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Crossbreeding improves and enhances meat quality and is widely used in

sheep production; however, the molecular mechanisms underlying the meat

quality of various crossbred sheep remain unknown. In this study, male

Southdown, Suffolk and Hu sheep were crossbred with female Hu sheep,

and the transcriptomes and metabolomes of the longissimus dorsi muscle

of the F1 generation were sequenced to explore how different sire breeds

affect meat quality. The results showed that 631 differentially expressed

genes and 119 significantly altered metabolites contributed to muscle

development characteristics and meat quality-related diversity (P < 0.05).

These genes and metabolites were significantly enriched in lipid metabolism

pathways, including arachidonic acid metabolism and PPAR signaling. Several

candidate genes were associated with muscle growth, such as MYLK3,

MYL10, FIGN, MYH8, MYOM3, LMCD1, and FLRT1. Among these, MYH8 and

MYL10 participated in regulating muscle growth and development and were

correlated with meat quality-related fatty acid levels (|r| > 0.5 and p < 0.05).

We selected mRNA from four of these genes to verify the accuracy of the

sequencing data via qRT-PCR. Our findings provide further insight into the key

genes and metabolites involved in muscle growth and meat quality in hybrid

sheep populations.
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Introduction

As consumers increasingly focus on how nutrition, safety, and high-quality meat
products affect health, demand for high-quality sheep meat is growing in most areas of
China. Studies have shown that crossbreeding can improve and enhance meat quality.
Crossbreeding between Duroc and Polish Landrace sheep can improve tenderness (1),
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and hybrid Berkshire × QingYu pigs exhibited improved
carcass quality, with a significant increase in lean percentage
and reduced sebum percentage (2). Sang et al. showed
that heterosis from crossbreeding can yield high meat
quality (3). Southdown and Suffolk are specialized for meat
production and exhibit early growth and excellent meat
quality; these sheep are recognized as the most popular
breeds for meat production (4, 5). Hybridization experiments
revealed that introducing high-quality Suffolk and Southdown
males for breeding greatly improved their meat production
performances (4–6). Therefore, excellent sire hybrids can
improve meat quality and meat production performance to meet
consumer demand.

Multi-omics association analysis is being increasingly
used in complex trait analyses to explore the underlying
molecular mechanisms of sheep crossbreeding (7, 8).
Using transcriptomic data to obtain many differentially
expressed genes (DEGs) and performing association analyses
of different metabolites in metabolomic studies enables
identifying key gene targets, metabolites and metabolic
pathways. Subsequently, a core control network can be
built to comprehensively analyze complex mechanisms
involved in developmental biology. Transcriptomic and
metabolomic analyses are powerful tools for studying meat
quality traits and contribute to better understanding the
mechanisms regulating muscle growth and development
and fatty acid metabolism (9, 10). Multi-omics techniques
are widely used to analyze muscle tissue in sheep, pigs and
cattle and have identified many genes involved in fatty acid
metabolism (11–14). RNA-seq and qRT-PCR have identified
several candidate genes for lipid metabolism, such as ACLY,
ADIPOQ, ELOVL6, LEP and ME1, as main gene factors
defining the processes influencing meat composition and
quality (15).

Hu sheep, a unique local sheep germplasm resource
in China, which is known for its excellent characteristics,
including perennial estrus, high fecundity, good lactation
performance and strong adaptability, is an important dam
breed in commercial hybrid mutton sheep (16). Suffolk
and Southdown are famous sheep breeds with perfect
meat production performance and usually used as sire
breeds in hybrid mutton sheep. To reveal how different sire
breeds affect meat quality among various crossbred sheep
populations, we bred native female Hu sheep with male Hu,
Suffolk and Southdown to hybridize these sheep. We then
conducted a comprehensive analysis of the transcriptomics
and performed two untargeted metabolomics studies on
the longissimus dorsi muscles of the first-generation
hybrid sheep to provide a theoretical basis for maintaining
and improving mutton quality and yielding high-quality
hybrid offspring.

