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Quantitative high throughput screening (qHTS) experiments can generate 1000s of
concentration-response profiles to screen compounds for potentially adverse effects.
However, potency estimates for a single compound can vary considerably in study
designs incorporating multiple concentration-response profiles for each compound.
We introduce an automated quality control procedure based on analysis of variance
(ANOVA) to identify and filter out compounds with multiple cluster response patterns and
improve potency estimation in qHTS assays. Our approach, called Cluster Analysis by
Subgroups using ANOVA (CASANOVA), clusters compound-specific response patterns
into statistically supported subgroups. Applying CASANOVA to 43 publicly available
qHTS data sets, we found that only about 20% of compounds with response values
outside of the noise band have single cluster responses. The error rates for incorrectly
separating true clusters and incorrectly clumping disparate clusters were both less than
5% in extensive simulation studies. Simulation studies also showed that the bias and
variance of concentration at half-maximal response (AC50) estimates were usually within
10-fold when using a weighted average approach for potency estimation. In short,
CASANOVA effectively sorts out compounds with “inconsistent” response patterns and
produces trustworthy AC50 values.

Keywords: ANOVA, clustering, concentration-response, potency, quantitative high throughput screening,
toxicological response

INTRODUCTION

In 1978 the National Toxicology Program (NTP) was established to evaluate the toxicity and
carcinogenicity of environmental chemicals. As part of these efforts, the NTP developed a 2-year
rodent cancer bioassay to identify potential human carcinogens. After about 40 years conducting
such studies, the NTP has conducted evaluations for about 600 chemicals. However, over 80,000
compounds are registered for use in the United States, and that number is increasing by an
estimated 2,000 new chemicals each year (U.S. National Toxicology Program [U.S. NTP], 2017).
A large number of these chemicals have unknown effects on human health. Therefore, during
the previous decade the NTP and other agencies, including the U.S. Environmental Protection
Agency (EPA), the National Center for Advancing Translational Sciences (NCATS), and the U.S.
Food and Drug Administration (FDA), established quantitative high throughput screening (qHTS)
assays simultaneously screen 1000s of compounds and prioritize chemicals for further testing
(Tice et al., 2013). The goal of these qHTS assays was not only to achieve the speed of evaluating
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1000s of chemicals in a single experiment, but also to substantially
reduce the costs of toxicity testing and, eventually, to transform
toxicology into a more predictive science (Collins et al., 2008).

Quantitative high throughput screening of 1000s of different
compounds at multiple concentrations represents a marked
technological advancement that minimizes the frequency of false
negative calls compared to single concentration HTS (Inglese
et al., 2006). Data generated from qHTS have a prominent
role in toxicological assessment and drug discovery (Collins
et al., 2008; Roy et al., 2010; Attene-Ramos et al., 2013;
Dahlin et al., 2015). For instance, concentration-response data
is currently being generated and made publicly available for
100s of toxicologically relevant endpoints in phase II of the
Tox21 collaboration among the EPA, NCATS, the FDA and
the NTP (Tice et al., 2013). Outcomes from these qHTS
experiments can be used for numerous applications, including
phenotypic screening (Kleinstreuer et al., 2014), genome-wide
association mapping (Abdo et al., 2015) and prediction modeling
(Eduati et al., 2015).

A qHTS assay produces one or more concentration-response
curves for each tested compound. Here, we refer to a
single concentration-response profile as a “repeat” (see section
“Materials and Methods”). Each curve is typically evaluated
using non-linear regression models. For example, the sigmoidal
Hill model (Hill, 1910) is used to estimate the concentration
at half-maximal response (AC50), a quantitative measure of
chemical potency. Heteroscedastic responses and outliers should
be taken into account using robust statistical modeling, such
as the preliminary test estimation based methodology proposed
by Lim et al. (2013). In addition to other characteristics of the
concentration response curve, potency measures are important to
determine how toxic or active a chemical is in the assay system.
Estimates of compound potency or other response characteristics
are extremely important for assessing toxicity in toxicology
assessment or bioactivity in drug discovery applications.
Recently, there has been considerable controversy in comparing
two large-scale qHTS studies (Barretina et al., 2012; Garnett et al.,
2012). Haibe-Kains et al. (2013) reported that the drug response
data in these two studies were inconsistent with each other
based on poor concordance of IC50 and area under the curve
(AUC) measures. This report and an accompanying commentary
(Weinstein and Lorenzi, 2013) suggested that differences in
laboratory protocols might account for this discordance and
raised important questions about the validity and interpretation
of current and future qHTS efforts. A number of studies have
subsequently investigated the consistency of phamacogenomic
drug response and investigated whether analytical assessments
of consistency should take into account experimental features
such as cell line (Cancer Cell Line Encyclopedia Consortium
and Genomics of Drug Sensitivity in Cancer Consortium, 2015;
Geeleher et al., 2016; Haverty et al., 2016; Safikhani et al., 2016a,d)
and viability (Bouhaddou et al., 2016; Safikhani et al., 2016c), and
suggested standardized assay methods and laboratory conditions
(Mpindi et al., 2016; Safikhani et al., 2016b). Accounting for
experimental factors during statistical analysis may help to
improve the reliability and reproducibility of qHTS results
(Ding et al., 2017). Nevertheless, such modeling approaches may

require a prohibitively large number of repeated profiles for each
chemical, and many experimental factors remain unknown or
confounded in qHTS experiments.

