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Abstract
Rationale About 1.1 billion people smoke tobacco globally and tobacco-related health care costs 1.8% of GDP in many
countries. The majority of people are unable to quit smoking despite pharmacological intervention, highlighting the need to
understand the pathophysiology associated with tobacco smoking to aid the development of new therapeutics. The reinforcing
effects of tobacco smoking are thought to be mediated by the dopamine system. However, the nature of dopamine dysfunction
seen in smokers is unclear.
Objective To determine the nature and robustness of the evidence for dopaminergic alterations in smokers.
Methods The entire MEDLINE, EMBASE, and PsycINFO databases were searched for studies from inception date to
November 18, 2018. In vivo human molecular imaging studies of dopamine measures (dopamine synthesis or release capacity,
transporter levels, receptor levels) in tobacco smokers were selected. Demographic, clinical, and imaging measures were ex-
tracted from each study and meta-analyses, and sensitivity analyses were conducted.
Results Fourteen studies met inclusion criteria comprising a total sample of 219 tobacco smokers and 297 controls. The meta-
analysis showed a significant reduction in dopamine transporter availability in the smokers relative to controls with an effect size
of − 0.72 ([95% CI, − 1.38 to − 0.05], p = 0.03). However, there was no difference in D2/3 receptor availability in smokers
relative to controls (d = −0.16 ([95% CI, − 0.42 to 0.1], p = 0.23). There were insufficient studies for meta-analysis of other
measures. However, findings from the published studies indicated blunted dopamine release and lower D1 receptor availability,
while findings for dopamine synthesis capacity were inconsistent.
Conclusion Our data indicate that striatal dopamine transporter availability is lower but D2/3 receptors are unaltered in smokers
relative to controls. We discuss the putative mechanisms underlying this and their implications.
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Introduction

According to the World Health Organization, estimates of 1.1
billion people smoke tobacco and 6 million deaths/year are
linked to tobacco use. Moreover, second-hand smoke expo-
sure is responsible for additional 600,000 deaths (World Drug
Report 2015; https://www.unodc.org). It is estimated that
tobacco-related health care costs 1.8% of GDP in many coun-
tries (Goodchild et al. 2018). Dopaminergic alterations are
hypothesized to underlie addictive behavior (Ashok et al.
2017; Di Chiara and Bassareo 2007; Keiflin and Janak
2015; Nutt et al. 2015; Volkow and Morales 2015; Willuhn
et al. 2014). Consistent with this, nicotine in tobacco stimu-
lates nicotinic acetyl cholinergic (nACh) receptors leading to
dopamine release (Benowitz 2009). Furthermore, preclinical
studies show that the acute rewarding effects of nicotine are
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linked to two primary mechanisms. First, nicotine directly
activates VTA dopaminergic neurons, which release dopa-
mine in the nucleus accumbens (NAc). Second, it stimulates
nAChR receptors located on the dopaminergic terminals aug-
menting dopamine release (Di Chiara and Imperato 1988;
McGranahan et al. 2011; Zhang et al. 2009; Zhou et al.
2001). Positron emission tomography (PET) and single pho-
ton emission computed tomography (SPECT) enable dopami-
nergic indices to be measured in vivo in humans (Kim et al.
2013). A number of studies have investigated dopamine re-
lease, dopamine transporter, and dopamine receptor levels in
smokers. However, the robustness of findings remains unclear
and, to our knowledge, there has not been a previous meta-
analysis of these findings. Thus, we aimed to synthesize the
PET and SPECT imaging findings on dopaminergic function
in smokers and to consider their implications for therapeutics.
We group findings into studies of dopamine synthesis, dopa-
mine release, dopamine transporter availability, and dopamine
receptor availability. We focused on the whole striatum as it is
richly innervated with dopaminergic neurons and reliably
quantified with PET and SPECT in humans (Ashok et al.
2017; Egerton et al. 2010; Howes et al. 2012).

