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Determining which treatment to provide to men with prostate cancer (PCa) is a
major challenge for clinicians. Currently, the clinical risk-stratification for PCa is
based on clinico-pathological variables such as Gleason grade, stage and prostate
specific antigen (PSA) levels. But transcriptomic data have the potential to enable the
development of more precise approaches to predict evolution of the disease. However,
high quality RNA sequencing (RNA-seq) datasets along with clinical data with long
follow-up allowing discovery of biochemical recurrence (BCR) biomarkers are small and
rare. In this study, we propose a machine learning approach that is robust to batch effect
and enables the discovery of highly predictive signatures despite using small datasets.
Gene expression data were extracted from three RNA-Seq datasets cumulating a total
of 171 PCa patients. Data were re-analyzed using a unique pipeline to ensure uniformity.
Using a machine learning approach, a total of 14 classifiers were tested with various
parameters to identify the best model and gene signature to predict BCR. Using a
random forest model, we have identified a signature composed of only three genes
(JUN, HES4, PPDPF) predicting BCR with better accuracy [74.2%, balanced error rate
(BER) = 27%] than the clinico-pathological variables (69.2%, BER = 32%) currently in
use to predict PCa evolution. This score is in the range of the studies that predicted
BCR in single-cohort with a higher number of patients. We showed that it is possible
to merge and analyze different small and heterogeneous datasets altogether to obtain a
better signature than if they were analyzed individually, thus reducing the need for very
large cohorts. This study demonstrates the feasibility to regroup different small datasets
in one larger to identify a predictive genomic signature that would benefit PCa patients.

Keywords: machine learning, prostate cancer, RNA-seq, biochemical recurrence, random forest, predictive
signature

Abbreviations: ACC, accuracy; BER, balanced error rate; BCR, biochemical recurrence; AUC, area under the curve; MCC,
matthews correlation coefficient; MMCE, mean misclassification error rate; PCa, prostate cancer; PSA, prostate specific
antigen; TNM, tumor node metastasis.
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INTRODUCTION

Prostate Cancer (PCa) is the most common non-cutaneous
cancer in American men. Around 160 000 men were diagnosed
with PCa in 2017 (Siegel et al., 2017) and around 27 000 died of
it. The burden of this disease on public health is important and
expected to grow as a recent study revealed that the incidence
of advanced PCa increased in the last few years (Weiner et al.,
2016). PCa is a complex and heterogeneous disease (D’Amico
et al., 2003; Buyyounouski et al., 2012) since the risk of relapse
and death after treatment differs among cancers with the same
clinico-pathological features, namely the grade (Gleason score),
stage [Tumor, Node, Metastasis (TNM)] (Edge and Compton,
2010; Amin et al., 2018) and the level of prostatic specific antigen
(PSA) (Papsidero et al., 1980).

Current treatments for localized PCa mainly include surgical
removal or external beam radiation therapy of the prostate. If
the initial treatments did not succeed to cure the patient then a
recurrence will occur, revealed by an increase in seric PSA level,
an event called biochemical recurrence (BCR). After surgery,
about 70% of the patients will be cured and about 30% will relapse
to a BCR. Since prostate tumor cells depend on androgens to
grow, recurrences are treated with androgen deprivation therapy
consisting in chemical or surgical castration either alone or in
association with administration of anti-androgens. However, the
cancer will inevitably recur and will then be called castration-
resistant prostate cancer (CRPC). To treat CRPC, docetaxel
(Tannock et al., 2004) was introduced in 2004, but more recently,
second generation of androgen-deprivation therapies resulted
in better survival (Tannock et al., 2004; Nevedomskaya et al.,
2018). Ultimately all these tumors will relapse and patients will be
offered palliative therapy. Consequently, in order to offer better
treatments to these patients, there is a pressing need to identify
earlier those tumors that will recur after surgery and evolve
to become lethal.

One problem generally inherent to cancer care is to orient
people to the adequate treatment corresponding to the stage
of the disease and the individual characteristics of the patient
(Terada et al., 2017). In PCa, the stage, grade and PSA level are
currently the best standards to drive patients in the different
treatment options. Currently, after radical prostatectomy the PSA
level is actively monitored to assess the BCR, but there is no
biomarker that is used clinically to predict a future BCR.