Materials and methods

Animals and sample collection

We used three groups with six healthy sheep per group
to yield the following cross combinations: Southdown × Hu
(NH), Suffolk × Hu (SH), and Hu × Hu (HH), those animals
were obtained from Gansu Qinghuan Sheep Breeder Co., Ltd.,
(Qingyang, Gansu, China). We used 18 rams (1 year old) in this
experiment, and all rams received the same feeding management
and dietary levels. Sheep weights were similar among the groups
(HH: 52.83± 4.06 kg, NH: 58.06± 3.58 kg, SH: 65.51± 4.64 kg).
The animals were slaughtered after 24 h with food deprived and
had free access to water. Subsequently, the longissimus dorsi
between the 12 and 13th rib was excised from all 18 sheep on the
left side of each carcass within 30 min after exsanguination. Any
visible external fat and connective tissues were trimmed before
the following analyses.

RNA-seq data analysis

Muscle tissues from the sheep were used to extract the
total RNA using a TRIzol reagent kit (Invitrogen, Carlsbad,
CA, United States) per the manufacturer’s protocol. RNA
quality was assessed on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States) and checked using
RNase-free agarose gel electrophoresis. After extracting the
total RNA, eukaryotic mRNA was enriched with Oligo (dT)
beads, and prokaryotic mRNA was enriched by removing the
rRNA using a Ribo-ZeroTM magnetic kit (Epicenter, Madison,
WI, United States). The enriched mRNA was fragmented
into short fragments using fragmentation buffer and reverse
transcribed into cDNA with random primers. Second-strand
cDNA was synthesized using DNA polymerase I, RNase H,
dNTP and buffer. The cDNA fragments were purified using
a QiaQuick PCR extraction kit (Qiagen, Venlo, Netherlands),
end-repaired, A-base-added, and ligated to Illumina sequencing
adapters. The ligation products were size selected via agarose gel
electrophoresis, PCR amplified, and sequenced by Gene Denovo
Biotechnology Co., (Guangzhou, China) using an Illumina
NovaSeq6000. The raw reads were filtered, and the clean reads
were mapped to the reference sequences using HISAT2.2.4
software (17). Gene expression levels were calculated using
the FPKM method (fragment per kilobase of transcript per
million mapped reads). Finally, differential expression analysis
between two groups of RNA was performed using DESeq2
software (18). Genes/transcripts with P < 0.05 and |log-fold
change| ≥ 2 was considered differentially expressed genes
(DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.967985
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-967985 August 5, 2022 Time: 16:16 # 3

Chen et al. 10.3389/fnut.2022.967985

Genes and Genomes (KEGG) pathway enrichment analyses of
the DEGs were performed using R based on hypergeometric
distribution. GO terms and KEGG pathways with P < 0.05 were
considered significantly enriched.

Metabolite extraction for LC-MS/MS
analysis

To extract the metabolites, the freeze-dried samples were
dissolved in methanol and concentrated to dry in a vacuum
after centrifugation. The samples were then dissolved with 80%
2-chlorobenzalanine and filtered [20 µL of each sample was
used for quality control (QC)]. Chromatographic separation was
performed in a Thermo Ultimate 3000 system equipped with an
ACQUITY UPLC R© HSS T3 (150 × 2.1 mm2, 1.8 µm, Waters)
column maintained at 40◦C. The autosampler temperature was
8◦C. The analytes were gradient eluted with 0.1% formic acid
in water (C) and 0.1% formic acid (D) in acetonitrile or 5 mM
ammonium formate in water (A) and acetonitrile (B) at a flow
rate of 0.25 mL/min. After equilibration, 2 µL of each sample
was injected, and the following increasing linear gradient of
solvent B (v/v) was used: 0–1 min, 2% B/D; 1–9 min, 2%–50%
B/D; 9–12 min, 50%–98% B/D; 12–13.5 min, 98% B/D; 13.5–
14 min, 98%–2% B/D; and 14–20 min, 2% D + the positive
control. The ESI-MSn experiments were performed on the
Thermo Q Exactive mass spectrometer with spray voltages of
3.8 and −2.5 kV in positive and negative modes (14∼17 min,
2% B-negative model), respectively. Sheath and auxiliary gases
were set at 30 and 10 arbitrary units, respectively. The capillary
temperature was 325◦C. The analyzer scanned over a mass
range of 81–1,000 m/z for a full scan at a mass resolution of
70,000. Data-dependent acquisition (DDA) MS/MS experiments
were performed with an HCD scan. The normalized collision
energy was 30 eV.