Methods

Study selection

To be included in the meta-analysis, an article needed to in-
vestigate the striatal dopaminergic system in human tobacco
smokers. The MEDLINE, EMBASE, and PsycINFO data-
bases were searched from inception date to November 18,
2018, for relevant papers without language restrictions. The
electronic searches using EMBASE and PsycINFO were car-
ried out together using Ovid. The following keywords were
used: B(Positron Emission Tomography OR PET OR Single
photon emission tomography OR SPET OR Single Photon
Emission Computed Tomography OR SPECT) AND (dopa-
mine OR dopamine release OR dopamine synthesis OR do-
pamine availability OR dopamine transporter OR dopamine
reuptake OR dopamine receptor) AND (smoking OR nicotine
OR nicotine dependence OR tobacco dependence)^. In addi-
tion, the reference lists in the included studies and relevant
review papers were screened to search for additional studies.
Further details of study selection are provided in the supple-
mentary Fig. 1.

Inclusion and exclusion criteria

The inclusion criteria were as follows: 1) original molecular
imaging studies that indexed dopamine receptors, or dopa-
mine transporters and/or dopamine release or synthesis; 2)
included a group of regular (daily) tobacco smokers; and 3)

reported data for the whole striatum or a striatal sub-region.
We excluded studies which did not have a healthy control
group or that included subjects with CNS co-morbidity. For
studies with an overlap in participants, we included the study
with the largest sample size without potentially missing any
subject and excluded the smaller study from the meta-analysis
to avoid duplication of subjects, consistent with previous mo-
lecular imaging meta-analyses (Ashok et al. 2017; Kambeitz
et al. 2014).

Data extraction

The primary outcome measure was the difference in the
dopaminergic imaging index between smokers and con-
trols. The following variables were extracted from all
the studies: authors, year of publication, subject charac-
teristics of the control and smokers (group size, age, sex,
substance use characteristics, comorbid substance abuse,
method of abstinence confirmation, duration of absti-
nence, diagnosis), imaging characteristics (method, radio-
tracer, scanner type and resolution), route of administra-
tion of drug challenge, and modeling method.

Data analysis

The main outcome measure was the effect size calculated
as Hedges’ g for the dopaminergic index for the whole
striatum in the smokers using a random effects model.
Publication bias was assessed by visual inspection of fun-
nel plots and tested with a regression test for funnel plot
asymmetry (mixed-effects meta-regression model). Trim
and fill analysis was conducted to impute potentially
missing studies. Heterogeneity was estimated using the
I2 value (I2 values < 50% indicate low to moderate het-
erogeneity, whereas I2 > 50% indicate moderate to high
heterogeneity). A significance level of p < 0.05 (two-
tailed) was taken as significant.

Results

The literature search yielded 610 records, from which we
identified 19 relevant papers (see Supplementary Fig. 1 for
the PRISMA diagram of the literature search). Fourteen of
the 19 studies met criteria for inclusion in the quantitative
synthesis. There was an insufficient number of studies for
the meta-analysis of the D1 receptor (n = 2) and dopamine
synthesis (n = 3) (Table 1).

Dopamine transporter

There were seven studies assessing dopamine transporter
availability in 123 smokers and 184 healthy controls
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Table 1 Molecular imaging studies on dopaminergic function in smokers

Dopamine 
system 

Author / 
year

Smokers / 
Controls, n

Male 
smokers / 
male 
controls, n

Diagnosis Years of 
smoking, 
mean (SD)

Number of 
cigare�es 
/ day

Dura�on of 
abs�nence

Region of interest Reference 
region

Tracer Results in smokers 
compared to controls

Dopamine 
Synthesis

Salokangas 
et al., 2000
(Salokangas 
et al., 2000)

9/10 9/10 Nico�ne 
dependence 
(criteria not 
men�oned)

mean 19.8 
years, range 
15-25

mean 19.8, 
range 16-
25

current 
smokers

caudate and 
putamen

occipital cx 
(Hietala et al.,
1999)

18F-DOPA putamen and 
caudate

Bloomfield 
et al., 2014
(Bloomfield 
et al., 2014)

15/15 10/10 12/15 
smokers met 
DSM-IV 
criteria for 
nico�ne 
dependence

not 
men�oned

8.1 (4.1) current 
smokers

striatum cerebellum 18F-DOPA

Redemacher
et al., 2016
(Rademache
r et al., 
2016)

30/15 30/15 DSM-IV 
nico�ne 
dependence

mean 11.7 
years

17.7 (6.0) current 
smokers or 
in acute 
abs�nence 
(6 hours)

right and le� Nac, 
ventral and dorsal 
caudate, ventral 
and dorsal 
putamen

cerebellum 18F-DOPA

Dopamine 
Transporter

Staley et al., 
2001 (Staley 
et al., 2001)