To reduce costs and continue to improve prognostic,
omics data are promising. With the decreasing price of
RNA sequencing (RNA-seq), the accessibility of affordable
technologies [e.g., MinION from Oxford Nanopore Technologies
(Menegon et al., 2017)], the available PCa cohorts and the
efficient computational approaches, transcriptomics is becoming
a valuable resource to identify biomarkers (Nikitina et al., 2017).
The rapid development of omics technology has led to the
availability of many omics databases (Marx, 2013; Almeida
et al., 2014; Stephens et al., 2015), including The Cancer
Genome Atlas Program (TCGA) (Tomczak et al., 2015) and
those of the International Cancer Genome Consortium (ICGC)
(International Cancer Genome Consortium Hudson et al., 2010),
thus opening an opportunity to apply and test machine learning

algorithms (Li et al., 2016). These algorithms have been utilized
as an aim to model the progression and treatment of cancerous
conditions, and resulted in effective and accurate decision-
making (Kourou et al., 2015). However, many of the datasets
results from patients cohorts that were either rather small and/or
had insufficient follow-up of clinical history which limit their use
for clinical outcome prediction.

Hence, there is a challenge to set up predictive models that
could anticipate the event of BCR, thus predicting the evolution
of cancer, immediately after surgery. Consequently, we propose
here a method to discover a transcriptomic signature that could
be used to predict BCR events using a combination of datasets
to increase the discovery potential. To this purpose, we applied
specific preprocessing and cleaning steps on three RNA-seq
datasets and established a machine learning protocol.

MATERIALS AND METHODS

Research Pipeline
After recovering the raw data from the different studies,
we processed them in a pipeline composed of three main
steps: Samples quality control and selection, sequencing data
processing, machine learning analysis (Figure 1). All developed
scripts are available in the github repository (See section “Data
Availability Statement”).

Datasets
We retrieved three different RNA-Seq datasets of radical
prostatectomy specimens with the associated clinical features.
The first dataset is from TCGA cohort in the Prostate
Adenocarcinoma (PRAD) project. The second dataset
(GSE54460) is from a cohort constituted by Long et al. (2014)
and the third dataset was provided by Prof C. Collins from the
Vancouver Prostate Cancer Center (VPCC) (Wyatt et al., 2014).

Quality of the BCR event data is dependent on patient clinical
follow-up. A patient followed only a few weeks or months
after surgery without showing BCR would be considered as a
non-BCR case. These cases are a bias since the patient could
have experienced a BCR event after the period of follow-up.
Consequently, we discarded from our analysis the patients with
no BCR whose follow-up was inferior to 60 months.

TCGA-PRAD Dataset
Data from 498 samples were initially recovered from the PRAD
project on the TCGA data portal1. According to the TCGA
Research Network (Cancer Genome Atlas Research Network,
2015) 131 samples must be discarded because of the presence of
RNA degradation, as we did. We also ignored samples with less
than 40% of tumor cells (column percent_tumor_cells in clinical
file) and follow-up inferior to 60 months. We ended up with 52
samples after these filters.

GSE54460 Dataset
The data were downloaded from NCBI website (GEO accession
GSE54460) where sequencing and clinical data from 106 patients

1https://portal.gdc.cancer.gov/
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FIGURE 1 | Pipeline workflow. Quality control of raw data sequencing files is measured, then trimmed to remove their adaptors. Patient metadata are then filtered to
keep only BCR patients with long follow-up. Retained sequences are then mapped, quantified and normalized. Finally, a machine learning approach is used to
analyze the data to obtain a gene expression predictive signature and a model.

were recovered. After selecting cases with a minimum of
60 months of follow-up, we ended-up with 96 patients of
whom 54 had a BCR.

VPCC Dataset
We obtained the raw fastq files and clinical data from 85
patients, available at European Nucleotide Archive of the EMBL-
EBI under accession PRJEB6530. Patients treated with hormonal
therapy before radical prostatectomy were removed because this
treatment strongly alters RNA expression. After selecting patients
for minimal follow-up we ended up with 23 patients of whom five
experienced a BCR.

