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Abstract

The frequent interruptions of network operation due to any incident suggest the necessity to

study the rules of operational risk propagation in metro networks, especially under fully auto-

matic operations mode. In this study, risk indicator computation models were developed by

analyzing risk propagation processes within transfer stations and metro networks. More-

over, indicator variance rules for a transfer station and different structural networks were dis-

cussed and verified through simulation. After reviewing the simulation results, it was

concluded that under the impacts of both sudden incident and peak passenger flow, the

more the passengers coming from platform inlets, the longer the non-incidental line platform

total train operation delay and the higher the crowding degree. However, train headway has

little influence on non-incidental line platform risk development. With respect to incident risk

propagation in a metro network, the propagation speed varies with network structure,

wherein an annular-radial network is the fastest, a radial is moderately fast, and a grid-type

network is the slowest. The conclusions are supposed to be supports for metro operation

safety planning and network design.

Introduction

Background

Rapid urbanization in China has greatly boosted the initiation of increased metro rail transit

projects throughout the nation. By 2017, 34 cities had 165 rail transit lines in service of which

the total length is 5033 km [1]. However, along with service on numerous metro lines come

not only the benefits of road traffic relief and environmental pollution reduction but also new

challenges and demands for reliable and safe metro operation [2]. When it comes to network

operation, the relations among different lines and stations are complex, wherein an incidental

risk could be propagated in the entire rail transit network as a result of a local fault or a failure.

If a local incident cannot be removed in a timely manner, it will lead to negative effects such as
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passenger retention, train delay, and cessation of metro line service, and potentially even more

serious casualties. For example, on November 22, 2009 a crash occurred on Metro Line 1 in

Shanghai because of equipment failure, in addition to anxiety among passengers, this failure

caused all the metro lines to fail for five hours. Another example is that a mass of train delays

happened on Metro Line 10 in Beijing owing to a signal fault, leading to the cessation of 101

trains and disturbing more than 200,000 people [3]. Therefore, rules of incidental operation

risk propagation through metro network are needed to study.

With the rapid development of Artificial Intelligence (AI), fully automatic operations have

become prevalent. Such operational mode has been already adopted for Shanghai Metro Line

10, the Beijing Subway Line Yanfang, and several other lines in China. Compared to traditional

modes of operation, the safety risk arising from driver behavior in automated modes could be

reduced and operational efficiency can be improved. This can be attributed to the full-auto-

matic functions of line operation, in and out of the station, that can be accomplished. How-

ever, emergency response capacity might be impaired under this mode. When a train in the

line has to be shut off as a result of an incident, such as faulty equipment, following trains will

have to apply brakes to cease successively dominated by Automatic Train Protection (ATP). If

the faulty train cannot be removed in time, other trains on the line will be suspended for a

period. The incident risk will spread to other lines through transfer stations leading to a cessa-

tion of the entire network operation.

Literature review

Several studies discussed incidental risk for transportation operations such as Xu et al. [4], and

Ahmad and Khan [5]. Kyriakidi et al. [6] analyzed accident data from 2002 to 2009 and devel-

oped a comprehensive assessment using a safety maturity model for the metro operation.

Louie et al. [7] focused on the effects of the incidents’ location and occurrence time, the train-

type involved, and the non-adherence to recovery procedures in an effort to investigate the

relationship between those factors and the resulting delay duration. Zhang et al. [8] introduced

details of all incidents that have occurred in metro operations to prevent accidents using an

adaptable incident database. Also, Lu et al. [9] introduced a framework that incorporates

metro accident causes, processes, and solutions to prevent accidents using a new case-based

reasoning method. In road safety and automatic driving aspect, lane-changing models are

developed to simulate the off-ramp behaviors for autonomous vehicles and the findings can

provide useful references for the management of the automated highway systems [10]. Zheng

et al. [11] proposed a cooperative lane changing strategy to improve traffic operation and

safety at a diverging area nearby a highway off-ramp in an environment with connected and

automated vehicles. Guo et al. [12] developped traffic conflict-based real-time safety models

for signalized intersections and the models have potential applications in real-time safety eval-

uation. Li et al. [13] proposed a machine learning method for the short-term prediction of

lane-changing impacts during the propagation of traffic oscillations and proved the method is

useful for safety maximization. Zhang et al. [14] conducted a simulation study to provide some

practical suggestions for using propensity score method in road safety evaluations. Wang et al.

