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Over the past 200 years, tuberculosis (TB) has caused more deaths than any other

infectious disease, likely infecting more people than it has at any other time in human

history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate

human pathogen that has evolved through the millennia to become an archetypal

human-adapted pathogen. This review focuses on the evolutionary framework by

which Mtb emerged as a specialized human pathogen and applies this perspective

to the emergence of specific lineages that drive global TB burden. We consider how

evolutionary pressures, including transmission dynamics, host tolerance, and human

population patterns, may have shaped the evolution of diverse mycobacterial genomes.

Keywords: Mycobacterium tuberculosis, evolution, host tolerance, clinical phenotypes, mycobacteria,

mycobacterial genomes

INTRODUCTION

Tuberculosis (TB) is a critical health crisis in our modern world. TB is one of the top ten causes of
death worldwide, killing an estimated 1.7 million people in 2017 (1). Despite years of coordinated
global efforts to reduce the burden of TB, it is estimated that around 10 million new infections
developed around the world in 2017 (1).

Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, has evolved through the millennia
to become a highly specialized obligate human pathogen. Indeed, some consider Mtb as
the archetypal human-adapted pathogen (2). Unlike the non-pathogenic soil-dwellers and the
opportunistically pathogenic species of mycobacteria,Mtb has no known environmental reservoir
and does not survive outside of its human host. For its survival, Mtb has evolved to subvert and
co-opt the very mechanisms the human immune system deploys to clear bacterial infections for its
own advantage. However, the host is capable of limiting mycobacterial growth and, in some cases,
inducing latency (3, 4), or sterilizing the infection (5, 6). Latent or subclinical disease provides
mechanisms whereby Mtb can remain in the host and reactivate following immune suppression,
transmitting to new hosts (7), although our previous understanding of the nature and significance
of latent disease is now being rethought (8, 9). Nonetheless, this balance between host and pathogen
is central to the evolutionary survival strategy ofMtb as an obligate human pathogen. Indeed, it is
estimated that 90% of people that are infected byMtb either contain or clear the infection (10). Yet
the 10% of patients who develop active disease transmitMtb to such a degree that one quarter of the
world’s population is estimated to have mounted an immune response to the pathogen (11). TB has
caused over 1 billion deaths in the past 200 years, surpassing all other infectious diseases (12). In
this review, we discuss the features ofMtb that were central to its emergence as a human pathogen
and how genetic diversity among strains contributes to phenotypic diversity in disease presentation,
with a focus on the evolutionary interplay between pathogen and host. Bacterial factors that engage
the host promote bacterial growth, survival, and transmission in human populations. Yet, overall,
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an evolutionary balance has been reached in which host
mechanisms of containment and tolerance counteract many of
these bacterial features.

The Origins of Mtb
The timing of events that contributed to Mtb’s specialized
adaptation to human hosts remains a matter of debate. Some
point to an early origin of Mtb ∼70,000 years ago (13, 14), while
others have more conservative estimates of 35,000 years ago (15).
Other studies suggest a more recent emergence of ∼6,000 years
ago is most likely (16). These estimates are based on different
assumptions and studymaterials, and have therefore led to a wide
dispersion of estimates.

Most studies have employed inference methods based on
DNA sequence among extant strains of Mtb. This method relies
on the calibration of a molecular clock, which uses genetic
distance as a measure of time since divergence (17). Mtb
demonstrates a clonal population structure that can be divided
into seven major lineages (Figure 1), and the divergence between
these lineages and the other members of the Mycobacterium
tuberculosis complex (MTBC) has been used by some to calibrate
the molecular clock forMtb (25).

Prior to the advent of widespread accessibility to whole
genome sequencing, Mtb’s molecular clock was estimated using
variable numbers of tandem-repeats (VNTR) in microsatellite-
like loci (26). This method proposed an origin of the MTBC
approximately 40,000 years ago, and highlighted the likelihood
of Mtb dispersing throughout Africa and Eurasia via human
migration (27). However, the use of VNTR in constructing
phylogenies can lead to phylogenetic arrangements incongruent
with known genetic relationships due to convergent evolution
at these loci (28). Therefore, the current gold standard for
calibrating a molecular clock is genome sequencing. However,
as demonstrated below, the method by which Mtb’s molecular
clock is calibrated will have a significant impact on the
resulting estimates.