21/21 9/9 SCID, FTND 
and plasma 
co�nine

24.5 (10.0) 23.6 (4.3) current 
smokers

striatum cerebellum 123I-beta-
CIT

Newberg et 
al., 2007
(Newberg et 
al., 2007)

8/46 4/21 Structured 
interview 
regarding 
smoking 
habits

not
men�oned

15 (10) current 
smokers

right and le� 
caudate, anterior 
putamen, 
posterior 
putamen

supratentorial 
structures not 
specified

Tc-99m 
TRODAT-1

bilateral caudate, 
right anterior 
putamen, le� 

posterior putamen

Yang et al., 
2008 (Yang 
et al., 2008)

11/11 11/11 FTND (no 
cut-off 
defined), 
smoking 
history 

not 
men�oned

not 
men�oned

current 
smokers

striatum occipital cx Tc-99m 
TRODAT-1

ques�onnair
e 

Cosgrove et 
al., 2009 
(Cosgrove et 
al., 2009b) 

6/8 4/4 Plasma 
co�nine 
level 
>150ng/ml 
on day of 
intake 

22.2 (9.7) 24.2 (4.9) current 
smokers 

striatum cerebellum 123I-beta-
CIT 

 

Leroy et al., 
2012 (Leroy 
et al., 2012) 

14/11 14/11 DSM-IV 
nico�ne 
dependence 

12.1 (8.5) 17.6 (5.3) current 
smokers 

right and le� 
dorsal caudate 
and dorsal 
putamen 

cerebellum 11C-PE2I  

Lin et al., 
2012 (Lin et 
al., 2012) 

37/23 22/8 Self-
reported 
smoking 
habits 

not 
men�oned 

<1 pack 
per day 
(n=20), 1 
pack≤ per 
day (n=17) 

10-12 hours striatum occipital cx Tc-99m 
TRODAT-1 

 

Thomsen et 
al., 2013 
(Thomsen et 
al., 2013) 

26/64 15/34 Interview, 
Copenhagen 
Smoking 
Ques�onnair
e (no cut-off 
given) 

not 
men�oned 

11.2 (8.6) current 
smokers 

striatum cerebellum 
(Jensen et al., 
2011) 

123I-FP-
CIT 

 
ac�ve 
smokers, ex-

smokers and non-
smokers 

Dopamine 
release 

Busto et al., 
2009 (Busto 
et al., 2009) 

9/11 8/3 FTND ≥ 3  mean 16.7 
years 

15.2 (3.3) current 
smokers 

striatum cerebellum 11C-
raclopride- 
oral d-
amphetam
ine 
challenge 

 (oral d-
amphetamine 
challenge) 

Wiers et al., 
2017 (Wiers 
et al., 2017) 

8 current 
smokers, 
10 ex-
smokers/ 
18 

6,7/12 Smoking 
history  

mean 11.0 
years in 
current 
smokers, 
11.2 years in 
ex-smokers 

mean 7.43 
in current 
smokers, 
8.69 in ex-
smokers 

In ex-
smokers 
mean 
abs�nence- 
3.53 years 

Caudate, 
putamen and 
ventral striatum 

cerebellum 11C-
raclopride- 
Methylphe
nidate 
challenge 

in current 
smokers and 
increased in ex-

smokers, however it 
was not sta�s�cally 
significant  
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Dopamine 
receptor

Yang et al., 
2006 (Yang 
et al., 2006)

15/15 15/15 FTND > 5, 
smoking for 
longer than 
5 years

9.2 (8.7) 
years

18.75 
(6.78)

current 
smokers

striatum cerebellum 123-IBZM

Takahashi et 
al., 2008 
(Takahashi 
et al., 2008)

6/6 6/6 Smoking 
history >4 
years, at 
least 15 
cigare�es/d
ay, FTND (no 
cut-off 
defined)

At least 4
years

≥ 15 24 hours right and le� 
dorsal caudate, 
dorsal putamen, 
ventral caudate, 
ventral putamen

cerebellum 11C-
raclopride

Yang et al., 
2008 (Yang 
et al., 2008)

11/11 11/11 FTND (no 
cut-off 
defined), 
smoking 
history 
ques�onnair
e

not 
men�oned

not 
men�oned

current 
smokers

striatum occipital cx 123-IBZM

Busto et al., 
2009 (Busto 
et al., 2009)

9/11 8/3 FTND ≥ 3 Mean 16.7 
years

15.2 (3.3) current 
smokers

striatum cerebellum 11C-
raclopride

Brown et al., 
2012 (Brown 
et al., 2012)

19/18 10/9 nico�ne 
dependence

240 (135), 
250 (120) 
pack years 
(descrip�on 
error?)