Unfortunately, no systematic quality control (Q/C) procedure
has yet been established for qHTS data. We believe that the lack
of such a Q/C procedure may contribute to the ongoing debate
surrounding the consistency of large-scale in vitro screening
data. In this paper, we take a simple and principled Q/C
approach to sort out chemicals with “inconsistent” response
patterns so that the researcher may identify and avoid computing
AC50 values for potentially troublesome chemicals. Conversely,
data with “consistent” responses across repeated profiles would
produce AC50 values that can be trusted and used for
downstream analyses.

In the Tox21 initiative, multiple concentration-response
curves are obtained for each compound tested in a qHTS
study. However, this may not be the case with other qHTS
studies, where only a single response curve is obtained for each
tested compound. In some cases, the concentration-response
patterns in Tox21 Phase II fall into a single cluster where
response patterns are “similar” across all experimental repeats
(e.g., Figures 1A,B, based on data from an estrogen receptor
agonist assay). Concentration-response curves corresponding to
oxymetholone in Figure 1A appear to be in a single cluster
with all repeats exhibiting monotonic responses except at the
highest concentration tested. Each curve crosses the upper
noise bound (horizontal dashed line), suggesting that this
compound is a candidate hit that may activate the estrogen
receptor. Similarly, concentration-response data corresponding
to hydrochlorothiazide in Figure 1B comprise one cluster pattern
across all repeats since every concentration curve is within the
noise limits, indicating that this chemical may not be active
under the tested conditions. In examples such as Figure 1A,
where all response curves are part of a single cluster, a Hill
model (Hill, 1910; Shockley, 2015) or other appropriate non-
linear model can be fit to the data in order to obtain potency
estimates that summarize each curve. These individual potency
estimates can then be used to obtain an overall potency estimate
for the compound. Since the compound in Figure 1B appears to
be inactive under the tested conditions, no potency estimate is
obtained for this compound.

In the absence of systematic effects and artifacts,
concentration-response curves for each chemical should be
“similar” or within a single cluster across all experimental
repeats of the compound (Hsieh et al., 2015). However, in
Figure 1C the concentration-response patterns for 2,3,5,6-
tetrachloronitrobenzene are split into four different clusters
(indicated by different colors) across the experimental repeats.
The AC50 values for the three clusters with response values
extending outside of the noise band range from 3.93 × 10−10 to
19.57 µM, representing a wide variance in potency associated
with this compound. Unfortunately, the numerous examples
of compounds with multiple response clusters could produce
dramatically different potency estimates for the same compound.
In such cases it can be very difficult to ascertain the correct
concentration-response pattern for the tested compound,
and its corresponding potency estimate, from the data alone.
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FIGURE 1 | Three separate cases are represented by concentration-response data from the BG1 estrogen receptor agonist assay from phase II of the Tox21
collaboration (tox21-er-luc-bg1-4e2-agonist-p2). Responses are shown as a percentage of the assay positive control values after correction by DMSO negative
controls (Inglese et al., 2006). The assay detection limits are indicated with dashed lines. An AC50 value from the Hill model, calculated using the weighted average
approach, summarizes the potency of each cluster (see section “Materials and Methods”). (A) Case 1 shows 12 similar response profiles from oxymetholone which
extend beyond noise and group together into a single cluster. This case corresponds to two different supplier designations, two library preparation sites and two
purities (A and D, representing “good” and “poor” purity, respectively) generated on six different experimental days. (B) Case 2 shows nine responses from
hydrochlorothiazide which all lie within the noise band and correspond to three supplier sources, three library preparation sites, and a single purity (A) generated in six
different experimental days. (C) Case 3 is represented by 42 response profiles from 2,3,5,6-tetrachloronitrobenzene corresponding to one supplier, three library
preparation sites, one purity designation (A) and seven experimental days. A total of 29 of the 42 repeats lie within the noise band (shown in gray), and other profiles
cluster by our proposed methodology CASANOVA described in this paper into the three disparate groups of 9, 3, and 1 repeats shown in black, green, and red,
respectively. The separation of clusters in Case 3 is not explained by library preparation site or experimental day.

Chemical supplier, institutional site preparing the chemical
library (e.g., NTP, FDA, and EPA), concentration-spacing, purity
of the compound and other factors can systematically influence
response trajectories (Tice et al., 2013). Such experimental factors
are associated with different clusters in some instances. However,

known design characteristics are not always associated with the
observed response groupings.

An important purpose of qHTS assays is to estimate the
potencies of active compounds for downstream analyses. In
many cases, AC50 values and point of departure values estimated

Frontiers in Genetics | www.frontiersin.org 3 May 2019 | Volume 10 | Article 387

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00387 May 8, 2019 Time: 14:36 # 4

