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Abstract 

It is assumed that host genetic variability for susceptibility to infection conditions virus evolution. Differences in host susceptibility can 
drive a virus to diversify into strains that track different defense alleles (e.g. antigenic diversity) or to infect only the most susceptible 
genotypes. Here, we have studied how variability in host defenses determines the evolutionary fate of a plant RNA virus. We performed 
evolution experiments with Turnip mosaic potyvirus in Arabidopsis thaliana mutants that had disruptions in infection-response signaling 
pathways or in genes whose products are essential for potyvirus infection. Plant genotypes were classified into five phenogroups 
according to their response to infection. We found that evolution proceeded faster in more restrictive hosts than in more permissive 
ones. Most of the phenotypic differences shown by the ancestral virus across host genotypes were removed after evolution, suggesting 
the combined action of selection and chance. When all evolved viral lineages were tested in all plant genotypes used in the experiments, 
we found compelling evidences that the most restrictive plant genotypes selected for more generalist viruses, while more permissive 
genotypes selected for more specialist viruses. Sequencing the genomes of the evolved viral lineages, we found that selection targeted 
the multifunctional genome-linked protein VPg in most host genotypes. Overall, this work illustrates how different host defenses 
modulate the rates and extent of virus evolution.

Key words: experimental evolution; generalism; plant immunity; plant-virus interactions; response to infection; specialization; virus 
evolution

1. Introduction
The spectrum of disease severity can be attributed to heterogene-

ity in virus virulence or host resistance and/or tolerance factors; 

the two are not necessarily independent explanations and they 

must actually complement and/or interact with each other result-

ing in an arms-race coevolutionary process. A common situation 

faced by viruses is that host populations consist of individuals that 

have different degrees of permissiveness to infection (Schmid-

Hempel and Koella 1994; Pfenning 2001; Sallinen et al. 2020). 

Therefore, adaptive changes improving viral fitness in one host 

genotype may be selected against, or be neutral, in an alternative 

one. Genetic variability in the permissiveness of hosts and infec-
tiousness of viruses have been well studied in animals and plants 
(e.g. Schmid-Hempel and Koella 1994; Altizer et al. 2006; Hughes 
and Boomsma 2006; Brown and Tellier 2011; Anttila et al. 2015; 
Parrat, Numminen, and Laine 2016; González, Butković, and Elena 
2019; Sallinen et al. 2020). Theoretically, in the absence of host het-
erogeneity, parasites must evolve toward a host exploitation strat-
egy that maximizes transmission with low virulence (Haraguchi 
and Sasaki 2000; Regoes, Nowak, and Bonhoeffer 2000; Rodríguez 
and Torres-Sorando 2001; Ganusov, Bergstrom, and Antia 2002; 
Gandon 2004; Lively 2010; Moreno-Gámez, Stephan, and Tellier 
2013).
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2 Virus Evolution

The interaction between host and parasite genotypes has been 
explained in the light of two different models that represent the 
two extremes on a continuum of possibilities. At one extreme 
the gene-for-gene model, in which a parasite genotype that can 
infect all host genotypes exists implies that a universally sus-
ceptible host genotype should also exist (Flor 1956). Resistance 
occurs when a host’s resistance gene is matched by at least one 
parasite’s avirulence gene. Polymorphism in permissiveness and 
infectivity can be maintained only if virulence pays a cost. At the 
other extreme, the matching-alleles model is based on self- versus 
nonself-recognition systems. Infection is not possible unless the 
parasite possesses all alleles that match those of the host (Frank 
1993). In this case, polymorphisms are maintained by negative 
frequency-dependent selection. Along the continuum, variability 
in host defense mechanisms impacts the evolution of the para-
site’s virulence and other fitness-related traits. Viral infection of 
plants is a complex system in which the virus parasitizes the host 
and utilizes all its cellular resources to replicate and systemically 
spread. In response, plants have evolved intricate signaling mech-
anisms that limit the spread of the virus and result in resistance 
(Zhou and Zhang 2020). Broadly speaking, these factors can be 
classified into basal if they are preexisting and limit within-cell 
propagation and cell-to-cell spread and inducible if they are only 
activated upon infection and inhibit systemic virus movement 
and replication. Basal mechanisms include susceptibility (S) genes 
that involve alleles of cellular proteins that do not interact prop-
erly with viral factors, e.g. translation initiation factors required 
by the virus for successful exploitation of the cell’s protein syn-
thesis machinery, heat shock proteins that assist the formation 
of multiprotein complexes, or DNA-binding phosphatases (Carr, 
Lewsey, and Palukaitis 2010; Mäkinen 2019). In contrast, inducible 
mechanisms include genes whose expression results in a broad-
scale change in plant physiology via diverse signal transduction 
pathways, particularly those regulated by the hormones salicylic 
acid (SA), jasmonic acid (JA), and ethylene (ET) (Soosaar, Burch-
Smith, and Dinesh-Kumar 2005; Carr, Lewsey, and Palukaitis 2010). 
These changes include local cell apoptosis (Loebenstein 2009), 
the upregulation of nonspecific responses against many different 
types of pathogens throughout the entire plant (systemic acquired 
resistance—SAR and induced systemic resistance—ISR) (Kachroo, 
Chandra-Shekara, and Klessig 2006; Carr, Lewsey, and Palukaitis 
2010), and the activation of the RNA-silencing-based resistance, 
that seems to play a role both in basal and inducible mecha-
nisms (Voinnet 2001; Carr, Lewsey, and Palukaitis 2010). Early host 
responses following virus detection include changes in ion fluxes 
(mainly Ca++), activation of signaling pathways, major alter-
ations of transcriptomic profiles, generation of reactive oxygen 
species, and production of nitric oxide (Soosaar, Burch-Smith, and 
Dinesh-Kumar 2005). These immediate changes are followed by 
cell apoptosis and the recruitment of SA and JA/ET signaling path-
ways. The SA-mediated defense signaling pathway results in SAR, 
while the JA/ET-mediated defense signaling pathway results in 
ISR, the latter being specifically involved in interactions between 
plants and beneficial microbes. Indeed, it appears that ISR is not 
effective against most viruses (Ton et al. 2002; Loebenstein 2009; 
Pieterse et al. 2009). Both SAR and ISR pathways converge into 
two master regulator genes, the ENHANCED DISEASE SUSCEPTI-
BILITY 1 (EDS1) and the PHYTOALEXIN DEFICIENT 4 (PAD4). EDS1
and PAD4 repress ISR and promote SAR. Although the SA and 
JA/ET pathways have been viewed as mutually antagonistic, sev-
eral studies have revealed positive and negative crosstalk between 
them (Van Wees et al. 2000; Pieterse et al. 2012) as well as with 

the RNA-silencing pathway (Soosaar, Burch-Smith, and Dinesh-
Kumar 2005; Carr, Lewsey, and Palukaitis 2010; Yang et al. 2020). 
This crosstalk shows the topological structure of an incoherent 
feed-forward loop that confers robustness and tunability to the 
plant immune network (Mine et al. 2017).

Here we have used the turnip mosaic virus (TuMV; species
Turnip mosaic potyvirus, genus Potyvirus, family Potyviridae)—
Arabidopsis thaliana experimental pathosystem to explore how 
defects in basal and inducible defenses affect virus evolution. 
After exploring the variability of phenotypic responses to TuMV 
infection in a collection of twenty-one A. thaliana genotypes, ten of 
them were chosen, covering a wide spectrum of host phenotypic 
responses. Then, we performed virus evolution experiments on 
each of these genotypes and tracked the evolution of quantitative 
disease-related traits. At the end of the evolution experiment, we 
evaluated the effects of host genotypes in the extent of observed 
phenotypic changes, rates of virus evolution and the contribu-
tion of historical contingency, selection and stochasticity in the 
outcome of evolution. Next, we explored whether different TuMV 
lineages evolved as more specialist or more generalists depending 
on the disrupted defense mechanism in their local host. Finally, 
we identified the pattern of molecular changes in the genomes of 
the different viral lineages.