[15] reviewed surrogate safety measures and their applications in connected and automated

vehicles safety modeling studies.

In spite of the safety analysis of operations as discussed above, the current research on

metro network risk propagation focuses on two aspects: 1) network reliability and destroy-

resistant ability and 2) sudden massive passenger flow and congestion propagation.

Gu et al. [16] review studies on transportation network performance under perturbations.

Three concepts were discussed: reliability, vulnerability, and resilience. As far as metro
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network reliability is concerned, there is limited research in this area. The concept of transpor-

tation network connectivity reliability is based on maintaining the connectivity probability

between two points in a transportation network, which was issued originally by Mine and

Kawai [17]. Iida and Wakabayashi [18] and Sanso and Soumis [19] used computation method

of minimal path set and cut set for road network terminal reliability and applied the shortest

path computation method for network connectivity reliability. Latora and Marchiori [20] dis-

cussed the center point of a metro network by studying the Boston metro and came up with

the concepts of global efficiency and component efficiency. Crucitti et al. [21] showed classical

network connectivity variance after random and deliberate attacks by evaluating network effi-

ciency. On the other hand, A few attempts have been made to study metro network destroy-

resistant ability. Angeloudi and Fisk [22] found that a metro network have higher survivability

against a random attack compared to relatively lower survivability in the case of a deliberate

attack. Wang et al. [23] concluded that the vulnerability is apparent when a metro station is

attacked deliberately while the robustness is obvious when station-to-station tunnels are

assaulted in the same manner. Yang et al. [24] revealed that the Beijing subway system exhibits

characteristics of a scale-free network, with relatively high survivability and robustness when

faced with random failures. Jenelius et al. [25] focused on the importance of network edge and

site in vulnerability analysis and the Beijing Subway network vulnerability was compared with

Shanghai’s and it was concluded that the more complex a metro network structure, the lower

its vulnerability [26].

These studies examined just the static topological structure of a metro network. The

dynamic characters of transportation network have been thoroughly studied in these litera-

tures. Wu et al. [27] proposed a choice-based framework for modelling the supply/demand

interaction in a dynamically priced FFCS market. Huang et al. [28] presented an optimization

model including static and dynamic parts for the network design problem of the demand-

responsive customized bus. Zhang et al. [29] developped spatial-temporal adversarial network

to assign the generative factors of traffic flow to the feature vector in latent space and recon-

structs the high-dimensional citywide traffic flow. Authors proved that the model not only

improves the prediction accuracy but also characterizes structural properties of the traffic evo-

lution process.

Because of the confined underground space, problems related to passenger flows and their

developments were addressed in the literature. Silva et al. [30] studied the effects of a station

closure or interruption on passenger flow behavior and station crowdedness. Gao et al. [31]

studied the number of passengers stranded at a station and proposed an optimized, iterative

algorithm based on the Beijing subway network. Huang et al. [32] studied the temporal-spatial

erosion process through a congestion propagation model and identified various control points.

Xiao and Zhang [33] developed a dynamic congestion propagation model to account for the

dynamics of disaster spread. The studies above focused on aggregation and congestion propa-

gation rules of passenger flow caused by a large-scale activity.

Nevertheless, the effects of an incident will spread through an operating metro network

under various conditions and operational modes. Incidental risk will spread to other lines

through transfer stations, whose carrier is “passenger flow”. Specifically, when rush hour pas-

senger flow overlaps with incident-caused congestion, the negative consequences on the net-

work will result in a “snowball effect,” slowing down trains and increasing station crowding, in

addition to other serious secondary accidents such as a stampede. In this research, sudden

incidental risk propagation mechanism are discussed considering both static network topolog-

ical structure and dynamic passenger flow. This study follows a point-line-network order start-

ing from an incident or an emergency in a single line. Incident risk and peak passenger flow

propagation along transfer stations and consequently other lines, under full-automatic
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operation mode, are emphasized. Risk computation models for a transfer station and metro

network are developed for risk indicator variance rules.