Multiple studies have employed genome sequencing to
determine the molecular clock of Mtb and have arrived at vastly
different estimates for the age of Mtb. The calibration of the
molecular clock underlies these differences. Comas et al. estimate
Mtb’s origins as far back as 70,000 years ago (13). This estimate
is based on the parallels of mitochondrial DNA (mtDNA)
haplogroups and the lineages of Mtb that are most commonly
found among the corresponding human populations, and then
calibrating the molecular clock using key events in human
evolution reflected by mtDNA. This generated an estimated
mutation rate in Mtb of 2.58 × 10−9 substitutions/site/year,
which is low compared to estimates derived from contemporary
outbreaks (1.1 × 10−7 substitutions/site/year) (29). However,
their estimates produced multiple time points for Mtb’s
emergence, and 70,000 years was chosen as the most likely.
The researchers who put forth this hypothesis on the origin
of Mtb had previously published work proposing the dispersal
of Mtb via human migration out of Africa (14). While the
phylogeographic distribution of the major lineages of Mtb
coincide with concordant patterns in human migration (25),
calibrating Mtb’s molecular clock based on these patterns to

determine when Mtb emerged presupposes its own hypothesis
thatMtb emerged with modern humans.

Others have challenged this hypothesis and proposed a much
later time frame for Mtb’s emergence (30). Instead of mtDNA,
Pepperell et al. based their estimates on historical samples of
MTBC strains and determined that the emergence of the most
basal species ofMtb,M. africanum, occurred approximately 2,200
years ago. The most recently evolved strains ofMtb, those among
the so-called “modern” lineages, are estimated to have arisen
∼1,300 years ago. The estimated mutation rate of Mtb from
this study (1.3 × 10−7 substitutions/site/year) was significantly
higher than that of Comas et al. Furthermore, based on this
early estimate for the origin of Mtb, Pepperell et al. propose
the estimates for human population divergence do not correlate
with the divergence of the Mtb lineages, and therefore did not
disperse concurrently (30). Another study has put forth an origin
estimate similar to that of Pepperell et al. The mummified
remains of human samples from Peru dated between AD 1028
and AD 1280 demonstrated skeletal lesions indicative of TB
(31–33). Sequenced ancient DNA (aDNA) from these samples
revealed disease was caused by M. pinipedii, a member of the
Mycobacterium tuberculosis complex (MTBC) that primarily
infects seals (16). Comparing the aDNA against a current strain
of M. pinipedii generated an estimate of MTBC’s emergence
occurring 6,000 years ago, with a mutation rate intermediate
to the estimates of Comas et al. and Pepperell et al. (4.6 ×

10−8 substitutions/site/year). However, the reliance on aDNA
comes with the caveat that post-mortem DNA decays due to
physical and chemical damage, leading to strand breakage and
the hydrolytic deamination of cytosine to uracil (34). Therefore,
additional bioinformatic corrections must be implemented to
sort out decay artifacts, leading to the possibility of erroneous or
missed variant calls in aDNA samples.

The variety of conclusions from these studies demonstrates
that the calibration of the molecular clock is critical to the
resulting estimates, and raises the question as to how well-
suited Mtb is for molecular clock estimations. The application
of molecular clocks relies on satisfying certain assumptions that
could be problematic when applied to Mtb: namely, a constant
mutation rate through time and the broad applicability of this
rate across lineages (17). It is not at all clear that the mutation
rate of Mtb is stable over evolutionary time, as no study has
been able to collect longitudinal data from historical samples.
Additionally, the health status of human hosts across space
and time is highly variable, creating different pressures on the
infecting strains. Furthermore, even among the extant lineages
of Mtb, which are much more closely related to each other than
they are to other members of the MTBC, variable mutation
rates have been observed (35). A recent analysis highlights the
complexities, uncertainties, and limitations of different methods
used to calibrate anMtbmolecular clock (36).