Metabolite extraction for GC-MS
analysis

To extract the metabolites, 50 mg (± 5%) of the samples
were weighed and transferred into 2-mL Eppendorf tubes. Next,
0.5 mL of an acetonitrile: isopropanol: water (3:3:2, v/v/v) mixed
solution (−20◦C) and 3–42-mm zirconium beads were added
and placed in a high-flux tissue grinder, shocked at 30 Hz
for 20 s, allowed to stand for 10 s, cycled eight times, and
sonicated in an ice water bath for 5 min. Another 0.5 mL
acetonitrile: isopropanol: water (3:3:2, V/V/V) solution was
added on an ice water bath, sonicated for 5 min, and centrifuged
at 12,000 rpm for 2 min. Next, 500 µL of supernatant solution
was added to a new 2-mL Eppendorf tube, the vacuum
concentrator was concentrated to dryness (8–10 h), and the
remaining supernatant was placed in a −80◦C freezer for

backup. Next, 80 µL of 20 mg/mL MEOX solution was added
for redissolution, vortexed for 30 s, and incubated at 60◦C
for 60 min. Finally, 100 µL BSTFA-TMCS (99:1) reagent was
added, then reacted at 70◦C for 90 min and centrifuged at
14,000 rpm for 3 min, then 90–100 µL of supernatant was
added to the detection bottle. Samples were placed in sealed
cuvettes to be tested and processed for GC-TOF upper detection
within 24 h.

Gas chromatography was performed on a DB-5MS capillary
column (30 m × 250 µm i.d., 0.25 µm film thickness, Agilent
J and W Scientific, Folsom, CA, United States) to separate the
derivatives at a constant flow of 1 mL/min helium. Next, 1 µL
of sample was injected in split mode at a 1:10 split ratio by
the autosampler. The injection temperature was 280◦C, and the
transfer-line ion source temperatures were 320◦C and 230◦C.
From an initial temperature of 50◦C, the temperature was
increased at 15◦C/min to 320◦C for 0.5 min and then held at
320◦C for 9 min. Mass spectrometry was performed using a full
scan method with a scan rate of 10 spec/s, electron energy of
−70 V, and a solvent delay of 3 min (19, 20).

Statistical analysis of the metabolites

Metabolites were distinguished by comparing the m/z
values of the precursor ions, retention time, and fragmentation
patterns with the standards in a database compiled by Gene
Denovo Biotechnology Co., Ltd., Metabolic alterations among
the groups were analyzed via principal component analysis
(PCA) and (orthogonal) partial least-squares discriminant
analysis (OPLS-DA) after data preprocessing by mean
centering (Ctr) and Pareto variance (Par) scaling, respectively.
Metabolites were identified with P < 0.05 by t-test, and
metabolites with a VIP ≥ 1 were considered differential
between the groups. Identified differential metabolites
were subjected to metabolic pathway analysis through the
KEGG database.

Joint analysis of transcriptomic and
metabolomic data

Pearson correlation coefficients were calculated between the
SCMs and DEGs via pairwise comparison using the Hmisc
package in R1. DEGs and SCMs with a threshold of |r| > 0.5
and P < 0.05 were considered significantly correlated and were
subjected to conjoint biological annotation using the KEGG
database. Here, only the pathways containing DEGs and their
highly related metabolites were selected. The networks were
visualized using Cytoscape2.

1 https://cran.r-project.org/web/packages/Hmisc/index.html

2 https://cytoscape.org/
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Real-time quantitative PCR

qRT-PCR was performed per the manufacturer’s protocol
(TransStar Tip Green Qpcr SuperMix, Transgen, cat. no.
AQ141). The reactions were performed in 20 µL volumes on
a Bio-Rad C1000 Thermal Cycler. The qRT-PCR procedure was
94◦C for 30 s, 40 cycles of 94◦C for 5 s, 60◦C for 15 s and 72◦C
for 10 s. β-actin was used as a reference gene to normalize gene
expression. Supplementary Table 1 lists the primers used for
the qRT-PCR. Fold-change was calculated for each candidate
gene, and the sample was calculated using the 2−11Ct method.
Statistical analyses were performed using GraphPad Prism 8.
Quantitative data are presented as the mean ± standard error
of the mean. The significance level was calculated using one-
way analysis of variance and Tukey’s post hoc test. P < 0.05 was
considered statistically significant.