Shockley et al. Quality Control for qHTS Data

from qHTS assays are used to discriminate between active
and inactive compounds. Published studies incorporate AC50
potency estimates derived from qHTS assays for predictive
cheminformatics (Jamal et al., 2016), in vivo activity prediction
modeling (Martin et al., 2011; Kleinstreuer et al., 2013; Anthony
Tony Cox et al., 2016), screening for therapeutic leads (Martinez
et al., 2016; Xu et al., 2016; Chen et al., 2017), drug sensitivity
testing (Barretina et al., 2012; Garnett et al., 2012), in vitro-
to-in vivo extrapolation (IVIVE) pharmacokinetic modeling
(Rotroff et al., 2010; Wetmore et al., 2012), computational
modeling of androgen receptor activity (Kleinstreuer et al., 2017),
toxicity testing (Judson et al., 2016; Karmaus et al., 2016) and
prioritization for targeted testing (Judson et al., 2010). It is
crucial to identify and distinguish compounds that have single
cluster response patterns across repeated runs from compounds
with multiple cluster response patterns. Otherwise, the potency
estimates derived from qHTS assays may not be reliable, as
seen for 2,3,5,6-tetrachloronitrobenzene in Figure 1C where
the potency estimates for different clusters are highly variable.
Visual inspection of response profiles and manual curation of
“flagged” compounds (Filer et al., 2017) are based on complex
rule structures and do not address the quality control issue that
is investigated here. Since 1000s of compounds are tested in each
assay, there is a need for an automated quality control process
to separate compounds with single cluster and multiple cluster
response patterns before making activity calls and estimating
the potency of biologically responsive agents. Here, we focus on
the statistical identification of single cluster and multiple cluster
compounds in a data driven framework, and do not address the
separate problem of relating the data to pathways of interest
(Hsieh et al., 2015).

MATERIALS AND METHODS

Development of the CASANOVA
Clustering Algorithm
A typical qHTS assay in Tox21 generates concentration-response
data multiple times for each compound. Rather than referring
to these multiple observations on each compound across
concentrations as “replicates” we refer to them as “repeats.”
In typical experimental designs “replication” refers to repeating
the experiment several times under identical experimental
conditions. This is not the case with qHTS studies. In qHTS,
for a given compound the experiment is often repeated by
varying suppliers, laboratories/agencies (sites) preparing the
library, chemical purity, etc. In each instance a concentration
curve is obtained and these concentrations curves cannot be
viewed as conventional replicates.

We developed an automated clustering algorithm called
CASANOVA to cluster intrachemical responses into single
clusters using classical two-way analysis of variance (ANOVA).
The workflow for CASANOVA is presented in Supplementary
Figure 1. First, concentration-response repeats having all
responses across the concentration range located entirely within
the noise band are removed, where the noise band is defined
as ± 3 standard deviations (σ) of the response at the lowest

concentration tested in the experiment. qHTS studies typically
base the assay detection limit on the variation in the DMSO
negative controls (Hsieh et al., 2015), the DMSO controls and
the lowest concentration (Huang et al., 2011), or the first two
concentrations (Filer et al., 2017). Defining the detection limit
based on just the DMSO negative controls could be problematic
for antagonist assays in which the response at the lowest tested
concentration relies on two different components: the DMSO
controls and the agonist response needed to activate a nuclear
hormone receptor. To be consistent across assay types and other
studies in the literature, we chose to base the assay detection
limit on the first tested concentration. In many, but not all,
assays the variation in the DMSO negative control wells is
very similar to the variation at the lowest tested concentration
(Supplementary Figure 2).

Here, for each compound with at least two repeats extending
beyond the assay detection limit of 3σ (or −3σ), an ANOVA
model is fit to all n intrachemical response profiles. If all
repeats within a compound lie within the noise band, the
compound is designated “Case 2.” A grouping factor to divide the
concentration space is essential to our approach. In this study, we
focus on the 15-point concentration response profiles generated
in phase II of Tox21 and use five “3-concentration” bins to define
a five-level “concentration” grouping factor termed CONC. We
consider each concentration-response profile in the experiment
to be a “repeat,” and REPEAT is used as a second factor in the
model. Response Rijk for concentration bin i (CONCi), repeat
j (REPEATj), and an interaction term (γij) for observation k is
modeled using the compound-specific ANOVA model

Rijk = µ+ CONCi + REPEATj + γij + εij (1)

where µ is the overall mean and εijk represents random error
for concentration bin i, repeat j and observation k. The γ term
is first tested for statistical significance within each compound. If
the interaction term is significant at the user specified level of α

(H0: γ11 = γ12 = . . . = γnn), then the REPEAT term is tested
for significance at the α level (H0: REPEAT1 = . . . = REPEATn).
Unless otherwise noted, we used α = 0.05 for all analyses
presented here. If REPEAT is also significant, then repeats are
ranked by mean response averaged over all levels of the CONC
factor and significant pairwise differences between neighboring
repeats in the ranked list are used to group repeats into
distinct clusters. Subgroup analysis then proceeds by ranking
mean response values within the highest CONC bin. Significant
pairwise differences between neighboring repeats in the ranked
list within this bin are used to further divide these clusters
into new subclusters. The subgroup analysis proceeds for each
CONC bin level (from the highest concentration to lowest
concentration). If γ is significant, but REPEAT is not significant,
only the subgroup analysis is performed. If the γ term is not
significant, but REPEAT is significant, repeats are ranked by
mean response averaged over all levels of the CONC factor and
significant pairwise differences between neighboring repeats in
the ranked list are used to group repeats into distinct clusters.