The earliest claim of mycobacterial disease comes from a
500,000 year old fossil of Homo erectus, which demonstrated
lesions characteristic of mycobacterial infection (37). As no
ancient DNA (aDNA) was recovered from this sample, it is
impossible to determine what species of mycobacteria might have
caused the lesions. Using lipid profiles unique to pathogenic
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FIGURE 1 | Phylogeny of Mtb lineages and geographic associations of disease characteristics. Neighbor-joining phylogeny based on 35,787 SNPs among 225

strains from Comas et al. (13). Lineages are color-coded according to the scheme described in Bos et al. (16), and modern lineages are shaded in gray. Scale bar

represents relative number of substitutions per known variant. Disease characteristic associations with Mtb lineages in geographic locations by studies described in

Table 1 are marked on a world map.

mycobacteria and the IS6110 insertion element (38), a feature
found only in members of the MTBC (39), the oldest confirmed
sample of mycobacterial disease was found in bovid fossils in
North America, dating back approximately 17,000 years (40, 41).
The earliest known association of the MTBC with humans comes
fromAtlit-Yam, Israel, dating back 9,000 years (42). Interestingly,

this sample bears the TbD1 marker, a genomic deletion found

exclusively in the evolutionarily “modern” lineages of Mtb (43).
Linking definitive archaeological findings with aDNA sequencing

will provide the most compelling evidence to settle the divergent

estimates. As the techniques for collecting and sequencing aDNA
continue to advance, our insight into Mtb’s origins will similarly
improve, and we may better understand the evolutionary forces
and constraints leading to modern Mtb and the nature of its
interactions with its hosts.

The Evolution of Mycobacterium

tuberculosis as a Specialized Pathogen
Mycobacteria range from environmental, non-pathogenic
species, to opportunistic pathogens that infect immune-
compromised hosts, to professional pathogens. The vast majority
of Mycobacteria are non-pathogenic in nature. Comparative
genomic studies have revealed the evolutionary trajectory to
pathogenicity, in which environmental mycobacteria acquired
virulence loci and became opportunists, and opportunists
adapted to their host environments to become professional
pathogens. The pathogenic species include but are not limited
to: Mycobacterium ulcerans (the agent of Buruli ulcer),
Mycobacterium leprae (leprosy), Mycobacterium marinum,
Mycobacterium canetti, and the range of species that make up
the MTBC. The MTBC contains the closely related species of
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pathogenic mycobacteria that, together, cause the vast majority
of TB. Several of these species are animal-adapted strains that
cause disease across a range of mammalian species. These
include Mycobacterium bovis (infecting cows), Mycobacterium
caprae (goats and sheep), Mycobacterium pinipedii (seals and
sea lions), Mycobacterium microti (voles), and Mycobacterium
orygis (oryxes) (44, 45). Mtb and Mycobacterium africanum
cause the majority of disease in humans. Among all of these
pathogenic mycobacteria, M. tuberculosis sensu stricto has
emerged as the most prevalent mycobacterial species and one
of the most historically successful human pathogens. The key
features and events that underlie the adaptation of mycobacteria
into a specialized pathogen are discussed below and have also
been highlighted in previous reviews [e.g., (2)].

From the Environment to New Hosts
The soil-dwelling mycobacteria Mycobacterium kansasii is an
environmental, opportunistic mycobacterial pathogen closely
related to the MTBC. This genetic relationship provides insight
into the late-stage events conferringMtb’s specialized adaptation
that allowed it to expand and persist as an obligate human
pathogen. Unlike the nonpathogenic mycobacterial species,
M. kansasii contains an array of virulence determinants for host
adaptation. There are five ESX loci inMtb, and all five are present
in M. kansasii (46). Furthermore, M. kansasii has expanded its
set of PE/PPE proteins and, in fact, encodes a greater number
of PE/PPE proteins than Mtb and other members of the MTBC.
Despite these similarities M. kansasii is only rarely found in
patients, whereas Mtb infection in humans is prevalent (47, 48).
Therefore, the ESX secretion systems and its effectors are not
sufficient to explain the pathogenicity of Mtb. Given the shared
virulence features of M. kansasii with Mtb but their vastly
different impact on global health, what other features separate
Mtb fromM. kansasii?