Results

Identification of differentially
expressed genes and functional
enrichment analysis

To better understand how different sire breeds affect meat
quality among three hybrid sheep populations, we analyzed
the muscle transcriptomes using comparative RNA-seq. After
high-throughput sequencing and filtering the raw reads for
quality control, we obtained 28.53, 26.10 and 27.46 million high-
quality clean reads for the HH, NH and SH sheep, respectively
(Supplementary Table 2). For each sample, > 91% of the reads
could be mapped to the reference sheep genome (Oar. v4.03).
We obtained 631 DEGs in total for the HH vs SH, HH vs
NH, and SH vs NH comparisons (Supplementary Table 3), the
results of DEGs were presented in a volcano plot (Figure 1A).
The HH vs SH comparison yielded 190 DEGs, including 93
upregulated and 97 downregulated genes; the HH vs NH
comparison yielded 220 DEGs, including 101 upregulated and
119 downregulated genes, and the SH vs NH comparison yielded
221 DEGS, including 110 upregulated and 111 downregulated
genes (Figures 1A,B). A heatmap of the DEGs showed that
the samples were well clustered (Figure 1C). After clustering,
the genes were mainly divided into three groups and were
differentially expressed among the three comparative groups.

To further understand the functions of the DEGs, we
performed functional enrichment analysis (Figure 2A), which
yielded 51 enriched GO terms, including 25 biological
process (BP) terms, 10 molecular function (MF) terms and
16 cellular component terms (CC). The enriched terms
were potentially related to growth, development, and meat

3 https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2/

quality, including multicellular organismal process, metabolic
processes, developmental processes, cell proliferation and
growth (biological processes); antioxidant activity, molecule
function regulator, and catalytic activity (molecular functions);
and cell parts and organelles (cellular component), including
some genes already reported in the literature that were also
detected in our RNA-seq analysis, such as MYLK3 (myosin light
chain kinase 3), MYL10 (myosin light chain kinase 10), FIGN
(Fidgetin), MYH8 (neonatal myosin heavy chain 8), MYOM3
(Myomesin-3), LMCD1 (Homo sapiens LIM and cysteine-rich
domains 1), FLRT1 (Fibronectin leucine rich transmembrane)
and other genes (Supplementary Table 4). Figure 2B shows
the top 20 significantly enriched pathways among the DEGs
(P < 0.05). KEGG enrichment results showed that the DEGs
for all three groups were mainly enriched in pathways related to
fatty acid metabolism, including arachidonic acid metabolism,
fatty acid biosynthesis and regulation of lipolysis in adipocytes.

Metabolomic profiling based on
LC-MS/MS

LC-MS/MS analysis was performed to study the differences
in metabolite compositions of the meat diversity of the
crossbred sheep populations. PCA analysis results showed
that the three groups, including the quality control samples,
were independently separated in the principal component
(PC)1 × PC2 score plot (Figure 3A and Supplementary
Figure 1A). Further analysis via OPLS-DA showed clear
differences between the meat quality of the three sheep
breeds (Figure 3B and Supplementary Figure 1B), thus
demonstrating the precision and repeatability of the LC-
MS/MS detection. We detected 87 differential metabolites
(63 in positive mode and 24 in negative mode, Figure 3C
and Supplementary Table 5), which we used for multivariate
analysis of the muscle metabolites. Compared with the
metabolites in the SH group, 38 differential metabolites were
significantly altered in the HH group, of which, 18 were
upregulated, and 20 were downregulated. Compared with
the NH group, 41 differential metabolites were significantly
altered in the HH group, of which, 23 were upregulated,
and 18 were downregulated. Compared with the NH
group, 8 differential metabolites were significantly altered
in the SH group, of which, 2 were upregulated, and 6
were downregulated.