Once the clusters of similar dose profiles have been
determined, the mean response values lying above (or below)
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the noise band across all concentration bins are compared with
the upper (or lower) detection limit using the one sample
t-test (α = 0.05) in order to distinguish between “conclusive”
clusters that are statistically separated from the noise band and
“inconclusive” clusters that are not statistically different from the
noise band detection limit. “Case 1” compounds are composed
of n single cluster repeats, where n refers to all the tested
repeats within a compound. “Case 3” compounds each contain
multiple cluster response patterns, where one of the clusters
can potentially be repeats with all responses located entirely
within the noise band. Supplementary Figure 3 describes the five
different classes of possible compound classification outcomes.

Description of Tox21 Phase II Data Sets
Publicly available Tox21 Phase II data was obtained from https:
//tripod.nih.gov/tox/. This qHTS data involves approximately
10,000 compounds screened for activity related to stress
response, nuclear hormone receptor activity, or cell viability.
The nuclear receptor hormone assays were performed in
agonist and antagonist (or inhibitor) modes and are used to
investigate activation or inhibition activities of the given assay.
Multiple channel readouts for beta-lactamase gene reporter
assays consisted of ch1, ch2 and ratio (ch2/ch1) data, and in those
cases we used the ratio data to represent the assay signal. A total
of 15 concentrations were evaluated with concentrations typically
ranging from approximately 5× 10−4 µM to about 100 µM (Tice
et al., 2013). As part of phase II of Tox21, the library is screened
three times with compounds located in different well positions
during each experimental run (Tice et al., 2013). The raw plate
reads were normalized using the positive and negative control
wells and subsequently corrected for row, column, and plate
effects using linear interpolation (Inglese et al., 2006). A total of
43 of the 47 publicly available bioassay data sets represented by
72 different readouts from phase II of the Tox21 collaboration
were selected for analysis in this study due to their comparable
experimental design of 15-point concentration response data
generated in triplicate runs. We dropped 4 of the 47 publicly
available data sets from our analysis because their study design
was not directly comparable with the other 43 data sets; 2 of the
assays were conducted as 4- or 8-point concentration-response
study designs and 2 additional assays were unreplicated time
course experiments.

AC50 values, and corresponding standard errors (SE), of
individual concentration-response curves were estimated from
the data using the Hill model after removing outliers as described
previously (Shockley, 2012). The AC50 from each cluster in a
single compound was estimated with a weighted approach using
(1/SE)2 as weights and the weighted.mean() function in R.

Simulation Studies to Evaluate the
CASANOVA Algorithm
The performance of CASANOVA to correctly cluster similar
patterns and separate disjoint patterns, was evaluated in
simulation studies conducted across a range of assay noise
levels chosen to resemble the characteristics found in Tox21
Phase II qHTS data. A total of 2,000 simulated compounds

with at least one response outside of the noise band were
generated from either the Hill model (sigmoidal curves) or
the gain-loss model (“bell-like” curves) (Shockley, 2016; Filer
et al., 2017). The parameters of the simulation study were
based on observed data in the Tox21 Phase II data sets. Of
the 43 publicly available Tox21 data sets (with 72 readouts)
examined here, we chose four assay readouts that span the range
of assay noise based on negative control DMSO plates (see
Supplementary Figure 4) and the lowest tested concentration
levels (Supplementary Figure 5). These selected readouts come
from assays with low noise (data set 1: tox21-elg1-luc-agonist),
moderate-low noise (data set 2: tox21-are-bla-p1), moderate-
high noise (data set 3: tox21-er-luc-bg1-4e2-agonist-p2), and high
noise (data set 4: tox21-fxr-bla-agonist-p2). The proportion of
chemicals with N suppliers (N = 1, 2, 3, 4 in the Tox21 Phase
II experiments) in each of the selected data sets was calculated
(see Supplementary Table 1) and used as input probabilities for
simulating the number of clusters per compound. Similarly, the
proportion of compounds with N repeats per supplier (N = 3,
6, 9, 12, 42, 45, 48, 51, 54) was determined empirically for
the four selected datasets (see Supplementary Table 2) and
used as input probabilities for simulating the number of repeats
per cluster in each compound. An ANOVA model in Eq. (1)
was fit to compounds containing at least two repeats with
detectable responses as described above. For each chemical,
the ANOVA mean squared error (MSE), the range defined by
maximum observed response – minimum observed response
(ResponseRange) and the coefficient of variation (CV) defined by
√
MSE/ResponseRange was calculated. These values, presented

in Supplementary Table 3, were used to similate the data as
described in greater detail below.

Simulated concentration-response curves are randomly
chosen for each cluster based on a three-parameter Hill
equation model or a four-parameter “gain-loss” model. The
three-parameter Hill model is described by:

E(Rij) =
RMAXj

1+ 10{−hj[log10Ci−log10AC50,j]}
(2)

where Rij is a normalized response (% of positive control activity)
for the jth repeat, RMAXj represents maximal response, hj is
the slope parameter, Ci is the compound concentration, and
AC50,j is the concentration for half-maximal activity. Similar to a
previous study (Shockley, 2016), the concentrations are based on
equivalent log10 concentration spacing from 0.0001 to 100 µM in
15-point concentration-response curves. The “gain-loss” model is
given by