13 (6.9) current 
smokers

caudate and 
putamen

cerebellum 18F-
Fallypride

in male smokers 
than female 
smokers, and 
male non-smokers

Albrecht et 
al., 2013 
(Albrecht et 
al., 2013)

21/26 18/16 FTND (no 
cut-off 
defined)

Not 
men�oned

Not 
men�oned

Not 
men�oned 
(majority on 
nico�ne 
patch)

le� and right, pre-
and post- dorsal 
caudate, dorsal 
putamen, and 
ventral striatum

cerebellum 11C-
raclopride

Okita et al., 
2016 (Okita 
et al., 2016)

18/19 11/10 13 smokers 
met DSM-IV 
criteria for 

13.8 (10.1) 
pack-years

13.3 (4.1) Current 
smokers

caudate, 
putamen, 
midbrain, insula

cerebellum 18F-
Fallypride in striatum

nico�ne 
dependence

Greater midbrain 
BPND in the female, 
but not male smokers 
than corresponding 
non-smokers

Wiers et al
(Wiers et al., 
2017)

8 current 
smokers, 
10 ex-
smokers/ 
18

6,7/12 Smoking 
history 

mean 11.0
years in 
current 
smokers, 
11.2 years in 
ex-smokers

mean 7.43 
in current 
smokers, 
8.69 in ex-
smokers

In ex-
smokers
mean 
abs�nence-
3.53 years

Caudate, 
putamen and 
ventral striatum

cerebellum 11C-
raclopride

in current 
smokers 
compared to 

controls

No difference between 
ex-smokers and
controls

D1 receptor Dagher et 
al., 2001
(Dagher et 
al., 2001)

11/18 6/9 not 
men�oned

not 
men�oned

19.4 (6) abuse of 
other drugs 
screened in 
interview

caudate, 
putament, NAC

cerebellum 11C-
SCH23390

Yasuno et 
al., 2007 
(Yasuno et 
al., 2007)

18/12 17/12 DSM-IV 
nico�ne 
dependence

not 
men�oned

mean 23.5 screened in 
interview

ventral striatum cerebellum 11C-
SCH23390
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(Cosgrove et al. 2009b; Leroy et al. 2012; Lin et al. 2012;
Newberg et al. 2007; Staley et al. 2001; Thomsen et al.
2013; Yang et al. 2008). The meta-analysis showed a sig-
nificant reduction in dopamine transporter availability in
the smoker relative to control groups with an effect size of
− 0.72 ([95% CI, − 1.38 to − 0.05], p = 0.03) (Figure 1).

Heterogeneity and sensitivity analyses

The I2 value was 84% (95% CI, 60–97%), indicating high
heterogeneity between studies. The regression test for funnel
plot asymmetry was not significant (t = −0.5, df = 5, p = 0.64).
However, visual inspection of the funnel plot revealed asym-
metry, indicating possible publication bias. The trim-and-fill
analysis indicates two missing studies on the left side of the
funnel plot (Supplementary Figure 2). However, the results
remained significant after correcting for putatively missing
studies (adjusted effect size = −1.0, (95%CI, − 1.6 to −0.37),
p < 0.01).

Dopamine receptor availability

There were eight studies assessing dopamine receptor avail-
ability in 107 smokers and 124 healthy controls (Albrecht
et al. 2013; Brown et al. 2012; Busto et al. 2009; Okita et al.
2016; Takahashi et al. 2008; Wiers et al. 2017; Yang et al.
2006, 2008). The meta-analysis revealed no significant differ-
ence in D2/3 receptor availability in smokers relative to con-
trols with an effect size of − 0.16 ([95% CI, − 0.42 to 0.1], p =
0.23) (Figure 2).