2. Materials and methods
2.1 Plants, viruses, and growth conditions
A collection of twenty-one different A. thaliana (L.) Heynh geno-
types of the Col-0 accession were used for this study Table 1. 
This collection covered a wide range of possible resistance mecha-
nisms. None of them showed a strong deleterious phenotype that 
might later interfere with the identification of infection symp-
toms. In all experiments described below, plants were maintained 
in a BSL2 climatic chamber under a photoperiod of 8-h light (LED 
tubes at PAR 90–100 μmol/m2/s) at 24∘C and 16-h dark at 20∘C and 
40 per cent relative humidity. 

TuMV infectious sap was obtained from TuMV-infected Nico-
tiana benthamiana Domin plants inoculated with the infectious 
plasmid p35STunos containing a cDNA of the TuMV genome 
(GeneBank accession AF530055.2) under the control of the 
cauliflower mosaic virus 35S promoter and the nos terminator 
(Chen et al. 2003) as described elsewhere (González, Butković, 
and Elena 2019; Corrêa et al. 2020). This TuMV sequence vari-
ant corresponds to the YC5 strain from calla lily (Zantesdeschia
sp.) (Chen et al. 2003). After plants showed symptoms of infec-
tion, they were pooled and frozen with liquid N2. This frozen plant 
tissue was homogenized into a fine powder using a Mixer Mill 
MM400 (Retsch GmbH, Haan, Germany). For inoculations, 0.1 g 
of powder was diluted in 1 ml inoculation buffer (50 mM phos-
phate buffer pH 7.0, 3 per cent PEG6000, 10 per cent Carborun-
dum) and 5 μl of the inoculum was gently rubbed onto two leaves 
per plant. Plants were all inoculated when they reached growth 
stage 3.5 in the Boyes et al. (2001) scale. This synchronization 
ensures that all hosts were at the same phenological stage when
inoculated.

2.2 Phenotyping infection
Five different disease-related traits were measured for each 
infected plant (n = 20) during 15 days postinoculation (dpi): (1) 
change in dry weight of the aerial part of infected plants, with a 
precision of 10 mg, relative to the corresponding noninfected con-
trols (Supplementary Fig. S1A). (2) Severity of symptoms evaluated 
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Table 1. Different A. thaliana genotypes used in this study. Highlighted in gray are those used for the evolution experiments.

Genotype Gene name Affected pathway
Expected phenotype relative 
to wildtype plants Reference

Wildtype
coi1-4 CORONATINE INSENSITIVE 1

(AT2G39940)
Repression of JA-responsive genes No ISR, no effect on virus Thines et al. (2007)

cpr5-2 CONSTITUTIVE EXPRES-
SOR OF PR GENES 5
(AT5G64930)

Membrane protein, negative regulator of 
pathogen-dependent SA signaling

More resistant, constitutive 
SAR

Love et al. (2007)

dbp2 DNA-BINDING PROTEIN 
PHOSPHATASE 2

Transcriptional regulation of gene expression 
in potyvirus-infected plants

More resistant to potyvirus 
infection

Castelló et al. (2011)

dcl2 DICER-LIKE 2 (AT3G03300) Partial loss of RNA-silencing No effect, siRNAs produced 
by DCL4

Bouché et al. (2006)

dcl4 DICER-LIKE 4 (AT5G20320) Partial loss of RNA-silencing No effect, siRNA produced 
by DCL2

Bouché et al. (2006)

dcl2 dcl4 Double mutant dcl2 dcl4 Complete loss of RNA-silencing More susceptible, no siRNA 
production

Bouché et al. (2006)

dip2 DBP-INTERACTING PROTEIN 
2 (AT5G03210)

Transcriptional regulation of gene expression 
in potyvirus-infected plants

More susceptible Castelló et al. (2011)

eds4-1 ENHANCED DISEASE SUS-
CEPTIBILITY 4 (AT5G51200)

Loss of SA-dependent signaling More susceptible, no SAR Gupta, Willits, and
Glazebrook (2000)

eds5-1 ENHANCED DISEASE SUS-
CEPTIBILITY 5 (AT4G39030)

Lipase-like protein, positive regulator of 
pathogen-dependent SA signaling

More susceptible, no SAR Nawrath et al. (2002)

eds8-1 ENHANCED DISEASE 
SUSCEPTIBILITY 8

Reduced expression of plant defensin genes, 
reduced ISR

More resistant, enhanced 
SAR

Love et al. (2007)

ein2-1 ETHYLENE INSENSITIVE 2
(AT5G03280)

MAPK, ET signaling intermediate, negative 
regulator SA-dependent signaling

More resistant, enhanced 
SAR

Love et al. (2007)

etr1-1 ETHYLENE RESPONSE 1
(AT1G66340)

ET receptor, negative regulator SA-dependent 
signaling

More resistant, enhanced 
SAR

Love et al. (2007)

hsp90-1 HEAT SHOCK PROTEIN 1
(AT5G52640)

Recessive r gene, required for membrane-
bound replication complexes; protein 
folding

More resistant, missing 
component for viral 
replication

Verchot (2012)

i4g1 EUKARYOTIC TRANSLATION 
INITIATION FACTOR (ISO) 
4 G 1 (AT3G60240)

Recessive r gene, initiation of viral RNA 
translation

More resistant, missing 
component for viral gene 
expression

Nicaise et al. (2007)

i4g2 EUKARYOTIC TRANSLATION 
INITIATION FACTOR (ISO) 
4 G 2

Recessive r gene, initiation of viral RNA 
translation

More resistant, missing 
component for viral gene 
expression

Nicaise et al. (2007)

jin1 JASMONATE INSENSITIVE 1
(AT1G32640)

Loss of JA signaling; negative regulator of SA-
dependent signaling

More resistant, enhanced 
SAR

Laurie-Berry et al.
(2006)

npr1-1 NONEXPRESSER OF PR 
GENES 1 (AT1G64280)

Ankyrin-repeat protein required for PR-1
activation

More susceptible, no SAR, 
no ISR

Cao et al. (1994)

p58IPK HOMOLOG OF MAMMALIAN 
P58IPK (AT5G03160)

Constitutive activation of PKR More resistant, strong 
apoptosis-mediated HR

Bilgin et al. (2003)

pad4-1 PHYTOALEXIN DEFICIENT 4
(AT3G52430)

Lipase-like protein, positive regulator 
pathogen-dependent SA signaling

More susceptible, no SAR Cui et al. (2018)

sid2-1 SA INDUCTION DEFICIENT 2
(AT1G74710)

Isochorismate synthase, required for SA 
bioshynthesis

More susceptible, no SAR Nawrath and Métraux 
(1999)

ET—ethylene; HR—hypersensitive response; ISR—induced systemic resistance; JA—jasmonic acid; MAPK—mitogen-activated protein kinase; PKR—protein kinase 
RNA-activated; SA—salicylic acid; SAR—systemic acquired resistance.

in a semiquantitative discrete scale (as shown in Fig. 1B in Corrêa 

et al. 2020) ranging from zero for non-infection or asymptomatic 

infections to four for plants showing a generalized necrosis and 

wilting (Supplementary Fig. S1B). (3) The area under the disease 

progress stairs (AUDPS) (Supplementary Fig. S1C) takes values in 

the range (0, N) where N is the total number of days included in 

the assay (Simko and Piepho 2012). AUDPS is a good metric for 

pathogenicity and transmission efficiency, as it summarizes the 

number of infected individuals as well as the temporal dynamics 

at which symptoms appear in the host population into a single 
figure (Jeger and Viljanen-Rollinson 2001; Simko and Piepho 2012; 
Alves and Del Ponte 2021). (4) Permissiveness to infection mea-
sured as the frequency of symptomatic plants out of the number 
of inoculated plants at 15 dpi (Supplementary Fig. S1D) and (5) 

viral load measured by absolute reverse transcription real-time 
quantitiative polymerase chain reaction (RT-qPCR) as the num-
ber of viral genomes per ng of total RNA in the plant as described 
below (Supplementary Fig. S1E).

Plant genotypes were clustered according to their phenotypic 
similarity in response to TuMV infection using a nearest-neighbor 
clustering algorithm and the multivariate Euclidean distance. The 
optimal number of clusters was confirmed by a k-means classi-
fication method using the minimum value of Bayes information 
criterion (BIC) among a set of competing models.