E(Rij) = RMAXj

(
1

1+ 10{hj(log10AC50(G),j−log10Ci)}

)
×(

1
1+ 10{hj(log10Ci−log10AC50(L),j)}

)
(3)

where RMAXj is the shared upper asymptote, both bottom
asymptotes are set to zero, hj is the slope parameter, AC50(G),j is
the concentration of half-maximal response in the gain direction
and AC50(L),j is the concentration of half-maximal response in the
loss direction (Filer et al., 2017).
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For each cluster, the mean RMAXj value (µRMAX) is selected
using random deviates from the uniform distribution on (3σ,
ResponseRange) and RMAXj is drawn from N(µRMAX , MSE). The
slope parameter hj is drawn from |N(1,9)|. For each cluster,
mean values (MEAN) of log10AC50,j from the Hill model, or
log10AC50(G),j from the “gain-loss” model, are randomly selected
from (0.0001, 0.001, 0.01, 0.1, 1, 10, 100), or from (0.0001, 0.01,
1, 100) with equal probabilities and without replacement, across
clusters for 10-fold AC50 spacing and 100-fold AC50 spacing,
respectively. Mean values of log10AC50(G),j are randomly selected
from (0.0001, 0.001, 0.01, 0.1, 1, 10, 100) with equal probabilities
where log10AC50(L),j – log10AC50(G),j ≥ 1 for 10-fold AC50
spacing, or from (0.0001, 0.01, 1, 100) with equal probabilities
where log10AC50(L),j – log10AC50(G),j ≥ 2 for 100-fold AC50
spacing. If no log10AC50(L),j values within the selected range
meet this criterion, log10AC50(L),j is set to 1000. The random
realization of the mean log10AC50,j value, or log10AC50(G),j, is
drawn from N(MEAN, σ), where σ = 1/6 is selected so that
∼99.7% of all AC50 values between clusters are separated at least
10- or 100-fold, depending on the simulation scenario. After
determining the parameters for each cluster, response data was
simulated by adding heteroscedastic noise to ideal curves with
N(0, Rij × CV), where Rij is given from Eq. (2) or Eq. (3)
above. Summary statistics for the simulated data are given in
Supplementary Tables 4, 5.

RESULTS

Applying CASANOVA to Tox21
Phase II Data
CASANOVA was applied to publicly available Tox21 Phase
II data related to stress response, nuclear receptor signaling
and cell viability in order to assess the consistency of intra-
chemical response patterns within and between assays. We
selected 43 of the 47 publicly available data sets since these
data sets were generated using a similar experimental design
(i.e., 15-point concentration-response data generated in three
experimental runs). These 43 data sets correspond to 72 different
readouts, where many of the agonist and antagonist assays
monitored cytotoxicity as well as the response in the specified
assay mode. A total of 7,229 chemicals were represented in
all 72 readouts.

The barplot in Figure 2 shows the fraction of these compounds
that were classified as single clusters that are well-separated
from the noise band (Conclusive Case 1), single clusters that
extend outside of the noise band and points outside the noise
threshold are not significantly different from the noise band
(Inconclusive Case 1), non-responsive with all repeats located
within the noise band (Case 2), multiple clusters where at
least one cluster extends outside the noise band and points
outside the noise threshold are not significantly different from
the noise band (Inconclusive Case 3) or multiple clusters for
which at least one cluster extends significantly beyond the noise
band (Conclusive Case 3). Most chemicals do not exhibit any
response in the tested assay conditions (Case 2). The fraction
of single clusters among all 7,229 compounds with at least one

detectable response in an assay ranges from 1.6% (tox21-vdr-
agonist-p1) to 23.8% (tox21-dt40-p1_100) across the 72 readouts.
As shown in the plots for selected compounds in Figure 2, this
multiplicity in response is sometimes associated with one or
more known experimental design factors such as supplier, library
preparation site, compound purity, concentration spacing, or
experimental day (Figure 2). For example, in the top panel of
Figure 2 supplier is confounded with site of library preparation
so that one or both of these two experimental factors can
potentially account for the separation of response patterns into
two different clusters.

The Hill model (Hill, 1910) was used to estimate the
concentration for half maximal activity (AC50) for the 7,229
compounds common to all 43 data sets. Compounds with two
or more clusters outside of the noise band and estimated AC50
values within about 10-fold of the typical concentration range in
the assays (10−5 to 1,000 µM) were evaluated further in order
to discover the variability in AC50 estimates within a multiple
cluster compound. In Figure 3A, the percentage of multi-cluster
compounds with AC50 estimates greater than 10-fold ranged
from 16.7% for the tox21-gh3-tre-agonist-p1 agonist assay to
65.6% for the tox21-er-luc-bg1-4e2-antagonist-p1 viability assay.
The percentage of multi-cluster compounds with AC50 estimate
differences greater than 100-fold ranged between 10.7 and 43.8%
for these two assays, respectively. The fraction of compounds
with multiple cluster responses was not statistically different
between agonist and antagonist/inhibitor assays. However, the
distribution of multiple cluster compounds was greater in
viability assays compared to the agonist and antagonist/inhibitor
assays, when considering 10-fold (Figure 3B) or 100-fold
(Figure 3C) potency differences (p < 0.001 using the two-sided
Kolmogorov–Smirnov test). In Figure 3B, about 38% of the
7,729 tested compounds have at least a 10-fold spread in AC50
estimates in half of the agonist and antagonist/inhibitor assays,
whereas about 54% of the tested compounds have at least a
10-fold spread in AC50 estimates in half of the viability assays.
In Figure 3C, about 18% of the tested compounds have at
least a 100-fold spread in AC50 estimates in half of the agonist
and antagonist/inhibitor assays, while about 32% of the tested
compounds have at least a 100-fold spread in AC50 estimates in
half of the viability assays.