The baseline characteristics of the resulting individual and
combined cohorts after selection of eligible cases are summarized
in Table 1.

Quality Control, Alignment and Gene
Expression
The quality of the raw fastq files from the TCGA cohort was
measured using FastQC (Andrews et al., 2010) (v0.11.5) and
Trimmomatic (Bolger et al., 2014) (v0.32). A threshold quality
per base of 30 (based on Phred 33) and a minimal length of
40 bases were applied. The transcriptomes were then mapped
on GrCH38.p7 using Kallisto (Bray et al., 2016) (v0.43.0).
The software Kallisto was used to estimate isoform counts,
adjusted for the amount of bias in the experiment to ensure
a coherent no-naive mapping. Default paired end parameters
indicated in kallisto’s manual were used. The index needed
to run Kallisto is provided on the official github repository2,

2https://github.com/pachterlab/kallisto-transcriptome-indices/releases
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TABLE 1 | Baseline characteristics of the cohorts.

TCGA GSE54460 VPCC Total

Patients

52 96 23 171

Grade

Low grade

5 0 1 3 4

6 2 9 12 23

7 14 72 4 90

Total 16 82 19 117

High grade

8 9 9 1 19

9 27 5 2 34

10 0 0 1 1

NA 0 0 0 0

Total 36 14 4 54

Total 52 96 23 171

Stage

T1C 0 14 0 14

T2 0 7 0 7

T2A 1 21 3 25

T2B 2 10 0 12

T2C 9 26 17 52

T3 0 2 0 2

T3A 16 5 2 23

T3B 24 9 1 34

T4 0 1 0 1

NA 0 1 0 1

Total 52 96 23 171

BCR

NO 14 54 5 73

YES 38 42 18 98

Total 52 96 23 171

PSA at dx/preop

< = 10 31 64 21 116

10–20 16 17 1 34

> = 20 5 12 1 18

NA 0 3 0 3

Total 52 96 23 171

but can be manually created. Consequently, we computed gene
counts with tximport (Soneson et al., 2015) (Figure 2). The
Ensembl gene identifiers were converted with Biomart tools
(Kinsella et al., 2011; Smedley et al., 2015) from transcript ID to
gene ID. For both GSE54460 and VPCC datasets, we processed
the raw fastq files using the same method as for the TCGA
dataset. However, in GSE54460 the ribosomal sequences were
still present within the reads, so we separated these sequences
from the mapped reads and removed them. After mapping
procedure, 29820 Ensembl genes were found in TCGA-PRAD
dataset, 28704 in GSE54460 dataset and 32334 in VPCC dataset.
The difference of number of Ensembl genes detected is explained
by the sequencing depth of the datasets. A total of 25504
Ensembl genes were common to all sets and were retained
for the analysis.

Normalization
The gene expression data were normalized with the RUV method
(Gagnon-Bartsch and Speed, 2012; Risso et al., 2014) in each
dataset separately following the default protocol indicated in the
RUVseq package vignette. RUVg uses negative control genes
[housekeeping genes (HKG)], assumed not to be differentially
expressed. In order to normalize properly we selected in the
literature a set of specific HKG candidates for PCa (de Kok et al.,
2005; Ohl et al., 2005; Chua et al., 2011; Vajda et al., 2013):
ACTB, PPIA, GAPDH, PGK1, GUSB, RRN18S, and RPL13A.
The expression of these genes was tested by RT-qPCR in a
series of 50 prostate tumors and the genes were shown to be
stably expressed between tumor samples. We excluded from
the final list the ribosomal genes RRN18S and RPL13A because
ribosomal RNAs were removed from our RNA-seq datasets.
PGK1 was also excluded according to recent results (Vajda
et al., 2013). Finally, four genes were chosen: GUSB, PPIA,
GAPDH, and ACTB.