The rest of this article is organized as follows. Section 2 presents a qualitative analysis of

risk propagation through a metro network and a quantitative computational model of risk

indicators. Section 3 discusses how risk indicators vary as an incidental risk propagation along

metro network. Finally, Section 4 summarizes and concludes this paper.

Method

Risk propagation along transfer station

Qualitative risk analysis. In this study, a train entering an island transfer station during

rush hour is used as an example for the qualitative risk analysis and quantitative risk evaluation

in cases of failures due to an incident in the metro network. For convenience, the incident line

is called Line 1, while the other line connecting with Line 1 by the transfer station is called Line

2. The platform of transfer station linked by Line 1 is Platform 1 and that linked by Line 2 is

Platform 2.

Fig 1 shows the incidental risk propagation paths along a transfer station. When Line 1 is

suspended due to an incident, there are several changes of passenger flow in Platform 2: (1) all

passenger stranded in Platform 1 will swarm into Platform 2 in a short period of time; (2) pas-

senger planning to come into Platform 1 might change their minds and enter Platform 2,

thereby increasing the passengers number at Platform 2; (3) some passengers planning to

transfer to Line 1 might choose the opposite direction of Line 2 to pursue another transfer

route (therefore, different direction flow of passenger is crossed and the number of passengers

in Platform 2 increase); and (4) some passengers on Line 2 who had been planning to transfer

to Line 1 might select to go to the next transfer station to pursue another travel route instead

of getting off the train as originally planned.

After a fully loaded train comes to a full stop at Platform 2, its residual capacity is decreased

because fewer passengers get off. In addition, unloading-loading efficiency is reduced, and

stopping time at the platform increases because of the large number of passengers and the lack

of order. If the stopping time at the platform is longer than the scheduled time, a train delay

takes place.

Fig 1. Risk propagation path of incidental operation along transfer station.

https://doi.org/10.1371/journal.pone.0261436.g001
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As the train leaving Platform 2 is overloaded, its available capacity will be less upon arrival

at the next station, thereby increasing the overall number of passengers waiting for a train at

subsequent stations. Therefore, the number of delayed passengers will increase over time, lead-

ing to congestion at other stations along Line 2. Meanwhile, when the train enters subsequent

transfer stations of Line 2, there will be passenger overload in these stations because they have

to accept additional passengers who were supposed to have gotten off at Platform 2 of the orig-

inal transfer station. Consequently, the incident risk might propagate into other lines in the

network through these transfer stations connected with Line 2.

In conclusion, the primary indexes of risk propagation along transfer stations are depen-

dent on the operational delay of Line 2 trains passing the transfer station as well as the average

crowding degree of the transfer station.

Quantitative risk computation model. To quantify the risk propagation, several assump-

tions have to be made: (1) all trains in the metro network operate automatically; (2) train head-

way, the dwelling time fixed in the train diagram, and passenger flow-through rate, are

assumed to be the same for all trains; (3) before the start of the computation process, there are

no residual passengers on the train platform as trains depart the station; and (4) trains getting

to and departing from a station are at maximum passenger capacity in peak hours.

Train operation delay. (a) Train departure delays of Line 2 (tsty): The operation delays of

Line 2 up-trains are computed only because those of down-trains are the same. After Line 1

suspension, the Line 2 up-train arriving at Platform 2 is bj (j = 1,2,. . .,m). The operation delay

for a single train is the difference between the actual dwelling time and the dwelling time fixed

in the schedule as illustrated in Eq (1). The actual dwelling time represents the duration

through which the train stops at a platform to allow for the loading and unloading of passen-

gers. If the value is less than or equal to 0, there is no delay. The total operation delay of Line 2

up-trains is the sum of each train departure delays as shown in Eq (2).

ts
fy;j
¼ max

minfRj;Kmax � ð1 � tÞg

vc
� ttd; 0

� �

ð1Þ

ts
fy
¼
X

ts
fy;j

ð2Þ

Here, tsfy is total operation delays of Line 2 up-train, (s); tsfy,j is bj train departure delay at

transfer station, (s); Rj is the waiting passenger quantity when bj train enters Platform 2, Kmax
is the train passenger capacity, τ is percentage of passenger flow, vc is velocity of passenger get-

ting on train per unit time [
people
s ]; and ttd is the dwelling time fixed in the train schedule [s].