Simulation Studies to Evaluate the
Performance of CASANOVA
Simulation error rates were determined by averaging error rates
from each simulated data set of 2,000 compounds across 100
different simulated runs. Error rates were calculated for each
run based on the proportion of compounds with a given error
type. “Type A” error was assigned to a compound when the
CASANOVA approach incorrectly separated any two repeats
from a true cluster (i.e., when a true single cluster compound was
classified as a Conclusive Case 3). Conversely, a “Type B” error
was assigned to a compound when any two repeats from separate
clusters were falsely combined (i.e., when a true multiple-cluster
compound was classified as a Conclusive Case 1). In both cases,
these error rates are less than 5% with p < 0.05 and p < 0.10 as
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FIGURE 2 | A barplot was used to summarize the response patterns corresponding to 72 assay readouts from 43 different data sets. A total of 7,229 chemicals
were common among all 43 data sets. In the barplot, the gray regions correspond to the fraction of chemicals clustered in the noise band (Case 2), the dark green
regions refer to a single detectable cluster well-separated from the noise band (Conclusive Case 1), the light green regions represent a single cluster with response
points not statistically separable from noise (Inconclusive Case 1), the pink regions correspond to multiple clusters with response points not statistically separable
from the noise band (Inconclusive Case 3) and the red regions refer to multiple clusters well-separated from the noise band (Conclusive Case 3). Agonist assay labels
are shown in dark blue, antagonist/inhibitor assay labels are shown in green and viability assay labels are shown in gray. Selected compound profiles from assays
with multiple clusters (Conclusive Case 3) are shown to the right of the barplot. Known factors associated with different clusters are indicated in the upper left of
each plot. These factors include supplier, library preparation site, concentration spacing, compound purity and experimental day. None of these factors explain the
different patterns observed in the last two plots. Hence, adjusting or normalizing the concentration-response data for these known factors will not necessarily
eliminate multiple cluster response patterns among repeats within a compound in qHTS data.

the selected criterion for identifying and separating clusters for
either 10-fold AC50 spacing or 100-fold AC50 spacing (Table 1).

Simulation Studies to Evaluate AC50
Parameter Estimation
The bias and precision (1/variance) of AC50 estimation was
evaluated in a separate simulation study. This simulation

reflects the situation in which potency is estimated for single
cluster compounds (Case 1). A total of 2,000 chemicals were
simulated in activation mode, with increasing responses for
increasing concentrations across a range of concentrations
between 0.1 nM and 100 µM, where AC50 values were
set to 0.001 µM (upper asymptote only), 0.1 µM (both
asymptotes) or 10 µM (lower asymptote only). RMAX was
considered at three values (25, 50, and 100% of positive
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FIGURE 3 | Complementary empirical cumulative distribution (CCDF) describing the variability in AC50 values. The maximal range of AC50 values (on the log10 scale)
was calculated for each compound in which two or more clusters were identified outside of the noise region for each of the 7,729 compounds investigated in the 43
data sets described in the text. The order of magnitude differences in intrachemical potency estimates shown here represent only those cases in which the
calculated AC50 is between 10−5 and 1000 µM, which covers the typical testing concentration range of ∼10−4 to 100 µM evaluated in these assays. The number
of compounds meeting this criterion ranged from 42 to 774 in the 72 assay types evaluated here, with a median of 255 compounds. (A) The CCDF (or 1-CDF) plots
describing the proportion of compounds (y-axis) for a given spread in AC50 (x-axis) in the tox21-er-luc-bg1-4e2-antagonist-p1 viability assay (blue) and the
tox21-gh3-tre-agonist-p1 agonist assay (red) are displayed. The vertical black lines indicate 10- and 100-fold differences in the calculated range of AC50 values.
(B) The CCDF for the fraction of the 72 assays with greater than 10-fold range in AC50 values (y-axis) for a given spread in AC50 (x-axis) are shown for the agonist
(dark blue), antagonist/inhibitor (dark green) and viability (dark gray) assays. (C) The CCDF for the fraction of the 72 assays with greater than 100-fold range in AC50

are shown for the same agonist, antagonist/inhibitor and viability assays presented in (B).

control). The hill parameter was set to 1 for all curves in this
simulation. Residual errors were modeled as ERROR ∼ N(0, σ2)
with σ = 5% or 10%.

Outliers were removed (Wang et al., 2010), separate curves
were fit to each response curve and the log10AC50 parameter value
was calculated for each profile (Shockley, 2012). We evaluated
n profiles per compound for n = 3, 6, 9, or 12. For each
compound, profile-specific estimates were summarized using the
average, median or weighted average of the estimates, or a single
model fit (Shockley, 2015). As described above, the weighted
average approach uses (1/SE)2 for weights, where SE is the
standard error of the parameter estimate. The bias was less than
0.01 (1.02-fold) and the variance was less than 0.04 (1.1-fold)
when both plateaus/asymptotes were present in the simulated
sigmoidal curve for σ = 5% (Table 2). These errors were larger
for σ = 10% (Supplementary Table 6). The weighted average
approach produced the most repeatable results, where both bias
and variance of the estimated log10AC50 for a compound were
typically within one order of magnitude (10-fold).