The enhanced virulence of Mtb may have been the result
of acquiring pathogenicity islands via horizontal gene transfer
(HGT) (49–52). Comparative genomics reveals the presence of
55 genes in Mtb absent from M. kansasii (51). The majority of
these genes contain an unusual GC content for mycobacteria
and appear in clusters flanked by the vehicles that provide
mechanisms for HGT (mycobacteriophage genes, transposons,
and toxin-antitoxin systems). Notably, some of these HGT-
acquired genes, encoding factors responsible for cell adhesion
(53), arresting phagosome maturation (54, 55), the production
of PGLs that function in oxidative stress resistance (56) and
modulation of the host immune system (57) have been implicated
inMtb’s adaptation to survival within a host (55, 58).

Mycobacterial species comprising the “smooth tubercle
bacilli” (STB) are thought to be an evolutionary bridge between
the environmental opportunistic species, such as M. kansasii,
to the pathogenic MTBC (46). Unlike the MTBC, genome
sequencing reveals that M. canetti demonstrates a non-clonal
population structure with >60,000 SNPs separating some strains
(50). While the environmental reservoir of M. canetti remains
unknown, cases are highly geographically restricted and arise
predominantly in patients who have some form of contact
with East-Africa (59). Like M. kansasii, M. canetti harbors

compelling signatures of HGT in its genome (60, 61). Boritsch
et al. offered conclusive experimental evidence that HGT occurs
in M. canetti, finding the transfer of DNA fragments as large
as 117.6 kilobase pairs (kbp) (62). Like M. canetti, the most
basal lineages in the MTBC, including L5, L6, and L7, are also
strongly geographically restricted to Africa (14, 63, 64). These
observations and experiments support a scenario in which anM.
canetti-like species of mycobacteria in Africa acquired virulence
loci via HGT, thus giving rise to the pathogenic progenitor of
the MTBC.

The role of ongoing HGT in Mtb, however, remains
controversial. Most evidence suggests that Mtb demonstrates
clonal evolution without ongoing recombination events. In
the same experiments in which HGT was detected in M.
canetti, HGT could not be detected among MTBC species
(62). The lack of ongoing HGT in the MTBC is supported
by the congruence of phylogenetic trees based on a variety
of molecular markers (65–67), stable G+C content across the
majority of the genome (68), a low frequency of homoplasic
mutations (14, 28), and that all known drug-resistance factors
arise via de novo mutation (69). The mechanism by which
Mtb lost capacity for ongoing genetic recombination, however,
remains unknown. Together, this evidence provides strong
support for the role of HGT as a critical component in the
emergence ofMtb, and that subsequentlyMtb appears to have lost
significant capacity for genetic recombination and evolved in a
clonal fashion.

Genetic and Phenotypic Diversity in Mtb
Mtb is an obligate human pathogen and has no known
environmental reservoir. As such, its population structure is
largely isomorphic to its human host population. Despite the
clonal evolution of Mtb, significant genetic variation exists
and based on this it is divided into seven major lineages.
These lineages can be grouped into evolutionarily “ancient” and
“modern” lineages, with the TbD1 deletion serving as a genetic
marker separating the two groups (43). The ancient lineages (L1,
L5, L6, L7) demonstrate a high degree of geographic constraint
(14, 63, 64), whereas the more recently evolved modern lineages
(L2, L3, L4) are found more broadly throughout the world (70).
L1 predominantly circulates in Southeast Asia, L5 and L6 inWest
Africa, and L7 in the Horn of Africa. L2 is strongly associated
with an East Asian origin (71), but also causes significant disease
burden in Eurasia, South Africa, and Peru. Over the past 200
years, the population size of L2 strains has dramatically increased,
and can be found in most countries throughout the world (72).
L3 strains circulate mostly in India and Central Asia. L4 strains
cause the most global disease and are the most widely distributed
among the Mtb lineages (73). Interestingly, discrete sublineages
within L4 differ in their geographic distribution, suggesting that
some L4 strains are more capable of spreading to new host
populations (74).