Machine Learning
There are multiple approaches to treat biological data in a
machine learning workflow (Al-Jarrah et al., 2015; Makridakis
et al., 2018). Many machine learning libraries exist, in various
programming languages, such as MLR in R (Lesmeister, 2015),
Scikit-Learn (Garreta and Moncecchi, 2013) in python and
WEKA (Hall et al., 2009) in Java. We chose the MLR (v2.8)
package in R to set up our work. Our general workflow is
described in Figure 3.

Validation Strategy
We performed a resampling to assess the performance of
the learning algorithm, avoid over-optimistic results and get
a more robust measure of the performance of our model.
The entire dataset was split into a random stratified (i.e.,
class balance preserved) training and testing sets, 1000 times,
hence the classification algorithm is trained and tested on
different sets. The measure of performance is an aggregated
value (e.g., average) of the individual performance on the test
set. Because we have no repeated measures and independent
variables (i.e., the patients) we chose the subsampling method
which is also the best in general in different benchmarks
but is less effective computationally (Bischl et al., 2012).
The resampling strategy was run 200 times with a split of
2/3 for training and 1/3 for test sets. In the resampling
methods the split is usually 4/5 or 9/10. In our case
we wanted to avoid over-optimistic results then we chose
a smaller train set closer to a classical cross validation
(CV) approach.

Performance Metric
To evaluate the performance we used the balanced error rate
(BER), the matthews correlation coefficient (MCC) and the mean
misclassification error (MMCE). The BER is calculated as the
average proportion of wrongly classified samples in each class and
weights up small sample size classes (Table 2). The area under the
curve (AUC) was also reported.
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FIGURE 2 | Summary of gene expression value in each dataset (A) or log of the expression value (B).

FIGURE 3 | Machine learning feature selection and model evaluation workflow.

Feature Selection
Feature selection was performed to reduce dimensionality to
improve prediction performances by removing uninformative
features, which has been proven successful in other studies
(Novakovic et al., 2011). There are different approaches
to identify relevant features (Hira and Gillies, 2015;

Singh and Sivabalakrishnan, 2015; Raza and Qamar, 2019).
We chose information gain ranking, an entropy based method,
that can handle both numerical (e.g., gene expression) and
categorical data (e.g., clinical data). In MLR this method relies
on the package FSelector which is an entropy based selection
method (Lin, 1991; Coifman and Wickerhauser, 1992).
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TABLE 2 | Performance measures.

Performance metric Formula

Sensitivity TP/(TP + FN)

Specificity TN/(TN + FP)

Accuracy (TP + TN)/(TP + TN + FP + FN)∗100

MCC
√

(TP + TN)/(TP + TN + FP + FN)∗100

BER 1–0.5 (Sensitivity + Specificity)

MMCE Mean (response! = truth)

The detailed formula of our metrics.

Classifier Hyper-Parametrization
Algorithms typically require to change the settings of parameters
to optimize their performance. The optimization method was the
Irace method (López-Ibáñez et al., 2016) which is automated and
implemented in an R package. We also work with a grid search

algorithm for some specific parameters, which span the space
in a number of chosen steps. These methods are also available
within the MLR package to be used directly with the created tasks.
The hyperparameters search depends on the algorithm iterated,
defined in the MLR related man page.

RESULTS

Model and Features Selection
Following our machine learning pipeline (Figure 3), we first
reduced the dimension of the dataset and removed non-
informative features to obtain 400 top ranked features to train
and benchmark 13 models (Figure 4). We observed that the
random forest (RF) algorithm (Ho, 1995) performed best on our
data. The classical RF was chosen as the main model for our
further analysis.

FIGURE 4 | Machine learning algorithms comparison. The BER results of our 13 benchmarked algorithms are presented. The last model is a featureless control case.
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Since our goal was to identify a very short genomic signature
we looked up the BER rate and other metrics while varying the
number of selected features, from 1 to 400, used in the model.
We observed that the BER and MMCE dropped rapidly with a
few features selected (<3) then oscillated around 0.27 (Figure 5).

