at the cellular level remains 
limited (Ranasinghe et al., 2022). However, according to Yang et al. 
(2020), both compounds share similar biochemical properties that in-
fluence their absorption and subsequent actions within the body. One 
crucial aspect of tocotrienols and tocopherols is their lipophilic nature, 
which facilitates their absorption in the digestive tract. Upon ingestion, 
these compounds are incorporated into mixed micelles in the small in-
testine, aiding in their solubilization and uptake into enterocytes 
(Górnaś et al., 2022). This process is predominantly mediated by passive 
diffusion, although certain transport proteins may also play a role in 
facilitating their absorption (Kiyose, 2021). The absorption processes 
are also mediated, at least in part, by three protein groups: Niemann- 
Pick C1-like 1 protein (NPC1L1), scavenger receptor class B type 1 
(SRB1), and cluster of differentiation 36 (CD36) (Galmés et al., 2018; Jia 
et al., 2011; Kiyose, 2021; Yamanashi et al., 2017). These three proteins 
are primarily known as cholesterol transporters, but they can also bind 
to other substrates. Tocopherols and tocotrienols are absorbed in the 
intestine at rates ranging from 20 % to 80 % of the total amount 
ingested, which is lower than for other fat-soluble vitamins (Mohamad, 
2023; Schmölz et al., 2016).

The simplified pathway for vitamin E transport and metabolism 
follows a pattern similar to that of other lipid species. Vitamin E is in-
tegrated into chylomicrons or HDL by intestinal epithelial cells using 
ABCA1 (Anwar et al., 2007; Hussain, 2014; Levy et al., 2021; Reboul, 
2017) and transported to the liver or other tissues. In the liver, vitamin E 
is sorted and directed to catabolism or different lipoproteins before 
returning to the bloodstream. The transport route is the same for all 
forms of vitamin E. In the liver, α-TTP favors α-tocopherol over other 
forms, preventing excessive breakdown and excretion of the latter. The 
remaining forms of vitamin E are metabolized (phases I and II) (El Hadi 
et al., 2018; Traber, 2013). The uptake of different forms of vitamin E 
into the liver is most likely nonspecific.

Recent research has shown that supplementing with a combination 
of vitamin E isoforms leads to a significant increase in tocotrienol con-
centrations in tissues. This suggests that α-tocotrienol is transported 

differently within cells than α-TTP. Catignani and Bieri (1977) reported 
the first detection of α-TTP in rat liver. It is now generally acknowledged 
to be present in the brain, kidney, lung, spleen, uterus, and placenta, in 
addition to the liver (Hosomi et al., 1998; Copp et al., 1999; Kaempf- 
Rotzoll et al., 2002, 2003; Yamaoka et al., 2008; Rotzoll et al., 2008; 
Tamura et al., 2020; Edwards et al., 2022). The cytosolic 46-kDa 
α-tocopherol-associated protein (α-TAP) regulates the intracellular dis-
tribution of vitamin E (Stocker et al., 1999; Zimmer et al., 2000). It binds 
to α-tocopherol through chylomicron formation and lipids in the liver 
and acts as a metabolizing enzyme, increasing the uptake and absorption 
of vitamin E. This promotes anti-proliferative effects, particularly in 
prostate cancer, and acts as a tumor suppressor. The retina is expected to 
include α-TTP and α-TAP as it is a neuronal tissue with circuits that are 
an extension of the brain and nervous system (London et al., 2013; De 
Groef & Cordeiro, 2018).