The genetic lineages of Mtb were first defined by lineage-
specific deletions, referred to as large sequence polymorphisms
(LSPs) (25). Due to the extreme rarity of ongoing horizontal
gene transfer (HGT) among species of the MTBC, these markers
are thought to be largely irreversible and well-suited to lineage
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classification (73). Single nucleotide polymorphisms (SNPs) are
also phylogenetically informative in Mtb due to the lack of
ongoing HGT, and help to increase the resolution of relationships
among strains within a lineage (75–77). From the application
of these markers in constructing the phylogenetic relationships
among Mtb lineages, it has become clear that the ancestral
lineages separate into distinct phylogenetic groups, and are
thus paraphyletic in nature. The modern lineages, conversely,
are more closely related and share a more recent common
ancestor (i.e., monophyletic) than the ancient lineages are with
one another. These lineages have evolved independently in
separate human populations, resulting in distinct induction of
inflammatory phenotypes (78, 79) and differential modulation
of innate immune signaling (80). Furthermore, the variable
geographic distribution and disease burden of the different
lineages raises the question as to how the existing variation
among Mtb strains contributes to disease phenotype, and
whether this variation explains the uneven distribution of
Mtb’s lineages.

Phenotypic Diversity Among Mtb Lineages
Strain variation in disease severity, transmission potential,
and resistance to drug therapy is of significant interest to
global health. Identifying virulent and/or drug-resistant clones
informs current and future treatment. Numerous studies have
investigated the phenotypes associated with the different lineages
and strains of Mtb. By the mid-20th century, TB research
had begun to investigate virulence traits among clinical and
reference strains of Mtb (81, 82). The first attempts to
correlate virulence with strain background via typing techniques,
however, did not occur until 1978 (83). In a landmark study,
Valway et al. utilized IS6110 typing patterns to identify a
strain associated with a particularly virulent outbreak (84).
The outbreak was characterized by extensive transmission
among patients, and the researchers correlated a significant
increase in in vivo replication as a potential underlying cause
using a mouse infection model. Following the adoption of
the restriction fragment length polymorphism (RFLP) typing
technique (85) to describe the population structure of Mtb,
strains originating in China and Mongolia, the so-called
“Beijing” strains (now known as L2), demonstrated increased
replication in cell culture and mouse models in addition to
increased mortality in vivo (86, 87). In a rabbit infection
model, L2 strains rapidly disseminated to extrapulmonary
sites resulting in severe meningeal disease presentation (88).
However, we should exercise caution when applying strain-
specific characteristics broadly across its genetic lineage, as
infection phenotypes can vary widely among strains from the
same lineage (79, 89). Correspondingly, L2 strains demonstrate
variable virulence patterns. The most recently evolved L2 strains,
those comprising the so-called “modern Beijing” sublineage,
exhibit increased virulence compared to the ancestral strains
(90). These and earlier studies (91, 92) focused attention on
the apparent increased virulence of the L2 strains, and their
impact on the immune response was identified as an avenue of
future research.

Mtb Lineages and Disease Presentation
Transmission ofMtb depends on disease within pulmonary tissue
in human hosts. Given its status as an obligate human pathogen,
there are no environmental reservoirs for Mtb to transmit
from, and extrapulmonary sites do not afford transmission. This
leads to the question: Do particular Mtb lineages demonstrate
variable disease presentations? Are more transmissible strains
less often be associated with non-transmissible disease sites,
i.e., extrapulmonary tissues? In a marmoset model of infection,
a strain from the ancient L6 group was found to develop
lower bacterial load in pulmonary tissue compared to modern
strains from L2 and L4, but disseminated to extrapulmonary
sites more compared to L4 (93). Interestingly, the L2 strain
demonstrated the highest burden in all organs assayed, effectively
replicating within the lung and disseminating to extrapulmonary
sites. This study suggests the modern strains are more capable
of transmitting by establishing pulmonary disease, but L2
also spreads effectively to extrapulmonary sites. Based on the
characteristics of infection, it is possible that the L2 and L6 strains
disseminated to other tissues by different mechanisms, where L2’s
dissemination was a byproduct of increased overall virulence as
described in the preceding sections. While this study offers novel
visualization methods to assess disease progression of diverse
tuberculosis lineages in a primate infection model, it is not clear
how generalizable these phenotypes are across these lineages.