(b) Waiting passenger quantity when train entering Platform 2 (Rj): When train b1 enters

Platform 2, the initial waiting passenger quantity R1 is the number of arriving passengers in a

train headway. On the other hand, the number of passengers waiting (Rj) when bj train enters

Platform 2 is the sum of the residual passengers on Platform 2 when train bj-1 departs and the

arriving passengers accumulating between bj-1 train leaving and bj train entering. The number

of residual passengers when bj-1 train departs is the sum of the number of passengers waiting

when bj-1 train enters (Rj-1) and the number of passengers transferring from the opposite direc-

tion train when bj-1 train is at the station, that is Kmax(1-τ)�μ (μ is the proportion of reversing

passengers relative to the quantity of getting off from the opposite direction train), minus the

number of passengers getting on train bj-1 Kmax(1-τ). If the result is less than or equal to 0, the

number of residual passengers when bj-1 train departs is 0. This can be represented in Eqs (3–

4).

R1 ¼ R0 ¼ t � �
s

ð3Þ
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Rj ¼ maxf0; Rj� 1 � Kmax � ð1� tÞ � ð1� mÞg þ ðt þ t
s
fy;j� 1
Þ � �

s
ð4Þ

Here, R0 is the initial waiting passenger quantity [people]; Rj is the waiting passenger quan-

tity when bj train enters Platform 2 [people]; t is the formal train headway [s]; φs is the average

velocity of arrival at the platform
People
s

� �
.

(c) Velocity of passengers getting on train (Vc): The velocity of passengers getting on a train

is determined by the train door number, average velocity of passengers getting on one single

door (γ People
s

� �
), and cross-influence coefficient of passenger flow on and off the train (β). Gen-

erally, in Beijing, there are six coaches in a train and four doors per coach. Therefore, there are

a total of twenty-four doors per train. The velocity of passengers is represented mathematically

as shown in Eq (5).

vc ¼ 24 � g � b ð5Þ

(d) Cross-influence coefficient of passenger flow on and off train (β): The value of β repre-

sents the loading efficiency due to the number of passengers getting on and off the train and is

primary determined by the passenger density near a train door. While passenger density is rel-

atively low, there is no mutual interference. Hence, the duration of unloading (former) and

loading (latter) are the same and β is 0.5. In contrast, while passenger density is too high, even

exceeding the minimum limit of 0.33 [ m2

people] according to China Code for Design of Metro [34],

that is, more than 3
people
m2

� �
, the mutual interference is very severe. In this case, β is proportional

to the reciprocal of the square of passenger density [35]. Therefore, the cross-influence coeffi-

cient of passenger flow on and off a train (β) is calculated using Eq (6).

b ¼ 0:5 � � � � � � � � � � � � rs � 3

b ¼ 0:5 �
9

rs
2
� � � � � � rs > 3

8
><

>:
ð6Þ

Here, ρs is the passenger density
people
m2

� �
.

Average crowding degree at platform 2 F(T). (a) Average crowding degree at Platform 2 (F
(T)): According to Li et al. [36], F(T) is the ratio of the actual number of passengers waiting

and the capacity of the platform. This is illustrated using Eq (7).

FðTÞ ¼
φ � T þ R0 � P

Z
ð7Þ

Here, φ is the average velocity of people arriving at the platform
People
s

� �
; T is incident dura-

tion [s]; R0 is the initial number of passengers waiting [people]; P is the number of people

departing when the train leaves Platform 2 [people]; and Z is the platform passenger capacity

[people].
(b) The number of passengers departing when train leaves (P): P is the number of passen-

gers departing when the train leaves Platform 2, including passengers getting on up-train and

down-train as captured by Eq (8).

P ¼ Ps þ Px ¼
X
ðT� tsfyÞnt

j¼1

minfRs
j ;Kmax � ð1� tÞg þ

X
ðT� txfyÞnt

j¼1

minfRx
j ;Kmax � ð1� tÞg ð8Þ

Here, PS and PX is the number of passengers getting on up-train and down-train, respec-

tively [people]; tsfy and tXfy are up-train and down-train departure delays respectively [s]; Rsj
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and RXj represent the number of passengers waiting when up-train and down-train enter Plat-

form 2, respectively [people].