The MCC and the accuracy (ACC) went up rapidly and
stabilized in the same way. After these observations, we focused
the analysis on the first eight genes. The results are shown
in Table 3. We observed a shift in BER value after adding
the third most predictive gene to the signature. Afterward,
BER begins to stabilize around 0.25–0.28 despite adding more
informative genes. Consequently, we decided to keep the first
three genes for the rest of the analysis. These genes are

ENSG00000125534 (PPDPF), ENSG00000177606 (JUN), and
ENSG00000188290 (HES4).

Hyper-Parameters Optimization and
Final Model
Four hyper-parameters of the RF classifier were optimized: ntree,
mtry, maxnode, and nodesize. Ntree refers to the number of
decision trees in the model, mtry the number of variables selected
from a decision split for the next split, maxnodes the maximal
number of nodes in the forest and nodesize the minimal number
of samples allowed in a node. Because we selected only three
features, the parametrization step was not expected to drastically

FIGURE 5 | For the 400 genes tested the best genes/performance ratio is obtained with less than 20 genes in our model.
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TABLE 3 | Feature selection benchmark.

Nb of
features

BER MMCE MCC ACC Gene name ENSG

1 0.40 0.39 0.20 0.60 PPDPF ENSG00000125534

2 0.32 0.30 0.38 0.69 HES4 ENSG00000188290

3 0.28 0.28 0.48 0.74 JUN ENSG00000177606

4 0.28 0.26 0.47 0.73 GNB2 ENSG00000172354

5 0.28 0.26 0.48 0.74 PYROXD2 ENSG00000119943

6 0.25 0.23 0.53 0.77 MAP3K2 ENSG00000169967

7 0.27 0.25 0.50 0.75 RPL28 ENSG00000108107

8 0.25 0.23 0.53 0.77 DHCR24 ENSG00000116133

Benchmark on specific number of features has been performed and results of the
performance metrics are presented.

change the performance of our optimization task. First we
used a grid search method to define the best setting for each
parameter taken individually, letting the others at default. The
grid search provided us 500 (ntree), 1 (mtry), 24 (maxnodes), and
5 (nodesize) (Figure 6).

From these hyper-parameters an Irace search was performed
around the space of those values. The best value was obtained
with ntree, mtry, maxnodes and nodesize at 187, 1, 881 and 1
resp. for a BER of 0.27. We observed relative stability despite the
modification of the hyperparameters.

To ensure the stability of our three-gene model, a subsampling
test was done 100000 times for the last part of our work. From this
subsampling, the results obtained are ber = 0.274, mmce = 0.26,
mcc = 0.468, fpr = 0.368, tpr = 0.82, acc = 0.739. Then we
calculated the associated AUC (0.761) and plotted the ROC curve
Figure 7.

The proposed three genes signature (see gene distribution
for each cohort in Figure 8) model can be retrained using
the training data provided in the github repository (see “Data
Availability Statement” section), and new data must be processed
following the indications in Materials and Methods before being
submitted to the model.

Comparison of Omics and Clinic Models
We compared the potential of omic data versus clinical data to
assess the ACC of our omics model. A RF model for the clinical
data (Grade, stage, and PSA) and a merged model combining
clinic and omics data were set up following the same protocol
used for the omics data. For the clinical model the best BER
obtained was 0.311 and for the mixed model the best BER
obtained was 0.276 (Table 4).

Single Cohort Performance
To further assess the performance of the three-gene model
obtained with the combined dataset, we also performed
the analysis with the individual cohorts. We used the RF
algorithm iterated on the 50 best features from Information
Gain on the three datasets evaluated by leave one out group
validation (i.e., two datasets for training, one for testing), and
the combined dataset evaluated by resampling (see section
“Validation Strategy”). The results are displayed in Figure 9

and show that the combined dataset offers better and more
stable performances.