KEGG enrichment analysis was used to determine the
biological mechanisms associated with phenotypic changes.
All differential metabolites were co-enriched in 131 biological
pathways (P < 0.05). In the HH vs SH comparison, 38
differential metabolites were significantly annotated into eight
pathways, and most were involved in lipid metabolism-related
pathways, such as glycerophospholipid metabolism, protein
digestion and absorption, arginine and proline metabolism
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FIGURE 1

Transcriptomic comparisons of the longissimus dorsi for the HH, SH and NH sheep. (A) Volcano plots of the DEGs, non-diff: non-differentially
expressed genes. (B) Statistical map of the DEGs. (C) Cluster heatmap of the DEGs, red: upregulated genes; blue: downregulated genes.

and ABC transporters (Figure 4). In the HH vs NH
comparison, 41 differential metabolites were significantly
annotated in 10 pathways (P < 0.05), most of which
were involved in glycerophospholipid metabolism, protein
digestion and absorption, arginine and proline metabolism.
In the SH vs NH comparison, two metabolic pathways
were significantly enriched in fat metabolism, cysteine and
methionine metabolism and arginine and proline metabolism
(P < 0.05).

Metabolomic profiling based on
GC-MS

OPLS-DA showed that the meat quality of the three
sheep crossbreeds was clearly differentiated (Figure 5A),
demonstrating the precision and reproducibility of the non-
targeted GC-MS detection results. We detected 32 differential
metabolites for further analysis of the muscle metabolites
(Figure 5B and Supplementary Table 6). Compared with the
metabolites in the SH group, eight differential metabolites
were significantly altered in the HH group, of which, one was
upregulated, and eight were downregulated. Compared with the
NH group, 14 differential metabolites were significantly altered
in the HH group, of which, 11 were upregulated, and three were
downregulated. Compared with the NH group, 10 differential
metabolites were significantly altered in the SH group, of which,
six were upregulated, and four were downregulated.

In total, 80 biological pathways were enriched. In the HH
vs SH comparison, 10 differential metabolites were annotated

into 10 pathways, most of which were involved in metabolism
pathways, such as fatty acid biosynthesis, glycerophospholipid,
and tryptophan metabolism (Figure 6). In the HH vs NH
comparison, 14 differential metabolites were significantly
annotated into 41 pathways, including glycerophospholipid
metabolism, protein digestion and absorption, glutathione
metabolism and other biological pathways. Similarly, in the
SH vs NH comparison, 10 differential metabolites were
enriched in 29 metabolic pathways, most of which were related
to fat metabolism.

Integrative analysis of the
transcriptome and metabolome

To obtain additional biological information via
transcriptomic and metabonomic analyses of the meat
quality diversity, we conducted conjoint biological annotation
and correlation testing of the transcriptome and metabolome
via LC-MS/MS and GC-MS/MS. We performed KEGG pathway
annotation (Supplementary Table 7), and the main processes
were related to fat-related metabolism pathways, including
oxidative phosphorylation, PPAR signaling, and arachidonic
acid metabolism, indicating that fatty acid metabolism played
an important role in the meat quality of the three hybrid
sheep populations. Figure 7A shows several genes and their
positive and negative correlations (|r| > 0.5 and p < 0.05) with
seven meat quality-related fatty acids (dodecanoic, myristic,
9-octadecenoic, oleic, palmitic, arachidonate, and hexadecenoic
acid). Among them, MYH8 and MYL10 participate in regulating
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FIGURE 2

Functional enrichment analysis of the longissimus dorsi samples of the HH, SH an NH sheep. (A) GO analysis of the DEGs in the three groups.
The ordinate indicates the GO terms. (B) Bubble diagram of the top 20 KEGG pathway enrichments for the HH-NH, HH-SH, and SH-NH
comparisons. The ordinate indicates the pathways.

muscle growth and development (Figure 2A) and were
correlated with fatty acid levels in meat quality. Additionally,
TM7SF2 was strongly correlated with 66 metabolites, including
dodecanoic, myristic, and 9-octadecenoic acid (Figure 7B).

qRT-PCR validation of functional gene
expression

To evaluate the reliability of the RNA-seq, we selected
four genes and validated them via qRT-PCR. All detected

gene mRNA levels were consistent with the RNA-seq results
(Figure 8), indicating that the RNA-seq data were reliable.