2.3 Experimental evolution
Five TuMV lineages were evolved during twelve consecutive serial 
passages in each one of the nine selected mutant genotypes. In 
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Figure 1. Nearest-neighbor clustering of the twenty-one genotypes of A. 
thaliana. Based on the squared Euclidean distance among multivariate 
vectors of phenotypic traits in response to TuMV infection. Genotypes 
selected as hosts for the evolution experiments are highlighted . The 
thick vertical line represents the cutoff criteria used to define the 
statistically significant phenogroups (lowest BIC value was obtained for 
five phenogroups G1 to G5).

addition, two lineages were also evolved in wild type (WT) plants. 
To begin the evolution experiment, ten A. thaliana plants at devel-
opmental stage 3.5 in Boyes et al. (2001) scale per lineage and 
genotype were inoculated as described above with the virus stock 
previously generated from infected N. benthamiana plants inocu-
lated with infectious clone p35STunos. The next passages were 
made by harvesting the symptomatic plants at 12 dpi, preparing 
the infectious sap as described above, and inoculating it to a new 
healthy population of ten plants.

2.4 Total RNA extractions and quantification of 
viral load
Pools were made of ten infected symptomatic plants per lineage, 
genotype, and serial passage, frozen with liquid N2 and preserved 
at −80∘C until it was homogenized into fine powder. Next, aliquots 
of approximately 0.1 g of grounded tissues were used for total RNA 
(RNAt) extractions. The RNAt was extracted with the Agilent Plant 
RNA isolation Mini kit (Agilent Technologies, Santa Clara CA, USA). 
Three aliquots of RNAt per each sample were separated and their 
concentration adjusted at approximately 50 ng/μl to estimate viral 
load.

Viral load was quantified in each of the three aliquots by 
absolute real-time quantitative RT-PCR (RT-qPCR) using standard 
curves and the primers TuMV F117 forward (5′-CAATACGTGCGAG
AGAAGCACAC-3′) and F118 reverse (5′-TAACCCCTTAACGCCAA
GTAAG-3′) that amplify a 173 nucleotides fragment from the CP
cistron of TuMV genome, as previously described (Corrêa et al. 
2020). Briefly, standard curves were constructed using ten serial 
dilutions of the TuMV genome, that was synthesized by in vitro
transcription as detailed previously (Cervera et al. 2018), in RNAt 
extract obtained from healthy A. thaliana plants used as control in 
the experiments. Amplification reactions were run in a 20 μl vol-
ume using the GoTaq 1-Step RT-qPCR System (Promega, Madison 
WI, USA) and the recommended manufacturer’s instructions in an 
ABI StepOne Plus Real-time PCR System (Applied Biosystems, Fos-
ter City CA, USA). The cycling conditions consisted of an RT phase 

of 5 min at 42∘C and 10 min at 95∘C followed by a PCR stage con-
sisting of 40 cycles of 5 s at 95∘C and 34 s at 60∘C, and the final melt 
curve profile that consisted of 15 s at 95∘C, 1 min at 60∘C and 15 s 
at 95∘C. Negative controls consisted of healthy RNAt plant extract 
(mock-inoculated noninfected control) and water. For each sam-
ple, three technical replicates were quantified. The results were 
analyzed using the StepOne software 2.2.2 (Applied Biosystems).

2.5 TuMV genome amplifications and sequencing
A sample of the above RNAt obtained at passage 12 from each 
viral lineage was used to generate the viral consensus sequence. 
RNAs were amplified by high-fidelity RT-PCR using the AccuScript 
Hi-Fi (Agilent Technologies) reverse transcriptase and Phusion 
DNA polymerase (Thermo Scientific, Waltham MA, USA) follow-
ing the manufacturer’s instructions. Each complete TuMV genome 
was amplified into three overlapping amplicons of 3114 (5′ frag-
ment R1), 3697 (central region R2), and 3287 nucleotides (3′ frag-
ment R3) using three primer sets. For RT reactions an aliquot 
of the corresponding RNAt (150–300 ng) was mixed with 0.25 μM 
of the 1 R-P3 (5′-CGAGTAGTATCTTATAGCACAGCGCTCCGACC-3′), 
2 R-NIa (5′-TGTCTGGAATCGGTAGCAAATGTAGCTGAGTTGTG-3′) 
or 3 R-polyAR (5′-TTTTTTTTTTTTTTTTTTTTGTCCCTTGCATCAT
ATCAAATG-3′) primer to synthesize the R1, R2 or R3 cDNA frag-
ment, respectively, that were denatured 5 min at 65∘C and cooled 
on ice. Then a mix containing AccuScript Hi-Fi 1× Buffer, 1 mM of 
dNTPs, 8 mM of DTT, 4 U of Ribolock RNase inhibitor (Thermo Sci-
entific), and 0.5 μl of AccuScript Hi-Fi (Agilent Technologies) was 
added up to a 10 μl volume. RT reactions consisted of 90 min at 
42∘C to synthesize the cDNA followed by an incubation of 5 min 
at 70∘C to inactivate the enzyme. PCR reactions were performed 
in a 50 μl volume containing a mix of 1× Phusion Buffer, 0.4 μM 
of dNTPs, 0.2 μM of each primer, 0.5–1 μl of DMSO, 2U of Phusion 
DNA polymerase (Thermo Scientific), and 1 μl of the corresponding 
RT reaction. R1 fragment was amplified using the primer set 1F-
5UTR (5′-GCAAACGCAGACCTTTCGAAGCACTCAAGC-3′) and 1R-
P3 and the following PCR conditions: an initial denaturation of 
30 s at 98∘C, 3 cycles of 10 s at 98∘C, 20 s at 67∘C and 2 min 
at 72∘C, 3 cycles of 10 s at 98∘C, 20 s at 65∘C and 2 min at 
72∘C, and 32 cycles of 10 s at 98∘C, 20 s at 63∘C and 2 min 
at 72∘C, followed by a final extension step of 5 min at 72∘C. 
Fragments R2 and R3 were amplified with primer set 2F-P3 (5′-
TGGGAGCTTGCGGATGGTGGATACACAATTC-3′) and 2R-NIa or 3F-
NIa (5′-CTCGTTATATGGAGTCGGTTTCGGACCACTCATAT-3′) and 
3R-polyAR, respectively and a PCR with the same denaturation 
and extension steps than the fragment R1 but different amplifi-
cation steps: a stage consisting of 15 cycles of 10 s at 98∘C, 20 s at 
67∘C, and 2 min at 72∘C followed by 23 cycles of 10 s at 98∘C, 20 
s at 65∘C, and 2 min at 72∘C for fragment R2. For fragment R3, 15 
cycles of 10 s at 98∘C, 20 s at 67∘C, and 2 min at 72∘C followed by 23 
cycles of 10 s at 98∘C, 20 s at 65∘C, and 2 min at 72∘C were used. PCR 
products were purified with the MSB Spin PCRapace Kit (Stratec 
Molecular, Coronado CA, USA) and then Sanger-sequenced. Full-
length consensus viral sequences were obtained assembling the 
sequences of the three amplified products by using the Genious 
R9.0.2 program.

2.6 Statistical analyses
AUDPS data were fitted to an analysis of variance (ANOVA) model 
with plant genotype (G) as main factor, independent evolution lin-
eages (L) were nested within G and passage (t) was introduced in 
the model as a covariable. The full model equation thus reads: 

𝐴𝑈𝐷𝑃𝑆𝑖𝑗𝑘 (𝑡)∼𝐴 + 𝑡 + 𝐺𝑖 + 𝐿(𝐺)𝑖𝑗 + (𝑡 × 𝐺)𝑖 + [𝑡 × 𝐿(𝐺)]𝑖𝑗 + 𝜀𝑖𝑗𝑘 (1)
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where AUDPSijk(t) is the value observed at time t, for an individual 
infected plant k of evolutionary lineage j of genotype i, A repre-
sents the grand mean value and εijk stands for the error assumed 
to be Gaussian distributed at every t. The type III sum of squares 
was used to partition total variance among factors. The magni-
tude of the effects was evaluated using the 𝜂2

𝑃 statistic (proportion 
of total variability in AUDPS attributable to each factor in the 
model; conventionally, values of 𝜂2

𝑃 ≥ 0.15 are considered as large
effects).