Upon reaching their target sites, tocopherols and tocotrienols exhibit 
their antioxidative properties through various molecular pathways. One 
of the key mechanisms involves the activation of the Nuclear Factor 
Erythroid 2-related Factor 2 (Nrf2) pathway (Ranasinghe et al., 2022). 
Upon exposure to these compounds, Nrf2, a transcription factor, is 
triggered, prompting the expression of antioxidant and detoxifying en-
zymes such as heme oxygenase-1 (HO-1) and superoxide dismutase 
(SOD). Consequently, the upregulation of these enzymes aids in 
neutralizing reactive oxygen species and mitigating oxidative stress 
within cells (Ngo & Duennwald, 2022). Furthermore, tocotrienols, in 
particular, engage in the Keap1-ARE pathway. Within this pathway, 
tocotrienols interact with Kelch-like ECH-associated protein 1 (Keap1), 
leading to the activation of the antioxidant response element (ARE) 
through Nrf2 (Baird & Yamamoto, 2020). According to Ngo and 
Duennwald (2022), this activation elevates antioxidant and phase II 
detoxifying enzymes, which collectively serve to fortify cellular defense 
mechanisms against oxidative damage.

Moreover, emerging research suggests another avenue through 
which tocotrienols may operate, involving Peroxisome Proliferator- 
Activated Receptors (PPARs) (Hassan et al., 2021; Szewczyk et al., 
2021). Specifically, tocotrienols have been implicated in the activation 
of PPAR-γ, a nuclear receptor involved in the regulation of lipid meta-
bolism, inflammation, and oxidative stress (Qureshi, 2022). Activation 
of PPARs by tocotrienols may contribute to the suppression of pro- 
inflammatory gene expression and the promotion of antioxidant de-
fense mechanisms, thereby further enhancing cellular resilience against 
oxidative insults (Muzio et al., 2021). The possible mechanisms through 
which tocopherols and tocotrienols orchestrate their antioxidant effects 
via intricate molecular pathways, including the Nrf2 pathway, Keap1- 
ARE pathway, and potential activation of PPARs, are presented in 
Fig. 5. Understanding these mechanisms sheds light on the diverse roles 
these compounds play in cellular protection against oxidative stress and 

Fig. 4. Development of Glaucoma. Figures were adapted from Watson (2022) “The Facts About Glaucoma, Harvard Health Publishing, Harvard Medical School 
(2020)” and recreated by using Biorender.com. Note: (A) the first eyeball shows the condition of the normal eye, (B) the second eyeball exhibits the blockage of the 
canal, and (C) the third eyeball shows the elevation of intraocular pressure after the blockage occurs.
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their potential therapeutic implications in combating various oxidative 
stress-related disorders.

8. Conclusion and future directions

Vitamin E is an essential nutrient found in a variety of plant-based 
sources such as green leafy vegetables, nuts, seeds, and plant oils. It 
mainly exists in two forms: tocopherols and tocotrienols. α-Tocopherol is 
commonly found in green leafy plants, while γ-tocopherol is more 
prevalent in fruits and seeds. Since its discovery in the early 20th cen-
tury, Vitamin E has been celebrated for its crucial role in preventing 
deficiency diseases and promoting overall health. The structural differ-
ences between tocopherols and tocotrienols influence their functions in 
the body. Tocopherols are known for their ability to integrate smoothly 
into cell membranes, providing stable antioxidant protection. In 
contrast, tocotrienols, with their unique unsaturated side chains, can 
penetrate lipid bilayers more effectively, offering superior protection 
against oxidative stress. Interestingly, tocotrienols, despite being less 
bioavailable, have shown significant potential in managing chronic 
diseases like cardiovascular conditions and cancer. This makes them a 
compelling area of study. Moreover, Vitamin E’s sustainability aspect is 
noteworthy. By recycling waste materials from its production, tocoph-
erols and tocotrienols can be transformed into valuable resources, which 
not only addresses environmental concerns but also creates new eco-
nomic opportunities. The therapeutic potential of Vitamin E in treating 
ocular diseases, such as glaucoma and cataracts, is also under investi-
gation. While preliminary studies suggest that tocopherols and toco-
trienols might reduce intraocular pressure and provide neuroprotective 
effects, more comprehensive clinical trials are needed. Research should 
also explore the potential of combining Vitamin E with existing glau-
coma treatments to enhance therapeutic outcomes and study the long- 
term effects of Vitamin E supplementation on eye health.
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