DISCUSSION

Machine Learning is one of the fastest growing fields in
bioinformatics (Inza et al., 2010) and its application to healthcare
is a challenge. In the past decade, various mathematical methods
using combination of omics biomarkers (Halabi et al., 2003;
Gaudreau et al., 2016), including non-coding RNAs, PCA3,
TMPRSS2:ERG (Nilsson et al., 2009) were developed to improve
PCa diagnosis (Wang et al., 2017; Guo et al., 2018), define
the grade (Arvaniti et al., 2018), define the risk (Paulo et al.,
2018) and predict survival time (Zupan et al., 2000). Machine
learning approaches to predict BCR or other characteristics
demonstrated good performances in various situations. Lalonde
et al. (2014, 2017) built a 100 loci-DNA (CNV) signature for low
to high risk cohort with 563 patients and a 60-month follow-
up for BCR. The obtained AUC was 0.74, which is similar to
our performance but with another technology (CNV assay) and
for much fewer biomarkers. Moreover, a model containing so
many features can be suspected of overfitting. Regnier-Coudert
et al. (2012) built a model on Partin table from a large cohort
of 1700 patients to improve cancer grading and staging, and
obtained an AUC of 0.68. Mangiola et al. (2018) focused on
gene expression but chose to predict dichotomous cohorts with
low versus high risk patients. With a cohort of 80 patients and
an average follow-up of 27–29 months they achieved an AUC
of 0.72. Finally, Abou-Ouf et al. (2018) used a large cohort of
545 patients to define a ten-gene signature from microarray
exon chips to predict BCR, but couldn’t exceed an AUC of
0.65. Thus, there was a large room for improvement in terms
of predictive performance, and a lack of focus on small gene
signature, much easier to reproduce, to predict BCR with recent
technology (RNA-Seq).

In this study, we took advantage of the power of machine
learning to identify a biomarker signature composed of three
genes. We showed that such short signature from omics data
performs better to predict BCR than clinico-pathological features
or a combination of these data (i.e., clinico-pathological+ omics
data). We have explored many machine learning algorithms,
since each has its advantages and drawbacks in terms of
computational time, hyper-parameters and range of application
(class, type and dimension) and also because their performance
depends on the type of data and their composition (Heung et al.,
2016). Using this approach, we ended with a Random Forest
model with a 27% BER with a three genes signature.

The identified signature contains three genes: JUN, HES4,
and PPDPF. Gene JUN is well known for being a transcription
factor acting as an oncogene (Maki et al., 1987; Vogt and
Bos, 1990; Wasylyk et al., 1990; Mariani et al., 2007).
Proteins of the JUN family combined with the Fos protein
to form the heterodimeric AP-1 transcription factor. This
complex can enter into the nucleus and bind specific DNA
sequences to module targeted genes. AP-1 activity is induced
by stimuli such as growth factors and cytokines that bind to
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FIGURE 6 | Balanced Error Rate (BER) evolution according to modulation of Random Forest (RF) parameters. Four different RF hyper-parameters were tested while
keeping the others at default value in a grid search approach. The results were then used in an Irace search to find optimal parameters. (A) ntree, number of decision
trees; (B) mtry, number of variables selected from a decision split for the next split; (C) maxnodes, maximal number of nodes; (D) nodesize, minimal number of
samples allowed in a node.

specific cell surface receptors (Yang et al., 1999). Recently a
miRNA targeting JUN has been identified as tumor suppressor
(Liu et al., 2015).

Hes Family BHLH Transcription Factor 4 (HES4) is a gene
related to the PI3K-Akt signaling pathway. This gene is a
transcription factor binding DNA. It is related to the NOTCH3
receptor and is a biomarker of PCa aggressiveness (Carvalho
et al., 2012) and is also related to colorectal cancer in the same
pathway (Sikandar et al., 2010). It was demonstrated as a high
grade biomarker of osteosarcoma (McManus et al., 2017).

Finally, PPDPF is known to be expressed during pancreas
development [Pancreatic Progenitor Cell Differentiation And
Proliferation Factor (Breunig et al., 2017)] and differentially
expressed in several types of cancer (Voena et al., 2013;
Xue et al., 2015). But it was not previously associated with PCa.