Risk propagation along a metro network

Qualitative risk analysis. If there is an incident happening on a line in a metro network,

the incident risk might propagate to other lines (and perhaps the entire network) through

transfer stations. First, there will be passenger retentions in various stations along the line of

the incident [37] as stranded passengers in transfer stations will enter the platforms of transfer

lines through transfer tunnels, thereby increasing the overcrowding at various platforms. Sec-

ond, these congestions will spread to other stations through transfer line operations. As the

passenger congestion exceeds the maximum transfer platform capacity, the platform could

fail, possibly increasing the likelihood of transfer line suspension. Finally, the effects of the

incident will probably propagate to the whole network in the absence of effective emergency

measures. Overall, the negative effects to the metro network include, but are not limited to, the

number of affected lines, the number of trains suspended, and amount of passenger retention

at various lines. The dimensionality, process, and specific negative effects to the metro opera-

tion are further illustrated in Fig 2.

The transfer lines that are directly connected to the line associated with the initial incident

line by transfer stations are named Level 1 propagation lines. Transfer lines linked to Level 1

propagation lines are defined as Level 2 propagation lines, and so on. Under the condition of

the metro network operation, the initial incident line is connected with several Level 1 propa-

gation lines by transfer stations. The incidental risk will spread to Level 1 lines from the initial

line, after which the risk will be spreading to Level 2 lines in a similar manner. The incidental

risk propagation path in the metro network is displayed in Fig 3.

Quantitative risk calculation method

Parameters are assumed as follows: (1) all operation parameters on train lines such as train

departure interval, driving speed, and station dwelling time are considered to be the same; (2)

for all transfer stations, the duration from the retention of passengers from an incidental line

entering into transfer station to the number of passengers in the transfer platform reaching

maximum capacity, defined as transfer station failure buffer time hereinafter, is deemed to be

identical.

Fig 2. The dimensionality, process, and specific negative effects to the metro operation.

https://doi.org/10.1371/journal.pone.0261436.g002
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Duration of risk propagation through the network. (a) Single line operation suspension
buffer time (Th): This value represents the time from when an incident happens on a line to

the time when all trains on the line are forced to cease operation and can be calculated by Eq

(9):

Th ¼ ðm � 1Þ � th ð9Þ

Here,m is the number of trains in operation on an incidental line and th is the duration of a

train coming to a halt.

(b) Transfer station failure buffer time (Sh): As mentioned earlier, when the number of

passengers exceeds the capacity of the transfer station platform, the platform can get crowded

to the point where trains cannot leave station according to the original schedule, thereby lead-

ing to an operation failure of the transfer station and possibly the transfer line. The transfer

station failure buffer time Sh is defined as the duration from when passenger retention of an

incidental line enters into transfer station to the number of passengers in a transfer platform

reaching maximum capacity, which is the duration of average crowding degree at the platform

F(T) reaching to 100%, as shown in Eq (10):

Sh ¼ fTjFðTÞ ¼ 1g ð10Þ

Here, T is the incident duration [s].
(c) Duration of risk propagation along the network (Y): In this study, the duration of risk

propagation along a metro network is defined as the time from the occurrence of an incident

to the whole metro network operation outage, as a result of risk diffusion. It can be computed

using Eq (11). Based on Eqs (9–10) and Chen et al. [37], the transfer station failure buffer time

Sh is much higher than the suspension buffer time of a single line operation Th. Therefore, risk

propagation along the same level lines are not considered.

Y ¼ maxfT0
h þ

Xq

i¼1

Tih;j þ q � Shjj ¼ 1; 2; . . .; nq; S
i� 1!i
h ¼ Shg ð11Þ

Here, T0h is the operation suspension buffer time of the initial incident line [s]; i is line level

when the incident risk spreads along transfer station, i = 1,2,. . .,q; q is the final level that the

incident risk spreads to through the network originating from the initial line; Tih,j is the opera-

tion suspension buffer time of the j line of the i level propagation [s]; nq is the line number of q

Fig 3. The incidental risk propagation path in a metro network.

https://doi.org/10.1371/journal.pone.0261436.g003
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level propagation; andShi-1!i is the transfer station failure buffer time when i-1 level lines prop-

agating to i level lines.