Discussion

Hu sheep has many excellent characteristics, including
strong fecundity, suitable feeding, rapid early growth, making
this breed important in China’s mutton sheep industry. Suffolk
and Southdown are one of the most popular breeds for meat
production (4, 5), since the introduction of two excellent
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FIGURE 3

LC-MS/MS analysis longissimus dorsi metabolic profiles for the HH, SH and NH sheep. (A) PCA score plots of positive mode; (B) Number of
up/down-regulated metabolites of different compared groups in POS and NEG modes; (C) OPLS-DA of HH-SH, HH-NH and SH-NH
comparisons in positive mode.

FIGURE 4

Bubble diagram of top 20 KEGG pathway enrichment in HH-SH, HH-NH, and SH-NH comparisons. The ordinate indicates the pathways.

male parents, the meat production performance has reached
a new height after a series of hybridization improvements (4).
Previous studies have focused on production performance
and meat quality, for example, compared with HH, excellent
ram breeds, such as Texel and Suffolk, crossbred with Hu
sheep can improve the growth, production, and slaughter

performance (21, 22). However, there are few studies on the
molecular aspects of different sires how affect meat quality.
Here, we performed transcriptomics and metabolomics
analyses based on transcriptome sequencing, LC-MS/MS
and GC-MS to explore how sires of three hybrid sheep
populations affected meat quality of the longissimus dorsi.
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FIGURE 5

GC-MS/MS analysis longissimus dorsi metabolic profiles for the HH, SH and NH sheep. (A) OPLS-DA of HH-SH, HH-NH and SH-NH
comparisons; (B) Number of up/down-regulated metabolites of different compared groups; red: up-regulated genes; blue: down-regulated
genes.

FIGURE 6

Bubble diagram of top 20 KEGG pathway enrichment in HH-SH, HH-NH, and SH-NH comparisons. The ordinate indicates the pathways.

We focused only on the processes potentially related to
growth, development, and meat quality obtained through
integrative analyses containing significantly correlated
DEGs and differential metabolites. These genes have
been reported to be involved in lipid metabolism. Our
results may contribute to improving sheep quality at the

genetic and molecular levels and to better understanding
the molecular mechanisms associated with growth and
lipid metabolism.

Sheep growth traits are mainly manifested in muscle
growth and development, and the muscle growth rate directly
affects meat yield. Muscle development is closely associated
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FIGURE 7

Correlation and pathway analysis of significant differential compounds and verification of the associated DEGs. (A) Correlation analysis of the
significant differential metabolites and the DEGs; (B) Cytoscape representation of candidate gene TM7SF2 and co-expressed differential
metabolites involved in lipid metabolism. Hub gene TM7SF2 is in red; related differential metabolites are in blue circles, and the three
trait-related metabolites are in green.

with many critical cellular functions and biological processes.
Approximately one-third of all muscle proteins are composed
of myosin, the most abundant protein in muscles (23). Several
myosins are involved in differentiating muscle fibers: type I
(slow-twitch, red muscle, oxidative), type IIA (fast-twitch, red
muscle, oxidative), and type IIB/IIx (fast-twitch, white muscle,
glycolytic). mRNA abundances of MyHC IIb fast-twitch can
indicate muscle protein synthesis and muscle growth rates.
Some studies suggest that commercial pig breeds have larger
proportions of IIb glycolytic fibers and rapid growth rates,
which are thought to play important roles in determining meat
quality. MYLK3 is involved in muscle cell development and
the Ca2+ signaling pathway in striated muscle contraction (24).
MYH8 is a marker of muscle regeneration (25), and studies have
shown that MYH8 expression dominates early skeletal muscle
development (26). MYOM3 is expressed in both mature cardiac
and skeletal muscle cells but only in fast-twitch muscle fibers
(IIA) (27). In the present study, transcriptomic analysis revealed
that MYLK3, MYH8 and MYOM3 were enriched for GO terms
related to growth and development (Figure 2A), including
multicellular organismal processes, cellular processes, metabolic
processes and catalytic activity, these results were consistent
with those of previous studies (28). Compared with the HH
sheep, those genes were upregulated in NH and SH sheep

(Supplementary Table 3), indicating that these genes may affect
the growth of muscles among the NH, SH and HH sheep. These
factors may have caused the differences in meat quality and fatty
acid profiles among the three hybrid sheep populations.