To test the relative contribution of selection, chance, and his-
torical contingency in the outcome of the evolutionary process, 
the statistical approach described by Travisano et al. (1995) has 
been used. One can imagine two situations. Firstly, ancestral bio-
logical differences among phenotypes could be preserved during 
evolution despite a net increase in the mean trait values (due 
to selection) and differences among replicated lineages (due to 
chance; i.e. mutation and drift). In this situation, we should expect 
a nonzero slope in a regression of the evolved phenotypic val-
ues against the ancestral ones. The closer the slope to ≈ 1, the 
greater the importance of ancestral differences. Secondly, if initial 
trait variation among ancestral genotypes was eliminated from 
the evolved populations because the combined effect of adap-
tation and chance, we should expect a regression slope < 1. The 
lesser the effect of ancestral differences, the flatter the slope, 
being zero in the extreme case where ancestral differences have 
been completely erased. The estimated slope of the regression 
of the evolved phenotypic values against the ancestral ones was 
obtained by least-squares linear regression. The estimated slopes 
were compared against the slope expected under the null hypoth-
esis of ancestral differences being fully conserved (i.e. 1) using 
one-sample t-tests.

Rates of phenotypic evolution for AUDPS were estimated by 
fitting the time series data to a power-law model of fitness evolu-
tion in asexual populations (Wiser, Ribeck, and Lenski 2013) using 
the Levenberg–Marquardt nonlinear minimum squares regression 
method. The model equation fitted has the form: 

𝐴𝑈𝐷𝑃𝑆(𝑡) = [𝐴𝑈𝐷𝑃𝑆(0) + 𝑎𝑡]1/𝑏 (2)

where AUDPS(k) represents the AUPDS value at passage k, and a
and b > 0 are parameters that summarize properties of the dis-
tribution of beneficial mutations, their average time to fixation, 
and the intensity of clonal interference (Wiser, Ribeck, and Lenski 
2013). Interestingly, it is possible to evaluate the maximum rate of 
AUDPS evolution, v, at the beginning of the evolution experiment 
as: 

𝑣 = lim𝑡→0
𝑑𝐴𝑈𝐷𝑃𝑆(𝑡)

𝑑𝑡
= 𝑎

𝑏
(3)

All the statistical analyses described were done with SPSS 
version 27 software (IBM, Armonk, NY) otherwise indicated.

2.7 Analysis of infection network
An infection matrix was estimated in a single experimental block 
in which all evolved viral lineages were inoculated in all mutant 
genotypes, ten plants per combination. AUDPS was estimated 
for each viral lineage—host genotype combination as described 
above.

The resulting infection matrix was analyzed using tools bor-
rowed from the field of network biology to explore whether they 
show random associations between viral lineages and host geno-
types, one-to-one associations, nestedness indicative of a gene-
for-gene type of interaction, or modularity (Weitz et al. 2013). The 
statistical properties of the infection matrix were evaluated using 

the R package ‘bipartite’ version 2.15 (Dormann and Strauss 2014) 
in R version 4.0.0 under RStudio 1.2.1335. Four different summary 
statistics were evaluated: T nestedness (Bascompte et al. 2003), Q
modularity (Newman 2006) and the d’ species-level (or Kullback-
Leibler divergence) and 𝐻′

2 network-level (or two-dimensional 
normalized Shannon entropy) specialization indexes (Blüthgen, 
Menzel, and Blüthgen 2006). Both d’ and 𝐻′

2 range between zero 
and one for extreme generalists and specialists, respectively. The 
statistical significance of these statistics was evaluated using Bas-
compte et al. (2003) null model. Readers interested in mathemat-
ical details, please see Mariani et al. (2019) for T and Q definitions 
and Blüthgen, Menzel, and Blüthgen (2006) for d’ and 𝐻′

2.
Previous to these analyses, AUDPS data were binned into ten 

intervals of equal size with bounds

[𝐴𝑈𝐷𝑃𝑆𝑚𝑖𝑛 + 𝑖
10

(𝐴𝑈𝐷𝑃𝑆𝑚𝑎𝑥 − 𝐴𝑈𝐷𝑃𝑆𝑚𝑖𝑛) ,𝐴𝑈𝐷𝑃𝑆𝑚𝑖𝑛

+ (𝑖 + 1)
10

(𝐴𝑈𝐷𝑃𝑆𝑚𝑎𝑥 − 𝐴𝑈𝐷𝑃𝑆𝑚𝑖𝑛)]

where i ∈ [0, 9], as described in Moury et al. (2021).

2.8 The statistics of molecular evolution
Treating each lineage as an observation and each host genotype 
as a subpopulation, we evaluated the average nucleotide diversity 
within-host genotypes, 𝜋S, the nucleotide diversity for the entire 
sample, 𝜋T, the interhost genotypes nucleotide diversity, 𝛿ST, and 
the estimate of the proportion of interhost genotypes nucleotide 
diversity, known as coefficient of nucleotide differentiation (Nei 
1982), NST = 𝛿ST/𝜋T. Standard deviations of estimates were inferred 
from 1,000 bootstrap samples. All these computations were done 
using MEGA 11 (Tamura, Stecher, and Kumar 2021) and the lowest-
BIC nucleotide substitution model Kimura 2-parameters (Kimura 
1980). Tajima’s D test of selection (Tajima 1989) and its sta-
tistical significance were evaluated using DnaSP6 (Rozas et al.
2017).

The frequency of mutations (m) per cistron (C), relative to the 
length of the corresponding cistron, was fitted to the following 
logistic regression model using generalized linear model tech-
niques with a binomial probability distribution and a probit link 
function: 

probit(𝑚𝑖) ∼ 𝜇 + 𝐶𝑖 + 𝜀𝑖 (4)

where 𝜇 is the average genomic mutation frequency and i refers 
to the ten cistrons in the main open reading frame.

3. Results
3.1 Classification of plant genotypes according to 
the phenotype of TuMV infection
The twenty-one A. thaliana genotypes used in this study are shown 
in Table 1, including information about the affected signaling 
pathways or cellular processes as well as the expected pheno-
type of infection relative to WT plants. Genotypes were classified 
according to the phenotype of TuMV infection based on the five 
different disease-related traits described in Section 2.2. In order 
to classify plant genotypes according to their similarity in pheno-
typic response to TuMV infection, a nearest-neighbor clustering 
was obtained Fig. 1. We found five significant phenogroups that 
also minimized the BIC in a k-means analysis [BIC(5) = 12.241 com-
pared to BIC(4) = 15.668 and BIC(6) = 18.249]. Hereafter, we will 
refer to them as phenogroups G1 to G5. The characterization of 
the phenotypic differences among these groups is presented in 
the Supplementary Text S1 and Figs. S1 and S2. In short, the 
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members of phenogroup G1 show enhanced restriction to TuMV 
infection. The only member of phenogroup G2 (p58IPK) shows no 
significant changes in AUDPS, infectivity, symptoms severity, and 
viral load relative to infected WT plants but a strong reduction 
in the change in dry weight. The only member of phenogroup G3 
(dbp2) also shows enhanced restriction although without signifi-
cant reduction in viral load. G4 represents a sort of hodgepodge 
formed by genotypes that do not show a clear phenotypic differ-
ence from WT Fig. 1. The only member of phenogroup G5 (jin1) 
shows a significant increase in all measured traits except viral 
load.

Representatives from the five phenogroups were randomly 
selected for the subsequent evolution experiment (shadowed rows 
in Table 1): eds8-1 and i4g2 from phenogroup G1 representing the 
more restrictive genotypes; p58IPK from G2; dbp2 from G3; cpr5-
2, dcl2 dcl4, hsp90-1, npr1-1, and WT from G4; and jin1 from G5 
representing the more permissive genotype.

3.2 Experimental TuMV evolution in plants from 
each phenogroup
First, we sought to evaluate the dynamics of evolution for AUDPS
Fig. 2. Recall that in our experiments, only viruses evolved while 
plants did not, so changes in infection phenotypes were due to the 
evolution of viruses and the way they interact with plants. Notice 
that lineage cpr5-2/L2 showed quite a different evolution pattern 
from the other four lineages evolved in cpr5-2. It never increased in 
AUDPS and was lost after passage five Fig. 2. Therefore, we ended 
up with a total of forty-six evolved lineages.