Suspension train quantity in the metro network (M). This number represents the total

number of suspended trains across all lines and can be calculated using Eq (12):

M ¼
X

Mi ð12Þ

Here,Mi is the number of suspended trains on each line i.
Retention passenger quantity in the metro network. The retention passenger quantity is

determined by the sum of the number of passengers in the metro network at that time.

Simulation results

Regarding risk propagation along transfer station, risk variance of the side platform only was

simulated because the results of the island platforms are similar to those of side platforms. The

model equations were employed using the AnyLogic 7.2, a simulation software capable of con-

ducting system dynamics simulation including continuous and real-time scenarios, similar to

the context of this study.

Case study and baseline model development

A transfer station side platform is supposed to be 120 meters long and 5 meters wide, as illus-

trated by the Huixinxijienankou station of Line 10 in Beijing (as shown in Fig 4). The up and

down direction trajectories are in the middle of the platform. On both sides of the trajectories

reside the platforms. At this station, there are inlets and outlets. There are also two passages for

transferring in (green lines) and out (red lines). Also, the grey frame represents the waiting

areas near the train doors. The braces and rails in the platform are not considered.

The simulation model parameters are as follows:

1. Simulation time: Simulation time is considered to be 1 rush hour beginning from a depar-

ture of Line 2 train.

Fig 4. Transfer station side platform simulation structure.

https://doi.org/10.1371/journal.pone.0261436.g004
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2. Trains: Trains from each direction enter the station simultaneously. Because each train

entering the station is fully loaded, percentage of passenger flow τ increases from the nor-

mal 60% to 80% and 70% of passengers getting off will decide to get on the train going on

the opposite direction to pursue another transfer route as described in Section 2.1.1.

3. Passengers: The number of passengers stranded on Platform 1 is 3,000. They enter Platform

2 through a transfer tunnel for 15 minutes. Moreover, their probability of going in either

direction (up or down) is 50%. Meanwhile, the passengers entering one side of Platform 2

coming from the inlets increase to 4000
people
hour

� �
. The data are assumed based on the passen-

ger flow statistics of the Beijing metro operating company.

4. Other parameters: The parameters associated with the operation of Line 2 and Platform 2

are shown in Table 1.

Verification

Fig 5(A) depicts the variance of total up-direction train operation delay of different headway t
with incidental duration while Fig 5(B) shows the Platform 2 average crowding degree variance

of different headway t with incidental duration T.

Fig 5 shows that the risk indicators, including total train operation delay and average pas-

senger crowding degree on Platform 2, increase as the duration of the incident increases. How-

ever, there is little difference among the different impacts of headway t for both indicators.

Therefore, it can be concluded that the train headway does not have a significant impact on

the platform risk indicators. This is because the increase of train headway t will reduce the

total transportation capability. However, owing to the large number of stranded passengers

coming to Platform 2 at the early stage of an incident, the degree of platform crowding is faster

in the former phase and slower in the latter phase. In other words, the augmenting extents of

headway t increase are mild, which are paralleled with the results shown in Fig 6 Aggregating

passengers (i.e., the crowding degree) will grow as train headway t increases but at a small rate

[38].

In addition, Fig 5(B) demonstrates that the curves of the average platform passenger crowd-

ing degree are jagged as the number of passengers suddenly increase and decrease as a result of

loading and unloading when the train stops at the platform. Zhao et al. [39] observed that in a

train operation cycle, the platform aggregated passenger variance rule is increase sharply-to-

decrease sharply and then decrease slowly-to-increase slowly. This result is roughly consistent

with the cyclic trend of the simulation curve shown in Fig 5(B).

Discussion

Variance of risk indicators with passenger-arrival rate

Fig 7 shows the risk indicators variance of train operation delay and platform crowding degree

with passenger arrival rate φ. While Fig 7(A) shows the total up-direction train operation delay

variance with incidental duration, Fig 7(B) shows Platform 2 average crowding degree vari-

ance. Herein, the passenger arrival rate φ is considered for passengers entering the platform

through the inlet only. Those entering through transfer tunnels were excluded.

Table 1. Operation parameters of Line 2 and Platform 2.