Heterogeneity and sensitivity analyses

The I2 value was 0% (95% CI, 0–79%), indicating heteroge-
neity was low. The regression test for funnel plot asymmetry
was not significant (t = −1.1, df = 6, p = 0.32). However, a
visual inspection of the funnel plot revealed asymmetry, indi-
cating possible publication bias. The trim-and-fill analysis in-
dicated that there were potentially one missing studies on the

left side of the funnel plot (Supplementary Fig. 3).
Nevertheless, the summary effect size remained non-
significant after correcting for these putatively missing studies
(corrected effect size: − 0.2 [95%CI, − 0.45 to 0.05]; z = −1.5;
p = 0.12).

Dopamine D1 receptor availability

Two studies reported D1 receptor availability, which used
[11C] SCH23390 to compare smokers with controls (Dagher
et al. 2001; Yasuno et al. 2007). Both studies reported signif-
icant reductions in D1 receptor availability in smokers com-
pared to controls.

Dopamine synthesis

Meta-analysis was not conducted as there were only three
studies. There is a substantial discrepancy in the dopamine
synthesis capacity in smokers. Salokangas et al. 2000 demon-
strated higher dopamine synthesis in heavy smokers relative
to controls (Salokangas et al. 2000), Bloomfield et al. 2014
showed no change in moderate smokers (Bloomfield et al.
2014b), while Rademacher et al. 2016 demonstrated lower
dopamine synthesis relative to controls in a sample of heavy
smokers who met criteria for dependence (Rademacher et al.
2016). Interestingly, reduced dopamine synthesis in heavy
smokers normalized after 3 months of abstinence
(Rademacher et al. 2016). Overall, the effect of smoking on
dopamine synthesis is unclear and further studies in bothmod-
erate and heavy smokers are needed.

Dopamine release

Seminal work in the 1990s developed paradigms to assess
dopamine release in vivo using molecular imaging (Breier
et al. 1999; Laruelle et al. 1995). This and subsequent work
has determined that the reduction in striatal binding of radio-
tracers such as [11C]-raclopride following the administration
of amphetamine or methylphenidate is closely related to the

Fig. 1 Studies of dopamine
transporter availability in tobacco
smokers relative to controls. The
forest plot shows the effects sizes
estimated using a random effects
model and 95% confidence
intervals of the difference
between smokers and controls.
There was an overall significant
decrease in the dopamine
transporter availability in smokers
relative to controls with a
moderate to large effect size (−
0.72 [95% CI, −1.38 to − 0.05],
p < 0.05)
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magnitude of dopamine release (Abi-Dargham et al. 2009;
Egerton et al. 2009). Only two studies investigated the dopa-
mine release following amphetamine or methylphenidate.
One study showed smokers had lower dopamine release com-
pared to healthy control (Busto et al. 2009), while the other
study reported a trend level reduction in dopamine release in
smokers (Wiers et al. 2017). Thirteen studies measured dopa-
mine release following nicotine administration during or prior
to the scan (Barrett et al. 2004; Brody et al. 2010, 2009b,
2006b, 2004; Cosgrove et al. 2014; Domino et al. 2013; Le
Foil et al. 2014; Montgomery et al. 2007; Scott et al. 2007a;
Takahashi et al. 2008;Weinstein et al. 2016;Wing et al. 2015).
The majority of these studies did not have control arm and
there was substantial variation in the study design with respect
to route of administration, scanning, and nicotine administra-
tion duration. Thus, these studies did not meet our inclusion
criteria for meta-analysis. Two studies (Barrett et al. 2004;
Montgomery et al. 2007) did not report change in binding
potential while other studies reported 7–27% reduction in
the binding potential (Brody et al. 2006b, 2004; Le Foil
et al. 2014; Scott et al. 2007b; Takahashi et al. 2008).

Discussion

Our main findings are that dopamine transporter availability is
reduced with a medium to large effect size and that D2/3
receptor availability in unaltered in smokers compared to
healthy controls (Hedges’ g: − 0.72 and − 0.16 respectively).
Our sensitivity analyses of the dopamine D2/3 receptor avail-
ability showed consistent results, and we noted low heteroge-
neity. However, there was significant heterogeneity in the do-
pamine transporter finding.

There were insufficient studies to meta-analyze findings on
dopamine synthesis in smokers, and the results of studies were
inconsistent, indicating further, large studies are needed to
determine if dopamine synthesis capacity is altered by
smoking. Similarly, there were too few studies for meta-
analyses of dopamine release or D1 receptor levels, although

findings indicated blunted dopamine release and lower D1
levels in smokers. However, there were only two studies for
each of these dopamine measures, and the studies had small
sample sizes. Thus, while results indicate blunted dopamine
release and D1 levels in smokers, further studies are needed
before the consistency and robustness of these alterations can
be determined.