There are few studies that have compared patterns of disease
presentation among a diverse range of strains from more than
two lineages in a large sample population (summarized in
Figure 1 andTable 1). Even in these, associations between lineage
and disease presentation have been variable, and the comparisons
differ. In the United States, L1, L3, and L4 strains were more
likely to cause extrapulmonary disease compared to strains from
L2 (20). In Vietnam, L1 and L2 strains were associated with
TB meningitis compared to L4 strains (18). In the UK, L1
and L2 were associated with increased likelihood of exclusively
extrapulmonary disease compared to L3 and L4 (22). Aside from
site of disease, characteristics such as time to sputum culture
conversion and transmissibility differ between lineages as well.
In the United States, L1 strains demonstrate a more rapid time to
sputum culture conversion compared to strains from the modern
lineages (L2, L3, and L4) (21). Additionally, in Gambia, L6 strains
progressed to active disease at a significantly lower rate compared
to strains from the modern lineages, but displayed no differences
in transmissibility (19). However, in the Netherlands, ancient
strains (L1, L5, and L6) demonstrated reduced transmissibility
compared to L4 strains (23). In Florida, L1 strains were associated
with higher rates of extrapulmonary disease compared to L2 and
L4 strains (24). Together, these studies indicate that significant
differences exist in disease presentation among the different
lineages of Mtb (particularly between ancient and modern
strains), and these patterns can be observed experimentally and
in human populations.

Bacterial Determinants of Virulence
Mtb lineages show varying geographic distribution patterns with
ancient lineages being geographically restricted in comparison
to the modern lineages. Several factors like population density,
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TABLE 1 | Studies investigating multiple Mtb lineages and their associations with disease characteristics.

Geographic

location

Lineages under

study

Strain typing method Lineage associations References

Vietnam L1, L2, L4 IS6110 RFLP, spoligotyping,

MIRU-VNTR, & LSP

L1 and L2 cases higher odds of TB

meningitis compared to L4

(18)

Gambia L2, L4, L6 LSP L6 infections less likely to progress to

active disease compared to L2 and

L4

(19)

USA L1, L2, L3, L4 Spoligotyping & MIRU-VNTR L1, L3, L4 cases higher odds of

extrapulmonary tuberculosis

compared to L2

(20)

USA L1, L2, L3, L4 Spoligotyping & MIRU-VNTR L1 more rapid time to positive sputum

culture conversion

(21)

United Kingdom L1, L2, L3, L4 MIRU-VNTR L1 and L2 increased likelihood of

exclusively extrapulmonary disease

compared to L3 and L4

(22)

Netherlands L1, L2, L3, L4, L5, L6 RFLP and MIRU-VNTR L1, L5/L6 reduced transmission

compared to L4

(23)

USA L1, L2, L3, L4 Spoligotyping & MIRU-VNTR L1 higher odds of extrapulmonary

disease compared to L2 and L4

(24)

RFLP, Restriction Fragment Length Polymorphism; MIRU-VNTR, Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat; LSP, Large Sequence Polymorphism.

migration pattern, economic and health conditions, and more
recently the HIV/AIDS pandemic and emergence of MDR
strains could influence this distribution (94). However, bacterial
genetic variation within and between each lineage may reflect
evolutionary history and pressures.

Cell Envelope-Associated Lipids
As a pathogen, Mtb must interface with its host, and
the mycobacterial cell envelope makes first contact. The
mycobacterial cell envelope is a complex multi-layered
structure containing the plasma membrane, cell wall skeleton,
mycomembrane and a capsule (95–97). It contains several lipids
unique to pathogenic mycobacteria which contributes to their
in vivo survival by modulating the host immune response, and
have been the subject of more comprehensive reviews [e.g. (98)].
These include mannose capped lipoarabinomannan (ManLAM),
phenolic glycolipid (PGL) and phthiocerol dimycocerosate
(PDIM) (99–101). These features are highlighted in Figure 2.