We have attempted to understand the biological links
between these three genes and the eventual relation with the
BCR. This is not straightforward considering that Random
Forest models tend to reflect a nonlinear approximation of
statistical relationships, hence providing little insight of how
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FIGURE 7 | ROC curve for the three-gene model.

elements of the signature are related. Thus, we have performed
a protein-protein interaction networks functional enrichment
analysis using String-DB (Szklarczyk et al., 2019) on the three
identified genes, but no evident relations could be found,
even after addition of intermediate protein nodes. We have
also performed a gene list enrichment analysis and candidate
gene prioritization based on functional annotations using
ToppGene Suite (Chen et al., 2009) using the three identified
genes. The only biologically relevant (i.e. cancer hormono-
dependant as the PCa) and significant (q-value 2.1E-2 after
FDR Benjamini-Yekutieli procedure correction) hit is that the

three genes exist in the Human Breast Nam08 30 genes
UpregulatedGeneList signature (Nam et al., 2008), provided
by GeneSigDB (Culhane et al., 2012), but no evident and/or
significant biological functions by ontology seem to link these
three genes together. We have eventually expanded the list of
three genes to 320 genes by retrieving correlated genes (>90%
Pearson correlation) and observed that many genes were involved
in mitochondrial functions, including mitochondrial translation,
mitochondrial gene expression, mitochondrial translational
termination and mitochondrial translational elongation, all
having a q-value <5.9E-5 after FDR Benjamini-Yekutieli
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FIGURE 8 | Log2 transformed distribution of normalized read counts for the three genes signature in each cohort.

procedure correction. This observation is supported by other
studies who have found a clear relation between mitochondrial
genomic alterations and BCR (Ellinger et al., 2008; Kalsbeek et al.,
2016; Xu et al., 2020).

This is not the first time that predictive three-genes signatures
have been identified in various diseases (Sun et al., 2015; Thakkar
et al., 2015; De Palma et al., 2016; Ibrahim et al., 2016; Wang
et al., 2016; Li et al., 2017; Chen et al., 2018; Yang et al., 2018;
Bao et al., 2019; Ding et al., 2019; Saidak et al., 2019; Xiao
et al., 2020), hence showing that extensive research is ongoing

TABLE 4 | Comparison of model performance using clinic or omics data or both.

Metric Omics Clinic Omics + Clinic

BER 0.27 0.32 0.28

MMCE 0.257 0.306 0.265

MCC 0.474 0.373 0.457

ACC 0.742 0.692 0.734

Parameters

ntree 187 1402 667

mtry 1 3 1

maxnodes 881 30 25

nodesize 1 4 6

The omics model is based on three genes and the clinic model is a model based
on the grade, stage and PSA. The omics + clinic model integrates all the selected
features together.

to identify multigenic signatures containing a reasonable number
of potential targets. The identified genes could be eventually
verified in other cohorts or by experimental validations. One
key point should be to add gradually smaller datasets to
control the signature stability with various experiments and
technologies. Integrate too large cohorts in this approach will
imbalance model parameters in favor of that cohort, then all
the advantages of using several small dataset will be lost. This
approach has the advantage of offering a small research team the
opportunity to integrate their own work in a larger view. After
integrating more dataset, a set up in a specific technology such
as TaqMan probe to evaluate gene expression could be proposed
as diagnosis and maybe to develop drugs (Laetsch et al., 2018;
Havel et al., 2019).

CONCLUSION

By using an appropriate data transformation strategy and
machine learning pipeline, we have identified a three-gene
signature. With the decreasing price of RNA sequencing and
its growing accuracy there are opportunities for less invasive
and faster exams if the right biological variables are chosen.
Other investigations on other omics data using the same
machine learning approach could be undertaken, such as
using miRNAs (Kristensen et al., 2016; Matin et al., 2018).
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FIGURE 9 | Performance obtained using leave one out group validation. (A) Model trained on GSE54460 and VPCC then tested on TCGA. (B) Model trained on
TCGA and VPCC then tested on GSE54460. (C) Model trained on GSE54460 and TCGA then tested on VPCC. (D) Combined dataset evaluated by subsampling
method described in “Validation Strategy.”

We also showed that it is possible to concatenate several
cohorts to get stable and performing models from heterogeneous
RNA-Seq PCa datasets, hence showing a robustness against
batch effect. This study demonstrates the potential of taking
advantage of many independent datasets produced on the
same disease. Machine learning algorithms can handle the
batch effect if there is the right preprocessing pipeline applied
on the data.
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