Our finding that D2/3 receptor levels are unaltered is con-
sistent with post-mortem evidence, which also shows unal-
tered D2 receptor levels in smokers (Court et al. 1998).
However, our finding of reduced dopamine transporter avail-
ability is not consistent with a human post-mortem study
which found DAT levels to be unaltered in smokers (Court
et al. 1998). This discrepancy between our in vivo findings
and the human post-mortem study could reflect changes in
post-mortem or differences in the techniques. This study used
a [3H]mazindol binding assay, and evidence indicates
mazindol binds to serotonin, norepinephrine, and dopamine
transporters (Kung et al. 1995; Owens et al. 1997). Thus,
binding to serotonin and norepinephrine transporters could
have confounded the post-mortem findings, although it should
be appreciated that this is also a potential issue for some PET
radiotracers. In contrast, there is some preclinical evidence
that DAT function is reduced after nicotine administration as
measured by dopamine reuptake in the nucleus (Danielson
et al. 2014), and that stimulation of acetylcholine receptor
suppresses DAT activity (Huang et al. 1999), consistent with
our findings.

Strengths and limitations

Similar to other meta-analyses of psychiatric imaging studies,
there are variations between studies in terms of co-morbid use
of other substances such as alcohol and variation in methods,
in the radiotracer used, scanners and different definition of the
striatum (Ashok et al. 2017; Howes et al. 2012) (Table 1 and
Supplementary Table 1). The studies included in the meta-
analysis used tracers such as TRODAT and beta-CIT to quan-
tify DAT, but a potential issue is that these tracers also have

Fig. 2 Studies of dopamine D2/3
receptor availability in tobacco
smokers relative to controls. The
forest plot shows the effect sizes
estimated using a random effects
model and 95% confidence
intervals of D2/3 receptor binding
potentials. There was no
significant difference in dopamine
receptor availability in smokers
compared to controls (− 0.16
[95% CI, − 0.42 to − 0.1],
p > 0.05)
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affinity for serotonin transporters (de Win et al. 2005; Dresel
et al. 1999; Stengler-Wenzke et al. 2006). This, coupled with
the experimental variables discussed above, could contribute
to the relatively high inconsistency we found in the dopamine
transporter findings. Nevertheless, the random effects model
we used allows for variations in effects.

An association has been reported between a variable num-
ber tandem repeats (VNTR) polymorphism of DAT gene
(SLC6A3) and DAT availability (Heinz et al. 2000) and this
was replicated in an in vitro study (VanNess et al. 2005),
although subsequent studies have been inconsistent (Faraone
et al. 2014). Variation in other genes related to dopamine
function has also been associated with differences dopamine
imaging measures (Brody et al. 2006b; Dahoun et al. 2018).
As the majority of the studies included in our meta-analysis
have not reported genotype data, a potential confounding ef-
fect of genetic differences between groups influencing the
results cannot be ruled out. Of course, the effects of these
genetic variants on the dopamine system may be a mechanis-
tic link that explains why some people are vulnerable to be-
come tobacco smokers. In view of this, it would be useful for
future studies to genotype participants for gene variants
known to impact on the dopamine system where possible.

A few studies did not explicitly exclude comorbid sub-
stance use or report current and past substance use in subjects
(see Supplementary Table 1 for details). A meta-analysis has
shown that stimulant users have lower dopamine receptor,
transporter, and release (Ashok et al. 2017) and alcohol, can-
nabis, and opiate use may also alter the dopaminergic system
(Ashok et al. 2017; Bloomfield et al. 2016; Bloomfield et al.
2014a; Nutt et al. 2015). As such, it is possible that the inclu-
sion of subjects with comorbid stimulant or other substance
use could be a confound in some studies. However, the ma-
jority of the studies explicitly excluded subjects with current
comorbid substance use, suggesting that comorbid substance
use is unlikely to have had a major effect on our findings.
Nevertheless, it would be useful for all future studies to either
exclude comorbid substance use or report it to enable this
possibility to be investigated further.