Data were fitted into the ANOVA model described in Eq. 1 
of Section 2.6. Despite a considerable amount of noise in the 
time series, we found some significant results that can be sum-
marized as follows Table 2. First, a net significant and large
(𝜂2

𝑃 = 0.399) effect associated with the evolutionary passages 
(t term in Eq. 1) has been observed, indicating that AUDPS evolved 
during the experiment. Second, plant genotypes (G term in Eq. 1) 
had a highly significant and very large (𝜂2

𝑃 = 0.868) effect on the 
phenotypic traits, suggesting that TuMV evolutionary dynamics 
were strongly influenced by the local host genotype in which it was 
being passaged. Third, independent lineages evolved in the same 
host genotype show a high degree of parallelism, as indicated by 
a nonsignificant lineage effect [L(G) term in Eq. 1, with 𝜂2

𝑃 = 0.029; 
and term t × L(G) in Eq. 1, with 𝜂2

𝑃 = 0.039].
To evaluate the role of the ancestral differences (Travisano 

et al. 1995) in the evolution of AUDPS across the ten plant geno-
types, we evaluated the magnitude of their change at the end 
of the evolution experiment. Fig. 3A shows the plots of evolved 
vs ancestral values. For illustrative purposes, the solid red line 
represents the null hypothesis of absolute preservation of ances-
tral differences. A significant regression exists between evolved 
and ancestral values (R = 0.491, F1,44 = 14.000, P < 0.001), with slope 
0.284 ± 0.076 (±1 SD). Since the slope is still significantly differ-
ent from zero, yet clearly flatter than the expected relationship 
of slope one (t44 = 9.422, P < 0.001), we concluded that ancestral 
differences have been mostly removed by the combined action of 
selection and chance, yet not completely erased.

3.3 Rates of AUDPS evolution
To explore the possible impact of different plant immunity mech-
anisms on the rates of virus phenotypic evolution, we estimated 
the rates of AUDPS evolution using the power-law model described 
by Eq. 2 in Section 2.6.

Fig. 3B shows the estimated rates of evolution for host 
genotypes ordered from the most restrictive (phenogroup G1) 

Figure 2. Evolution of AUDPS along the passages of experimental 
evolution on each different host genotype. Different symbols and lines 
represent the independent evolutionary lineages. Panels are arranged 
from the most resistant genotype (eds8-1) to the most sensitive one (jin1) 
according to the phenogroups defined in Fig. 1 and colored using the 
same palette.

to the most permissive (phenogroup G5). Very interestingly, 
the regression coefficient was significantly negative (–6.394 ⋅ 10–4

±2.843 ⋅ 10–4; R = 0.321, F1,44 = 5.061, P = 0.030), suggesting that 
evolution proceeded faster in the most restrictive hosts and slower 
in the most permissive ones. 

In conclusion from this section, we found that differences
in the maximum rates of evolution at the beginning
of the evolution experiment between permissive and
resistant hosts actually depend on the particular resistance
mechanism.
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Table 2. Results of the ANOVA model for AUPDS evaluated along the course of experimental evolution.

Source of variation Type III Sum of squares d.f. Mean squares F P 𝜂2
𝑃 1—𝛽

A Hypothesis 5.960 1 5.960 1255.393 < 0.001 0.962 1
Error 0.236 49.783 0.005

t Hypothesis 3.705 1 3.705 337.122 < 0.001 0.399 1
Error 5.583 508 0.011

G Hypothesis 1.299 9 0.144 31.668 < 0.001 0.868 1
Error 0.197 43.293 0.005

t × G Hypothesis 0.144 9 0.016 1.458 0.161 0.025 0.700
Error 5.583 508 0.011

L(G) Hypothesis 0.167 38 0.004 0.399 1 0.029 0.439
Error 5.583 508 0.011

t × L(G) Hypothesis 0.224 37 0.006 0.550 0.986 0.039 0.609
Error 5.583 508 0.011

𝜂2
𝑃: magnitude of the effect; 1—𝛽: power of the test.

The different factors are defined in equation 1: t evolutionary passage; G plant genotype; L virus evolutionary lineage; t × G interaction between evolutionary 
passage and plant genotype; L(G) viral evolving lineage within-host genotype; and t × L(G) interaction between evolutionary passage and viral evolving lineage.

Figure 3. (A) Test of the contribution of historical contingency to the observed pattern of adaptation of TuMV to the different A. thaliana genotypes. The 
red line represents the null hypothesis of historical differences being fully preserved despite adaptation (i.e. ancestral and evolved values are exactly 
the same). (B) Estimated rates of evolution for AUDPS obtained from the fitting of Eq. 2 to the data shown in Fig. 2. A. thaliana genotypes are ranked from 
the less to the more permissive to TuMV infection according to phenogroups defined in Fig. 1. In both panels, different symbols represent different 
independent lineages evolved on the corresponding host genotype, solid lines represent the linear regression of the data and dashed lines the 95 per 
cent confidence intervals for the regression lines, and genotypes are colored according to phenogroups and using the same color palette than in Fig. 1

3.4 The degree of permissiveness of plant 
genotypes to infection drives the evolution of 
TuMV lineages into more or less specialization
To analyze the specificity of adaptation of each evolved TuMV 
lineage, we performed a full cross-infection experiment. In this 
experiment, the forty-four viral lineages evolved in the mutant 
genotypes (excluding the two WT-evolved lineages) were inocu-
lated to ten plants of the nine A. thaliana mutant genotypes used 
in the evolution experiments (excluding WT plants). The presence 
of symptoms in each plant was recorded daily for up to 12 dpi. 
This dataset was analyzed using two different approaches, first 
an ANOVA-like that evaluates the effect of host genotypes, viral 
lineages, and their interactions (Schmid-Hempel 2011); and sec-
ond, the inference of nestedness, modularity and specialization of 
a bipartite infection network (Weitz et al. 2013). Both approaches 
drive to identical conclusions. For the sake of keeping the presen-
tation concise, the results of the first approach are provided in 
Supplementary Text S2 and Table S1.

For the second analytical approach, we used an infection 
matrix of forty-four rows (viral lineages evolved in each local 
host genotype) by nine columns (test genotypes). Fig. 4 shows the 
packed infection matrix with rows and columns organized to bet-
ter highlight its nestedness and modularity (Weitz et al. 2013). The 
infection network was significantly nested (temperature nested-
ness: T = 1.142, P < 0.001), with genotypes jin1 and dcl2 dcl4 being 
permissive to most viral lineages (universally susceptible hosts), 

while the most restrictive genotypes eds8-1 and p58IPK were more 

efficiently infected by lineages that were precisely evolved in these 
two genotypes. Likewise, the most generalist viral lineages were 
eds8-1/L4, p58IPK/L3 and p58IPK/L4 that infected the nine mutant 

host genotypes Fig. 4 with high efficiency (universally virulent 
viruses). On another hand, the most specialized viral lineages that 
were able to more efficiently infect only their local hosts, were all 
surviving lineages evolved in cpr5-2, four lineages evolved in dcl2 
dcl4 and four lineages evolved in jin1 Fig. 4. Therefore, we con-
clude that more restrictive host genotypes tended to select for 
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Figure 4. Analysis of the full cross-infection matrix. Packed matrix that highlights its nested structure, compatible with a gene-for-gene infection 
model. Last column shows the species-level specialization index (d’ = 0 for most generalists and d’ = 1 for most specialists). Evolved TuMV lineages are 
colored according to the phenogroup of their local host genotype according to the color palette used in Fig. 1.

more generalist viruses while more permissive host genotypes did 
so for more specialized viruses, in agreement with a gene-for-gene 
infection model (Weitz et al. 2013).