DISCUSSION

Millions of dollars are being invested in developing qHTS
assays and there are far reaching economic and public health

implications for these large-scale studies. We believe that there
is a pressing need for a rigorous, yet simple, Q/C process such
as the one we offer in this work. Chemical genomics efforts
inevitably involve multiple sources of variation imposed by
limited resources and the technological constraints of robotic
plate handling (Attene-Ramos et al., 2013). On the one hand, it
can be advantageous to have compound activity data generated
across multiple design factors in order to increase the chances
that an observed response is related to the biological assay
of interest rather than technical error (Ding et al., 2017).
However, differences in chemical supplier, compound purity,
laboratory protocol, or the day of the experiment may produce
systematic errors that vary from chemical to chemical. Assay
interference arising from autofluorescence and compound-
induced cytotoxicity can also cause misleading signals (Tice
et al., 2013; Hsieh et al., 2015). Other influential factors may
be unknown or difficult to take into account (Malo et al.,
2006). The proximity of wells in microtiter test plates may
yield misleading signals due to signal flare or inadvertent
contamination. Well-composition could also change over time
due to evaporation, alterations in dissolvability, volatility, or
chemical reaction. Artifacts can have an unpredictable effect on
the biological response (Hsieh et al., 2015). Unfortunately, these
design restrictions may lead to discordant intrachemical response
patterns even after data normalization.
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TABLE 1 | CASANOVA classification errors for the given p-value threshold.

p-Value threshold

0.00 0.001 0.01 0.05 0.10 0.20 0.50 1.00

10-fold AC50 spacing

Dataset 1a

errorA 0.019 0.019 0.019 0.023 0.031 0.051 0.151 0.585

errorB 0.418 0.102 0.057 0.032 0.022 0.014 0.001 0.000

Dataset 2b

errorA 0.022 0.022 0.023 0.027 0.036 0.058 0.163 0.565

errorB 0.392 0.104 0.059 0.033 0.022 0.014 0.006 0.000

Dataset 3c

errorA 0.017 0.017 0.018 0.022 0.028 0.047 0.141 0.588

errorB 0.423 0.098 0.055 0.030 0.021 0.013 0.005 0.000

Dataset 4d

errorA 0.031 0.031 0.032 0.037 0.047 0.072 0.182 0.416

errorB 0.312 0.109 0.064 0.035 0.024 0.014 0.004 0.000

100-fold AC50 spacing

Dataset 1a

errorA 0.014 0.014 0.015 0.020 0.028 0.050 0.166 0.606

errorB 0.348 0.037 0.014 0.005 0.003 0.001 0.000 0.000

Dataset 2b

errorA 0.017 0.017 0.018 0.024 0.033 0.058 0.178 0.583

errorB 0.331 0.039 0.015 0.005 0.003 0.002 0.001 0.000

Dataset 3c

errorA 0.013 0.013 0.014 0.018 0.025 0.046 0.154 0.609

errorB 0.351 0.034 0.012 0.004 0.002 0.001 0.000 0.000

Dataset 4d

errorA 0.025 0.025 0.026 0.034 0.045 0.074 0.202 0.521

errorB 0.273 0.048 0.019 0.006 0.003 0.001 0.000 0.000

atox21-elg1-luc-agonist, btox21-are-bla-p1, ctox21-er-luc-bg1-4e2-agonist-p2, dtox21-fxr-bla-agonist-p2.

In this article we present a simple methodology to group
intrachemical repeats in an automated manner. In theory,
if a compound is active, then we expect the responses to
be active at the lowest tested concentration (i.e., exceeding
the noise limits), monotonic, or partially ordered (e.g., up-
turn or down-turn responses) with concentrations. Our
data driven approach to cluster compound-specific response
patterns, termed CASANOVA, finds clusters in which repeats
group together across the entire concentration-response
domain as well as clusters which distinguish repeats in
concentration subgroups.

We assessed the consistency of intra-chemical response
patterns within and between Tox21 Phase II assays interrogating
nuclear receptor activity and stress response. While most
chemicals do not exhibit any response in the tested assay
conditions, a fraction of compounds (i.e., 1.6 to 23.8% across
the tested assays) with at least one profile extending outside
of the noise band represent single cluster response patterns
(Figure 2). Multiplicity in response can often be attributed
to one or more known experimental design factors. Still, it
may not be possible to account for all confounding factors
associated with an observed disparity of responses (e.g.,
Figure 1C). The wide range of AC50 estimates obtained for

the same compound in experimental data sets (Figure 3)
underscores the importance of a clustering algorithm such as
CASANOVA to identify compounds with single cluster patterns
of response. Otherwise, compound potency estimates may
not be reliable.

Simulation studies were used to evaluate the ability of
CASANOVA to cluster compound profiles into reliable subgroups
and provide suitable AC50 potency estimates. The overall error
rates for CASANOVA to correctly cluster similar patterns (“Type
A” errors) and separate disjoint patterns (“Type B” errors) was
found to be less than 5% across a range of simulation studies
based on Tox21 Phase II qHTS data using 10- or 100-fold AC50
spacing. We employed a p-value threshold of 0.05 to describe
patterns in the Tox21 Phase II data. However, the results from
our simulation studies reveal that selecting a less stringent p-value
threshold (e.g., p < 0.10) can be used to increase the “Type
A” error and decrease the “Type B” error according to different
research motivations. Assuming that all the profiles belong to
a single cluster, simple averaging of individual AC50 estimates
leads to the greatest bias and least precise estimates. However,
the weighted average approach produces the most repeatable
results, where both bias and variance are generally within one
order of magnitude.