Parameter Kmax[people] ttd [s] Z [people] t [s] τ μ γ [people •s-1]

Value 1760 20 4000 120 0.8 0.7 2

https://doi.org/10.1371/journal.pone.0261436.t001
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Fig 7(A) shows that train operation delay increases with incidental duration. In addition,

the number of passengers coming from platform inlets increases (φ value is higher) at a higher

rate. On the other hand, Fig 7(B) shows that before 900s the number of passengers and degree

of crowding increase quickly, because the retention passenger swarm into Platform 2 sharply

and train capacity is less. During the period of 900–1,100s, the crowding degree seems to slow

down. After 1100s, all the retention passengers have arrived at Platform 2 and the passenger

arrival rate decreases. However, so many significant interaction of passenger flows is observed,

thereby reducing loading and unloading efficiency, further slowing down the speed of passen-

gers departing the platform. Afterward, passenger crowding degree increases slowly.

Fig 5. Comparison of simulation results of risk indicators corresponding to different train headway in transfer to

Platform 2 (side platform) in the up direction. (a) Variance of total up-direction train operation delay of different

headway t as a function of incidental duration. (b) Platform 2 average crowding degree variance of different headway t
as a function of incidental duration.

https://doi.org/10.1371/journal.pone.0261436.g005
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Specifically, the crowding degree of up-direction Platform 2 tends to increase when

φ�3500, primarily due to the fact that the passenger arrival rate is more than the train maxi-

mum capacity. Consequently, the retention of passengers on Platform 2 increases. On the

other hand, this value decreases and the speed of decline becomes faster when φ<3500 and

T�1800s. This can be attributed to the fact that the passenger arrival rate is less than train

maximum capacity and passengers in Platform 2 are inclined to drop off. Hence, the single

train operation delay of Line 2 will decrease, and the total passenger transportation capacity

rises. As a result, the decreasing speed of the platform crowding degree accelerates.

Comparison of risk indicators of propagation among metro networks

As far as various structures of metro networks are concerned, their risk propagating process

and rules are different as a result of network connecting rate discrepancy. To compare the inci-

dental risk propagating rules of various networks, three typical networks are introduced as

shown in Fig 8: a) grid, b) radial, and c) annular-radial structure. All networks have 4 lines,

and their operation parameters are illustrated in Table 2.

Fig 9 displays the metro operation risk indicator change trends with incidental duration for

the three structural networks. Fig 9(A) shows the affected line quantity with respect to the inci-

dental duration. Fig 9(B) shows the suspension train quantity. For the sake of finding rules, an

imaginary line was used to connect the discrete values of the results. In Fig 9, “w” represents

the grid-type network, “f” represents the radial network, and “h” refers to the annular-radial

network. Besides, the numbers “1–4” indicate Lines 1 to 4, respectively.

For a grid-type network, as shown in Fig 9(A), we can see that two risk propagations

through transfer stations are required for all lines to be suspended when the four lines are con-

sidered as initiating incidental lines, one at a time, and w2, w3, and w4 curves are identical as

lines 2, 3, and 4 being the incidental line in order. For radial networks, only one risk propaga-

tion through transfer stations is needed for all lines suspension, also f2, f3, and f4 curves are

Fig 6. The effect of train headway on the number of assembling passengers at a platform.

https://doi.org/10.1371/journal.pone.0261436.g006
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identical as line 2, 3, and 4 are being the initial lines orderly. Moreover, the affected line quan-

tity trends of 4 lines as initiating incidental line for the annular-radial network are totally con-

sistent with those for the radial network; therefore, f1 and h1 are represented by only one line

and f2 and h2 are indicated by one line, and so on.

As can be seen from Fig 9(B), the suspension train quantity trends of the radial network as

line 1–4 being the incidental lines one at a time are the same as those of the annular-radial net-

work. Specifically, f1 and h1, f2 and h2, f3 and h3, and f4 and h4 coincide, respectively. Therefore,

we used one line to represent the two networks as described above. All values on the curves

increase rapidly during the period of 3600-4800s. The curves of the radial and annular-radial

networks increase faster than those of the grid-type network. Moreover, after 4800s, the curve

Fig 7. Risk indicators variance of train operation delay and platform crowding degree with passenger-arrival rate φ
in transfer to Platform 2 (up direction). (a) Total up-direction train operation delay variance as a function of incidental

duration. (b) Platform 2 average crowding degree variance as a function of incidental duration.

https://doi.org/10.1371/journal.pone.0261436.g007
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of the grid-type network increases slowly until the final state, when all lines are suspended, is

reached.