Next, we computed Blüthgen, Menzel, and Blüthgen (2006) 
specialization indexes for the packed matrix Fig. 4. Firstly, we eval-
uated the standardized species-level measure of partner diversity 

d’. d’ (last column in Fig. 4) ranged from < 0.01 for the more 
generalist evolved lineages (eds8-1/L4, and p58IPK/L3) to > 0.1 for 
the more specialist ones (dcl2 dcl4/L5 and jin1/L1–L4). Very inter-
estingly, d’ values show a strongly significant negative correlation 
with the rank order degree of permissiveness of each host geno-
type, i.e. the order in which hosts appear in the columns of Fig. 4
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(Spearman r = −0.807, 42 d.f., P < 0.001). This correlation sup-
ports the notion that more specialized viral lineages exploit host 
resources of more permissive hosts better than the more gen-
eralist viral species. Secondly, we computed the network-level 
specialization index 𝐻′

2, obtaining a value of 𝐻′
2 = 0.028 (uncor-

rected H2 = 5.916, 𝐻′
𝑚𝑖𝑛 = 3.835, 𝐻′

𝑚𝑎𝑥 = 5.916; P < 0.001), meaning 
that, overall, the binary infection network shows a degree of spe-
cialization. Most of the lineages were able of infect one or a few 
host genotypes, a result mainly driven by those lineages evolved 
in the less restrictive host genotypes.

Finally, we sought to explore the modularity of the infection 
network. In this context, a module will refer to an aggregated set 
of viral lineages and their hosts characterized by more interac-
tions within the module than between modules (Newman 2006; 
Dormann and Strauss 2014), as expected for a mutation accu-
mulation infection model (Weitz et al. 2013). We computed the Q
modularity index, that ranges from zero, when the community has 
no more links within modules than expected by chance, to a max-
imum value of one. We found a small yet significant modularity 
(Q = 0.066, P < 0.001) in the infection matrix Fig. 4: genotypes with 
mutations affecting the same signaling pathway may be select-
ing for viral lineages with similar properties, thus being able to 
infect a subset of plant genotypes with equal efficiency. An alter-
native hypothesis may be parallel evolution of lineages evolved 
in the same host genotype; the most representative cases of this 
possibility are the lineages evolved in cpr5-2, dcl2 dcl4 and jin1. 
To distinguish between these two hypotheses, we computed a 
reduced matrix averaging the observed AUDPS among lineages 
evolved in the same host genotype and transforming this nine-by-
nine infection matrix into its corresponding packed binary matrix, 
as described above. If the reduced matrix still shows significant 
modularity, the first hypothesis will hold on, but if modularity van-
ishes then the alternative hypothesis will be more parsimonious. 
The reduced matrix was no longer modular (Q = 0.029, P = 0.078). 
This supports the notion that the observed modularity was driven 
by convergent phenotypic evolution of lineages evolved into the 
same host genotype rather than by common selective pressures 
owed to mutations in overlapping defense mechanism.

3.5 Genomic changes in evolved TuMV lineages
Finally, we have explored the genomic changes experienced by 
the TuMV evolved lineages. A total of 119 mutational events 
have been observed, affecting 73 nucleotide positions (Supple-
mentary Fig. S3 and Table S2). No single mutation was shared 
between all five independent lineages propagated on a plant geno-
type and very few mutations were observed in more than two 
lineages. According to the type of nucleotide substitution, ninety-
eight were transitions and twenty-one transversions. Regarding 
their effect on the protein sequence, thirty were synonymous 
and eighty-nine nonsynonymous. Interestingly, some mutations, 
including thirteen nonsynonymous and four synonymous, have 
been observed multiple times in independent lineages. As dis-
cussed in the Section 2.8, treating each lineage as an obser-
vation and each host genotype as a subpopulation, the aver-
age nucleotide diversity within-host genotypes, referred only to 
the seventy-three polymorphic sites, was 𝜋S = 0.067 ±0.007. On 
the other hand, the nucleotide diversity for the entire sample 
was 𝜋T = 0.073 ±0.008. Hence, the estimated interhost genotype 
nucleotide diversity was 𝛿ST = 0.006 ±0.003 and the coefficient of 
nucleotide differentiation (Nei 1982) NST = 0.081 ±0.039, a value 
significantly greater than zero (z = 2.077, P = 0.019). Thus, we 
conclude that minor yet significant genetic differentiation has 

Figure 5. Frequency of mutations observed on each cistron. Error bars 
represent ±1 SEM.

been generated among viral lineages replicating in different host
genotypes.

To assess whether selection played a role in virus genetic dif-
ferentiation among plant genotypes, we performed a Tajima’s D
test (Tajima 1989) and found that it was significantly negative
(D = −2.496, P = 0.006). This result suggests the presence of selec-
tive sweeps acting on virus populations and presence of selection.

Next, we sought to characterize the distribution of mutational 
events along the nine nonoverlapping cistrons Fig. 5. The fre-
quency of mutations per cistron, relative to the length of the 
corresponding cistron, was fitted to the logistic regression model 
shown in Eq. 4 in the Section 2.8. Highly significant differences 
exist (𝜒2 = 143.206, 9 d.f., P < 0.001) yet entirely due to the ∼11-fold 
larger mutation frequency observed in the VPg cistron relative to 
the rest of the genome Fig. 5. Notice that all mutations observed 
in VPg are nonsynonymous and that all lineages except eds8-1/L3 
carry at least one mutation in this cistron (Supplementary Fig. S3 
and Table S2).

Convergent nonsynonymous mutations are, a priori, good can-
didates for adaptive mutations. Mutation CP/V148I appears in 
two lineages evolved in cpr5-2 (Supplementary Fig. S3 and Table 
S2), mutation CP/S70N appear in lineage dcl2 dcl4/L1 and three 
lineages evolved in jin1 (Supplementary Fig. S3 and Table S2), 
and two different mutations affecting CP; CP/D112G appears in 
lineage npr1-1/L4 and CP/D112A that appears in lineage i4g2/L5, 
that result in a similar replacement of side chains. In addition, 
ten nonsynonymous mutations in VPg are shared by several lin-
eages (Supplementary Fig. S3 and Table S2). Out of these ten 
cases, three seem to be particularly promising candidates and 
are located in a narrow region of VPg (residues 113, 115, and 
118) (Supplementary Fig. S3 and Table S1). Mutations G6237A, 
G6237C, A6238G, and U6239A all affect the same codon, resulting 
in amino acid replacements VPg/D113N, VPg/D113H, VPg/D113G, 
and VPg/D113E, respectively.

4. Discussion
4.1 Interaction between TuMV and different plant 
defenses
In this study we have explored the effect that mutations in dif-
ferent host disease signaling pathways or recessive resistance S
genes have in the outcome of virus evolution. Our experimen-
tal pathosystem consisted of two well-studied components: the 
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model plant A. thaliana and TuMV, a virus with high prevalence 
in natural populations on this host (Pagán et al. 2010). Among 
the disease signaling pathways, we have studied genes involved 
in the SA, JA/ET pathways, and RNA-silencing; while among the S
genes, we have included heat shock proteins, transcription factors, 
and components of the translation machinery. In a preliminary 
set of experiments, we compared phenotypic responses of dif-
ferent plant mutant genotypes to TuMV infection. Our results 
were, in some cases, at odds with the expected phenotypes 
for R genes, the most unexpected one being the result for jin1. 
JASMONATE INSENSITIVE 1 (JIN1) is a negative regulator of SA-
mediated defense responses, henceforth the mutant jin1 has a 
constitutive expression of SAR (Laurie-Berry et al. 2006). Surpris-
ingly, it turns out to be the most permissive genotype to TuMV 
infection, showing enhanced symptoms of disease (phenogroup 
G5). This may reflect the fact that the function of genes involved 
in disease signaling have been mostly defined in terms of plant 
interactions with biotrophic and necrotrophic bacteria and fungi 
but rarely in response to virus infections. Mutant genotypes only 
affecting components of the ISR pathway (e.g. coi1-4) behaved 
as WT plants in response to TuMV infection, thus confirming 
previous reports that ISR was inefficient against viral infections 
(Ton et al. 2002; Loebenstein 2009; Pieterse et al. 2009). However, 
mutant eds8-1, which avoids ISR but enhances SAR (Love et al. 
2007) turned out to be among the most restrictive genotypes to 
infection (phenogroup G1). In agreement with our findings of a 
variable response to SA signaling, Singh et al. (2004) discussed 
examples of viruses in which SA-dependent responses to viral 
infection were strongly dependent on the virus used in the exper-
iments. Replication of viruses such as alfalfa mosaic virus, potato 
virus X, or turnip vein clearing virus was inhibited by treating 
plants with SA, while cucumber mosaic virus appeared unaffected 
by the treatment and accumulated to normal levels.