Frontiers in Genetics | www.frontiersin.org 9 May 2019 | Volume 10 | Article 387

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00387 May 8, 2019 Time: 14:36 # 10

Shockley et al. Quality Control for qHTS Data

TABLE 2 | Bias and variance of log10AC50 parameter for Hill model curves (5% error).

True True Bias (and variance) of log10 AC50

AC50 RMAX n Avg Median WT Avg One model

1.00e-03 Upper plateau only 25 3 1.26(4.07) 0.42(2.63) 0.03(0.61) 0.52(4.07)

25 6 1.22(2.13) 0.21(0.61) 0.10(0.07) 0.44(3.16)

25 9 1.19(1.42) 0.20(0.08) 0.11(0.04) 0.46(3.06)

25 12 1.24(1.10) 0.08(0.10) 0.10(0.03) 0.41(2.84)

50 3 0.28(0.52) 0.07(0.19) 0.05(0.10) 0.05(0.11)

50 6 0.27(0.24) 0.03(0.02) 0.08(0.02) 0.04(0.05)

50 9 0.26(0.14) 0.02(0.01) 0.09(0.01) 0.04(0.06)

50 12 0.26(0.11) 0.02(0.01) 0.09(0.01) 0.04(0.06)

100 3 0.02(0.01) 0.01(0.01) 0.03(0.01) 0.01(0.01)

100 6 0.03(∗) 0.01(∗) 0.03(∗) 0.01(0.01)

100 9 0.03(∗) 0.01(∗) 0.04(∗) 0.01(0.01)

100 12 0.03(∗) ∗(∗) 0.04(∗) 0.01(0.01)

0.1 Upper and lower plateaus 25 3 0.13(1.52) 0.01(0.05) ∗(0.04) 0.01(0.03)

25 6 0.08(0.63) 0.01(0.02) ∗(0.02) ∗(0.03)

25 9 0.09(0.45) ∗(0.01) ∗(0.01) ∗(0.03)

25 12 0.07(0.32) 0.01(0.01) ∗(0.01) 0.01(0.03)

50 3 ∗(0.01) ∗(0.01) ∗(0.01) ∗(0.01)

50 6 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

50 9 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

50 12 ∗(∗) ∗(∗) ∗(∗) ∗(0.01)

100 3 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 6 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 9 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

100 12 ∗(∗) ∗(∗) ∗(∗) ∗(∗)

10 Lower plateau only 25 3 1.86(4.78) 1.04(5.08) 0.13(1.65) 0.72(4.72)

25 6 1.91(2.42) 0.72(1.82) 0.06(0.43) 0.73(5.10)

25 9 1.90(1.70) 0.48(1.20) 0.11(0.11) 0.78(5.27)

25 12 1.90(1.21) 0.37(0.56) 0.09(0.10) 0.75(4.93)

50 3 0.74(1.08) 0.30(0.78) 0.03(0.34) 0.09(0.15)

50 6 0.74(0.51) 0.19(0.16) 0.03(0.13) 0.12(0.30)

50 9 0.77(0.36) 0.14(0.06) 0.04(0.07) 0.13(0.27)

50 12 0.75(0.27) 0.12(0.03) 0.07(0.03) 0.12(0.24)

100 3 0.14(0.10) 0.06(0.03) 0.01(0.04) 0.02(0.01)

100 6 0.14(0.06) 0.04(0.01) 0.02(0.02) 0.02(0.01)

100 9 0.14(0.04) 0.03(0.01) 0.03(0.01) 0.02(0.01)

100 12 0.14(0.02) 0.03(∗) 0.03(∗) 0.02(0.01)

Values of bias or variance less than 0.01 are indicated by “∗”. ∗(∗) indicates that both the bias and the variance are less than 0.01.

The CASANOVA approach provides an unsupervised method
to agnostically separate multiple cluster response compounds
from compounds with reasonably concordant concentration-
response repeats. Our approach therefore avoids a complicated
modeling effort to account for all potentially influential variables
in the data, many of which may not be explicit or identifiable
in any given study. Compound potency estimates in qHTS
experiments can vary substantially (well over 100-fold in some
cases) in large scale in vitro bioassay data due to multiple
cluster intrachemical responses. Lim et al. (2013) discussed
possible strategies to derive optimal experimental designs for
qHTS experiments to improve the precision of potency estimates
and statistical inference on these parameters. Nevertheless,
CASANOVA can improve the detection of single cluster

intrachemical repeats and potency estimation for candidate hits
irrespective of the underlying study design. Multiple cluster
compounds identified using CASANOVA can be studied further
to understand the source of the variation which may arise
from technological disturbances such as compound carryover,
interference between signal channels, autofluorescence, or
potential fluctuations in the laboratory environment. However,
by focusing research efforts on compounds with single cluster
response patterns, potency estimation is expected to be more
accurate and precise. We anticipate that CASANOVA can
be applied to other types of sequential data types involving
non-linear responses, including dose-response and longitudinal
genomics studies, where divergent responses in subregions
of the data are important. The R code for CASANOVA is
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available upon request or can be downloaded online from www.
niehs.nih.gov/research/atniehs/labs/bb/staff/shockley/index.cfm.
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