As shown in Table 1, there is substantial variation between
studies in the duration of abstinence before the scan.
Microdialysis studies have shown that dopamine release
reaches peak between 20 and 40 min after nicotine adminis-
tration and returns to baseline after 60 min (Marshall et al.
1997; Mifsud et al. 1989). As acute smoking-induced dopa-
mine release can displace binding of radiotracers such as
[11C] raclopride (Brody et al. 2006b), recent smoking could
be a potential confound. In addition, in a study which com-
pared D2 receptor availability and release in a group of current
and ex-smokers, prolonged abstinence was shown to normal-
ize the dopaminergic alteration (Wiers et al. 2017). Future
longitudinal studies would be useful to determine the temporal
course of dopaminergic alterations and abstinence from

smoking. A general limitation of the literature is that there
are few studies with large sample sizes in dopamine synthesis,
release, and D1 receptor availability. Thus we could not meta-
analyze these findings.

Implications for the understanding
of the neurobiology of tobacco smoking

Preclinical studies using in vivo micro-dialysis have shown
that the acute administration of nicotine increases extra-
cellular dopamine concentrations in the striatum, specifically
in nucleus accumbens (Damsma et al. 1988; Gaddnas et al.
2001; McCallum et al. 2012; Watkins et al. 2000). Knockout
animal models have shown that nicotinic acetylcholine recep-
tor stimulation is required for this effect (Marubio et al. 2003;
Picciotto et al. 1999). Human in vivo imaging studies also
show that acute exposure to nicotine leads to increased syn-
aptic dopamine, despite substantial variation in study method-
ology (Barrett et al. 2004; Brody et al. 2010, 2009b, 2004;
Cosgrove et al. 2015; Domino et al. 2012, 2013; Le Foll et al.
2014; Montgomery et al. 2007; Scott et al. 2007b). Moreover,
molecular imaging studies have shown that occupancy of the
nicotinic acetylcholine receptor is associated with the subjec-
tive hedonic response of smoking (Brody et al. 2009a, 2011,
2006a, 2014, 2013; Cosgrove et al. 2009a; Cosgrove et al.
2012; Dubroff et al. 2015; Lotfipour et al. 2012; Staley et al.
2006). Thus, there is converging evidence from pre-clinical
and human studies that nicotinic acetylcholine receptor-
induced dopamine release occurs acutely with tobacco
smoking.

In contrast, preclinical studies have shown that chronic (3–
4 weeks) nicotine exposure reduces basal dopamine level
(Zhang et al. 2012). Electrophysiological studies are consis-
tent with these findings and report that that chronic nicotine
administration reduces the firing rate of A10 dopamine neu-
rons (Rasmussen and Czachura 1995). However, D2 receptor
availability remains unaltered in chronically nicotine-treated
rats (Kirch et al. 1992). Our findings in humans on D2 recep-
tor availability in smokers are consistent with these findings.

Two basic models are possible to account for our findings
of reduced dopamine transporter and unaltered D2 receptor
availability. The first is that reduced transporter levels may
be compensatory in response to reduced tonic dopamine levels
or other dopaminergic changes in the synapse. However, nor-
mal D2/3 receptor levels are less easy to understand in the
context of presynaptic reductions, as it would be expected that
they would increase in response to reduced tonic dopamine
levels, albeit longitudinal studies are needed to test whether
there is a change in D2/3 receptor levels with chronic smoking
in humans.

The secondmodel is that lower dopamine transporter levels
may underlie the pathoetiology of smoking, and precede its
onset. Thus, individuals at risk of smoking may have lower
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dopamine transporter levels secondary to genetic and environ-
mental risk factors. Lower transporter levels may then mean
that the acute effects of smoking, including dopamine release,
are larger, potentially making these individuals more vulnera-
ble to become regular users. Future longitudinal human PET
studies are needed to investigate changes in the dopamine
transporter levels, and other aspects of the dopamine system,
prior to and during nicotine addiction, and following cessation
to test these models. This will also potentially identify bio-
markers to guide treatment and predict outcomes.

Conclusions

There is evidence for lower dopamine transporter availability
with a moderate to large effect size but normal D2 dopamine
receptor availability in smokers. These findings identify do-
pamine transporter abnormalities as either involved in the
pathophysiology of tobacco dependence or as a biological
response to long-term exposure to tobacco. Further studies
are needed to determine the nature of alterations in other as-
pects of the dopamine system, and whether there are longitu-
dinal changes in dopamine transporter levels during the acqui-
sition of a smoking habit.
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