The RNA-silencing pathway is considered as the main plant 
defense against viral pathogens (Voinnet 2001), with DICER-LIKE 2
(DCL2) and DICER-LIKE 4 (DCL4) encoding for the two dicer enzymes 
responsible for generating the 22- and 21-nucleotides long antivi-
ral siRNAs. Therefore, the double mutant dcl2 dcl4 was expected to 
be highly permissive to TuMV infection. However, infected plants 
were, overall, hardly distinguishable from the WT plants in their 
response to infection (Supplementary Figs. S2 and S3). A possi-
ble explanation would be the strong suppressor activity of HC-Pro 
in the WT plants that effectively counteracts the defense mecha-
nisms (Kaschau and Carrington 2001). Indeed, it has been shown 
that the outcome of the interplay between plant RNA-silencing 
response and potyviruses is mostly driven by the efficiency of the 
viral HC-Pro suppression activity (Lin et al. 2007; Torres-Barceló
et al. 2008).

The response to infection of genotypes carrying mutations in 
S genes was, in general, consistent with the a priori expecta-
tion. Mutant i4g2 belonging to phenogroup G1, that is defective 
for the eIF4(iso)E factor, was highly restrictive to TuMV infection 
(Nicaise et al. 2007; Charron et al. 2008). Likewise, in agreement 
with previous descriptions, mutant dbp2 belonging to phenogroup 
G3, was restrictive to potyvirus infection (Castelló et al. 2011). 
Finally, mutant hsp90-1 showed a response to TuMV infection 
equivalent to WT plants, likely due to its functional redundancy 
with other heat shock proteins present in the cell that may be 
coopted by the virus to assist in their expected functions (Verchot
2012).

An interesting finding was the effect of the knocked down 
expression of gene P58IPK on TuMV replication. In mammals 
P58IPK, a tetratricopeptide-repeat containing protein, is recruited 

by viruses (e.g. influenza A virus) to inhibit interferon activa-
tion and cell death mediated by the dsRNA-activated protein 
kinase, thus favoring viral spread (Goodman et al. 2011). In our 
experiments, p58IPK mutant plants showed enhanced tolerance to 
infection by showing weaker symptoms than WT plants despite 
achieving the same level of virus accumulation (Supplementary 
Fig. S1). In sharp contrast, Bilgin et al. (2003) found that infection 
of p58IPK-silenced N. benthamiana and A. thaliana plants infected 
with tobacco mosaic virus led to death. Given the limited infor-
mation available from other plant-virus pathosystems, additional 
experiments would be necessary to shed light into the potential 
antiviral role of this gene.

An important conclusion of our study, is that the generally 
accepted model of plant defense signaling pathways, mainly 
based on experiments done with bacteria and fungi, may not be 
most suitable to describe interaction between plants and viruses 
well. By contrast, recessive S gene-based resistance seems to 
better explain differences in susceptibility to infection and viral 
accumulation, thus being a more promising target for future 
development of resistant plants.

4.2. Evolution of more or less specialized viral 
strategies depends on the host genotype
The gene-for-gene and mutation accumulation models of host—
virus interaction modes represent the two ends of a continuum 
of possible outcomes (Agrawal and Lively 2002). The most rele-
vant difference between both models regards the expected genetic 
heterogeneity in both host and virus populations. With a pure 
gene-for-gene interaction, the susceptible host types are expected 
to disappear and the resistant types are expected to dominate 
the population. Vice versa, the most virulent virus allele would 
become fixed in the population at the cost of mild alleles. How-
ever, constitutive activation of defenses is known to be costly 
for A. thaliana [e.g. SA-related defense responses pay a fitness 
cost in absence of pathogens (Traw, Kniskern, and Bergelson 
2007)] and high virulence usually comes with a cost in terms of 
pathogen’s transmission (Acevedo et al. 2019). Hence, a pure gene-
for-gene strategy seems unlikely to be achieved. By contrast, with 
a pure mutation accumulation interaction, negative frequency-
dependent selection emerges, such that rare A. thaliana resistance 
alleles have advantage and, as a result, a genetic polymorphism 
shall be maintained (Schmid-Hempel 2011). Natural populations 
of A. thaliana contain considerable amount of genetic variability 
for tolerance (Pagán, Alonso-Blanco, and García-Arenal 2008) and 
for immunity-related genes (Todesco et al. 2010; Van de Weyer 
et al. 2019; Butković et al. 2021), thus suggesting that an arms 
race between pathogens and plants is still ongoing but it is unclear 
whether it may result in pure gene-for-gene or mutation accu-
mulation interactions or lie somewhere in between. Evolution 
experiments with such different pathosystems, such as TuMV-A. 
thaliana (González, Butković, and Elena 2019), Octosporea bayeri-
Daphnia magna (Altermatt and Ebert 2008), and Serratia marcescens-
Caenorhabditis elegans (Gibson et al. 2020; White et al. 2020) have 
produced congruent results: parasites exposed to heterogeneous 
host populations evolved significantly lower virulence than par-
asites exposed to homogeneous host populations. However, a 
significant difference exists among pathosystems: while viruses 
exposed to genetically heterogenous host populations evolved 
as no-cost generalists, evolution of generalism in more complex 
parasites was constrained by a fitness tradeoff, as expected for 
the jack-of-all trades hypothesis (Bedhomme, Hillung, and Elena 
2015).
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Our results, as well as those by Hillung et al. (2014) and 
González, Butković, and Elena (2019) have shown the evolution of 
significantly nested bipartite infection networks, a finding com-
patible with the existence of a combination of specialist and 
generalist viruses and of more permissive and resistant host 
genotypes. Indeed, these studies have also shown that more per-
missive hosts selected for more specialized viruses while more 
restrictive hosts selected for more generalist viruses, here match-
ing the predictions of the gene-for-gene model. Our observa-
tion of small yet significant modularity in the infection network 
was easily explained by convergent evolution of TuMV lineages 
evolved in the same host genotype. However, it has been recently 
shown in a long-term survey of the prevalence of different plant
viruses in different hosts and habitats that nestedness and mod-
ularity in host-pathogen infection networks is possible due to the 
spatially patched distribution of habitats and temporal succes-
sions of plant species (Valverde et al. 2020): small spatial scales 
create modularity that coexist with global nestedness. This pat-
tern may change spatially and temporally but remains stable over 
long evolutionary timescales.

4.3 Ancestral differences in TuMV performance 
across host genotypes have been almost 
completely erased after experimental evolution
A relevant question in evolutionary biology is the extent in which 
ancestral differences determine the fate of evolution. Put in other 
words, what are the relative contributions of adaptation, chance 
and historical contingency to the evolution of organismal fit-
ness (Travisano et al. 1995). Two different situations can result. 
Firstly, ancestral differences among phenotypes are preserved dur-
ing evolution despite a net increase in the mean trait values (due 
to selection) and differences among replicated lineages (due to 
chance; i.e. mutation and drift). Therefore, this situation would 
result in a nonzero slope in a regression of the evolved phenotypic 
values against the ancestral ones. The closer the slope is to one, 
the greater the importance of ancestral differences. Secondly, if 
ancestral trait variation was erased from the evolved populations 
because the combined effect of adaptation and chance, a regres-
sion slope smaller than one would be expected. The less effect 
of ancestral differences, the flatter the slope, being zero in the 
extreme case where ancestral differences have completely van-
ished. In our study, we found that ancestral differences in AUDPS
were not entirely removed by the combined action of selection and 
chance. Some minor differences still are observable for lineages 
evolved in the most restrictive hosts p58IPK and eds8-1 Fig. 3A.