Sheep meat is an important source of animal protein
worldwide and is popular for its tenderness, juiciness,
nutritional value and lack of fat. Meat quality is a main complex
trait that is comprehensively evaluated through a series of
indicators, such as meat color, intramuscular fat content, pH,
water-holding capacity, and tenderness (29–32). Additionally,
fatty acid metabolism strongly influences meat quality. Previous
studies have found that the fatty acid composition and its
metabolism in muscles are important factors influencing overall
meat quality and consumer preference (15, 33–35). In the
present study, enrichment analysis of the muscle metabolomic
data revealed several pathways related to fat metabolic processes
(Figures 4, 6), including arachidonic acid metabolism and fatty
acid biosynthesis. In this analysis, TM7SF2 expression was
significantly higher in the SH sheep than in the HH sheep
(Supplementary Table 3). Interestingly, the transcriptomic and
metabolomic correlation analysis results showed that TM7SF2
participates in other metabolic pathways, which is consistent
with previous research results (36). We also found that TM7SF2
and metabolites in the fatty acid metabolism pathway are
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FIGURE 8

Confirmation of expression patterns of the four selected genes via qRT-PCR. The qRT-PCR results were consistent with the RNA-seq data.
(A) MYBPH; (B) TMP3; (C) TNNT1; (D) MYLK2.

correlated with dodecanoic (r = 0.62), myristic (r = 0.71)
and 9-octadecenoic acid levels (r = 0.67) (Figures 7A,B).
TM7SF2 is considered a crucial gene that regulates SREBP
(Sterol Regulatory Element Binding Protein 2) and is involved
in lipid and lipoprotein metabolism (36, 37). Therefore, the
high TM7SF2 expression levels in the SH sheep compared with
those of the HH sheep and the high abundances of dodecanoic,
myristic and 9-octadecenoic acid components suggest that
TM7SF2 is responsible for the larger accumulation of fatty
acid levels and affects the meat quality according to the gene-
metabolite network.

Fatty acids are important chemical substances constituting
fats and are important aromatic substances or precursors
of aromatic substances. Studies have shown that fatty acid
metabolism levels and composition affect meat quality and its
nutritional value; for example, dodecanoic (C12:0), myristic
(C14:0), palmitic (C16:0), stearic (C18:0), linoleic (C18:1),

alpha-linolenic (C18:2) and linolenic fatty acids (C18:3) can
enhance meat flavors (38–41). Dodecanoic acid is reported
to enhance intramuscular fat deposition and increase the
accumulation of myristic and myristoleic acids (C14:1), which
may benefit human health (42). Myristic acid can increase
high-density lipoprotein (“good”) cholesterol more than can
any other fatty acid (43). Increased palmitic acid can improve
meat stability and quality (44). Additionally, studies have shown
that oleic acid is important in the meat quality of Japanese
Black cattle (45). Here, we found significantly differences in
the metabolism levels of some acids among HH, NH and SH
sheep (Supplementary Tables 5, 6). Dodecanoic and myristic
acid levels were higher in NH and SH sheep than in HH sheep,
and myristic, oleic and palmitic acid levels were higher in NH
sheep than in SH sheep. Previous studies have shown that
hybridization can improve the quality of meat products (1, 2).
These results suggest that sires of different hybrid sheep breeds
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cause differences in muscular fatty acid contents, ultimately
leading to differences in meat quality.

Conclusion

In this study, a great number of DEGs and differential
metabolites were identified based on the integrative analysis
of transcriptomics and metabolomics in hybrid sheep’
muscle. Different hybrid male parents caused differential
expression of meat quality-related genes, metabolites, and
related pathways, in different hybrid populations, such as fatty
acid metabolism (particularly arachidonic acid metabolism,
fatty acid biosynthesis and lipolysis in adipocytes) and lipid
metabolism-related pathway. But most importantly, fatty acid
metabolism played a key role in the meat quality of the three
hybrid sheep populations. Overall, these results will provide
effective information and more evidence to support further
insight into the key genes and metabolites involved in muscle
growth and meat quality in hybrid sheep populations.
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