It can be inferred that the risk indicators (including the affected line quantity and suspen-

sion train quantity) propagation speed of the grid-type network is relatively slow. In a grid,

there are parallel lines whose connecting degree is relatively slow, and the incidental risk effect

needs more time to propagate to the transfer station when all lines are suspended. Further-

more, grid-based networks resist destruction better than the other structures, but their passen-

ger service efficiency is lower as more transfers are needed to arrive at a destination. On the

hand, the risk propagation speed of the radial and annular-radial networks is relatively faster,

because two arbitrary lines, in these networks, are mutually connected so that the incidental

risk could spread to the whole network through only one transfer station propagation. The

damage resistance ability of these two networks is relatively worse. However, the passenger ser-

vice efficiency is higher because fewer transfers are needed to reach a destination.

Concerning the condition that there is more than one transfer station between two lines,

just one transfer station propagation is considered, thus causing the risk indicators curves of

the radial and annular-radial networks to be consistent. In practice, as for annular-radial net-

work, there is more than one transfer station between the annular lines and other lines, thus

leading to faster risk propagation through all of the network. In summary, the order of three

networks, from high to low, in terms of the incidental risk propagation speed is as follows:

annular-radial, radial, and grid-type.

Conclusion and limitations

Rules of operation incidental risk propagation in a metro network under fully automatic oper-

ation mode were explored. The indicator computation models for transfer station and differ-

ent structural networks were developed and indicator variance rules were discussed and

verified through a simulation study. The computational models were applied and the network

risk propagation rules were obtained. A summary of the conclusions from this study are pre-

sented as follows:

Fig 8. Different structure of metro network. (a) Grid-type structure. (b) Radial structure. (c) Annular-radial structure.

https://doi.org/10.1371/journal.pone.0261436.g008

Table 2. Operation parameters of lines on typical metro structures.

Parameter Train quantity of single-direction line Single train buffer time [s] Transfer station failure buffer time [s]

1 2 3 4

Value 30 40 48 54 30 2400

https://doi.org/10.1371/journal.pone.0261436.t002
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1. During the incidental risk propagation along a metro transfer station, there is a great effect

on non-incidental line platform operation as detained passengers suddenly influx into the

platform. Specifically, a train operation delay occurred at 450s for non-incident lines. More-

over, when passengers coming through the platform inlets are more, the faster reaching the

non-incidental line platform total train operation delay and the higher the crowding degree.

However, train headway discrepancy has little influence on non-incidental line platform

risk development.

2. Regarding the incidental risk propagation through a metro network, the propagation speed

varies for differently structured networks. More specifically, the propagation speed of annu-

lar-radial network is the fastest, with the radial network being slower and the grid network

being the slowest. Generally, the longer the incidental line in network is (i.e., more

Fig 9. Metro operation risk indicator change trends with incidental duration for the three structural networks. (a)

Affected lines quantity trends with incidental duration for the three structural networks. (b) Suspension train quantity

trends with incidental duration for the three structural networks.

https://doi.org/10.1371/journal.pone.0261436.g009
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operation trains on the line), the longer the duration of risk propagation along the network.

Conversely, the shorter the incidental line in network is (i.e., fewer operation trains on the

line), the shorter the duration of the risk propagation along the network.

The conclusions as above are supposed to be supports for metro operation safety planning

and network design. Comparing to traditional operation mode, the fully automatic operation

mode applies CBTC (Communication Based Train Control) system and it can reduce train

headway and improve transport efficiency greatly. However, it will give greater challenges for

operation team when an emergency occurs, since it could affect more trains and passengers in

the same period than those under traditional operation mode. In this paper, emergency dis-

patching measures such as closing transfer channel and withdrawing train was not taken into

account. The research considers the worst-case scenario that the staff fails to take emergency

measures after an incident occurred. Thus the results of risk assessment can guide the metro

operation planning and network design under traditional operation mode to the most conser-

vative extent.
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