4.4 Role of natural selection
We found evidence of significant genetic differentiation among 
TuMV lineages evolved in different plant genotypes. To test 
whether these differences were driven by selection we performed 
a Tajima’s D test (Tajima 1989). The resulting negative D value 
was significant, that is compatible with the action of purifying 
selection, the presence of slightly deleterious mutations segregat-
ing in the populations or fast population expansions (Yang 2006). 
How to distinguish between these explanations? In independent 
fast expanding populations, many new mutations may be gen-
erated and they may rise in frequency in each population, thus 
being observed as singletons, mutations present in only one of the 
many coexisting genomes in each evolving TuMV lineage. Single-
tons inflate the number of segregating sites and thus cause D < 0. 
Indeed, this is the case here: fifty-six out of the seventy-three 
observed variable sites are singletons, thus the observed pattern 
of molecular diversity among lineages evolved in the same host

genotype and in different host genotypes is likely to be due to 
the exponential growth of viral populations within individual
hosts.

However, we have found additional evidence supporting the 
action of positive selection: the existence of a number of conver-
gent nonsynonymous mutations arising in independent lineages. 
Some of these nonsynonymous mutations evolved in the same 
host genotype but others arise in different host genotypes (Sup-
plementary Fig. S3 and Table S2). Yet without a clear association 
with the particular signaling pathway, mutated S gene Table 1 or 
the phenogroup they belong to Fig. 1. Interestingly, most of these 
convergent mutations happened in the VPg cistron, that also turns 
out to be the most variable one Fig. 5. VPg plays many essential 
roles in genome transcription (it is linked to the 5′-end of the viral 
genome and provides the hydroxyl group that primes the synthe-
sis of the complementary strains by the viral RdRp), translation 
[directly interacts with the eukaryotic initiation factors eIF(iso)4E 
and eIF(iso)4G], and interacts with all other viral proteins (Bosque 
et al. 2014) and some of the host cell proteins (Martínez et al. 2016, 
2020). Indeed, in previous evolution experiments with potyviruses, 
VPg has also been shown to be an important target of selection. 
For example, Agudelo-Romero et al. (2008) found that a single 
amino acid replacement in VPg was enough to largely increase 
tobacco etch virus infectivity, severity of symptoms and viral load 
in A. thaliana. Similarly, Gallois et al. (2010) found that A. thaliana
plants with knock-out mutations in the eIF(iso)4E, eIF(iso)4G1 and 
eIF(iso)4G2 genes were resistant to TuMV infection. Two mutations 
in the VPg (E116Q and N163Y) were enough to overcome this resis-
tance and return to the original infection phenotype, although 
yeast-two hybrid assays showed that none of these mutations 
affected the binding of VPg with eIF(iso)4E (Gallois et al. 2010). 
As a final example, one of the most extensively used resistance 
genes against potato virus Y in commercial pepper cultivars is 
pvr2, which has many different alleles (Nicaise et al. 2007; Charron 
et al. 2008). The pvr2 locus encodes for the eIF4E factor that, as 
mentioned above, physically interacts with VPg. Interestingly, all 
the resistance-breaking viral isolates found so far contain muta-
tions in the VPg cistron (Duprat et al. 2002; Moury et al. 2004; Ayme 
et al. 2006).

One of the two mutations identified by Gallois et al. (2010), 
VPg/E116Q, affects the same protein domain as mutations 
VPg/D113G and VPg/R118H identified here. We found VPg/D113G 
in several lineages evolved in different host genotypes, while 
VPg/R118H was only found in the jin1 lineage. The mechanism by 
which these two mutations may confer a selective advantage to 
TuMV lineages cannot be inferred from our studies and will be the 
subject of a follow up paper.

4.5 Comparing these results with other 
pathosystems
Someone may wonder whether results reported here might reflect 
universal patterns of virus evolution on hosts with variable sus-
ceptibility to infection or just a particularity of the way plants 
deal with infections. Mongelli et al. (2022) performed very similar 
evolution experiments with drosophila C virus (DCV), also a picor-
navirus, infecting eight Drosophila melanogaster genotypes that 
carried mutations affecting innate immunity antiviral defense 
pathways. Firstly, Mongelli et al. (2022) have also observed that 
the extent and evolutionary dynamics of viral load and infec-
tivity depended on the particular host genotype, with a clear 
tendency to increase viral load in immunity-deficient flies. Sec-
ondly, also in agreement with our observations, DCV results also 
highlight pleiotropy (viral genotype-by-host genotype interaction) 
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as a major determinant of viral evolution. Indeed, they clearly 
show that the fitness effect of mutations that already existed in 
the standing genetic variation of the stock DCV population was 
strongly dependent on both, the fly’s genetic background (the 
same mutation being beneficial or deleterious in different back-
grounds) and the virus’ genetic background (epistatic interactions 
with other mutations in the same haplotype). Thirdly, our obser-
vation that ancestral phenotypic differences in virulence across 
host genotypes can be erased after a few passages in each host 
genotype are also in agreement with Mongelli et al. (2022) observa-
tions, which suggest that the more restrictive a host genotype is to 
infection the more changes of selection and evolution of generalist 
viruses.

To conclude, besides obvious differences among experimental 
systems and other subtleties, these two studies demonstrate that 
experimental evolution-based approaches can provide insightful 
information about the constraints imposed by different defense 
signaling pathways on virus evolution and remark the prevalence 
on some pathways over others in controlling not only virus repli-
cation and accumulation but also, more broadly interesting, virus 
evolution.

4.6 Concluding remarks
Since our evolution experiments all started with an A. thaliana
naïve strain of TuMV, someone may consider as a potential weak-
ness of our study the difficulty to disentangle between general 
adaptations to the plant host from specific adaptations to the 
different mutant genotypes. Although obviously some common 
factors are shared by all ten plant genotypes, they differ in a well-
defined component (the mutated gene) that we have shown affects 
their permissiveness to infection. The fact that we have found sig-
nificant differences in the outcome of the evolution experiments 
performed in different plant genotypes, by itself, is evidence that 
each host genotype represents a somehow different selective envi-
ronment. Unfortunately, at this stage, it is not possible to assign 
an adaptive value to every mutation observed in the different lin-
eages. Doing so would require to generate them individually and 
in all relevant combinations in the infectious clone p35STunos and 
test their effect on AUDPS across the ten host genotypes. Although 
doable, it is a tremendous task beyond the scope of this study. 
The best assessment we can do so far about adaptive values is 
the commonly assumed principle that convergent mutations ris-
ing in independent lineages evolved in the same host genotype 
must provide a host-specific fitness advantage.

Pathogens evolve to escape from host defense mechanisms. 
Understanding how different defense mechanisms constrain the 
pathogen evolution is key to understand the evolutionary dynam-
ics of infectious diseases. Here we aimed to determine the impact 
of defects in host defense mechanisms on virus evolution. We 
observed that virus interaction with defective hosts resulted in 
different intensity of disease-related traits, intensity that was 
determined by the disrupted defensive mechanism. Virus evo-
lution on hosts with different degree of permissiveness shows 
that: (1) viral rates of evolution depend on the specific defective 
defense mechanism of the host. (2) Viruses evolve as more gen-
eralists when evolving in hosts with stronger defenses. On the 
contrary, evolving in more permissive hosts results in more spe-
cialized viruses. (3) Evolution results in a reduction of ancestral 
genetic variation, which occurs independently of the host permis-
siveness. (4) Regardless of their host’s defenses, evolved viruses 
showed convergent mutations on the same region of their genome. 
Altogether, this work describes the constrains that the degree of 
host immunity can impose on virus evolution.
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Butković, A. et al. (2021) ‘A Genome-wide Association Study Identi-
fies Arabidopsis Thaliana Genes that Contribute to Differences in 
the Outcome of Infection with Two Turnip Mosaic Potyvirus Strains 
that Differ in Their Evolutionary History and Degree of Host 
Specialization’, Virus Evolution, 7: veab063.

Cao, H. et al. (1994) ‘Characterization of an Arabidopsis Mutant that 
Is Nonresponsive to Inducers of Systemic Acquired Resistance’, 
The Plant Cell, 6: 1583–92.

Carr, J. P., Lewsey, M. G., and Palukaitis, P. (2010) ‘Signaling in Induced 
Resistance’, Advances in Virus Research, 76: 57–121.
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