Variations in these components among different strains and
lineages may correspond to discrete evolutionary trajectories. For
example, variation in ManLAM has been observed in clinical
strains leading to altered virulence (102, 103). A subset of
lineage 2 strains with truncated and more branched forms of
ManLAM exhibited defects in phagocytosis by primary human
macrophages when compared to lineage 4 reference strains (103).

Variations in PDIM, PGL and other lipids may also contribute
to disease progression. PDIM can neutralize oxidative and
nitrosative free radicals and has been proposed to play a
role in protecting Mtb from these stress causing agents (104,
105). Further, PDIM may also have a role in immune evasion
by masking cell wall pathogen-associated molecular patterns
(PAMPs) (57), and also is required for proper secretion of ESX-1
substrates (106). Among the modern lineages, L2 strains but not
L4 strains produce the phenolic glycolipid PGL, which may play

an important role in promoting their virulence and transmission
(107). In mycobacterium-infected macrophages, PGL induces
the production of chemokine CCL2 which recruits monocytes
to the site of infection. This facilitates mycobacterial escape
from bactericidal macrophages to permissive monocytes (108). A
point mutation in Rv2952 encoding the S-adenosylmethionine-
dependent methyltransferase in Beijing strains resulted in
structural variations in PDIM and PGL compared to other
lineage strains (109). As noted above, a deletion in the pks1/15
locus encoding a polyketide synthase in L4 strains leads to
defective production of PGL (110). These lipids can also inhibit
the production or secretion of proinflammatory cytokines by the
host leading to the establishment of infection (105, 107, 111, 112).

The abundant cell wall lipid trehalose dimycolate (TDM)
plays multiple roles in pathogenesis (113–118). Specific
cyclopropane modifications to the mycolic acids that comprise
TDM are associated with pathogenic mycobacteria, but not
with non-pathogenic species; PcaA-mediated modification of
TDM modulates the host immune response to mycobacterial
infection (119, 120). This cyclopropanated TDM plays an
important role in inducing or accelerating host angiogenesis
around the mycobacterial granuloma, a response that helps
to support bacterial growth during early infection (121–123).
Thus, intricately structured and complex lipid species provide
important host modulatory activities and may be important
substrates for evolution. Notably, lineage-specific differences
in cytokine induction upon exposure of macrophages to lipid
extracts from different lineages have been reported (78).

Type VII Secretion Systems
The ESAT-6 secretion (ESX/Type VII) systems and their
secretion substrates are key features that contribute to the
pathogenicity of Mtb (124). The ESX secretion systems were
discovered after genomic analysis of the M. bovis BCG vaccine
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FIGURE 2 | Key features underlying the adaptation of mycobacteria as specialized pathogens: Cell envelope of mycobacteria with factors playing distinct roles in its

adaptation as a specialized pathogens labeled in red. CM, Cell membrane; PG, Peptidoglycan; AG, Arabinogalactan; PAM, Penta arabinosyl motif; MA, Mycolic acids;

TDM, Trehalose dimycolate; PL, Phospholipids; PDIM, Pthiocerol dimycocerosate; GPL, Glycopeptidolipids; PGL, Phenolic glycolipids; ManLAM, Mannose capped

lipoarabinomannan.

strain revealed a large deletion [Region of Difference (RD) 1] that
interrupted the ESX-1 system (125). This system was lost in M.
bovis following 11-year serial culture by Calmette and Guerin
in the pursuit of a TB vaccine. The absence of this system was
subsequently shown to account for a significant share of BCG’s
attenuation, and much attention has been paid to the role of this
and other ESX systems and their secreted substrates on Mtb’s
virulence (126, 127).

ESX secretion systems are encoded in clusters throughout
mycobacterial genomes. Mtb contains five ESX loci, which
have expanded through gene duplication, diversification, and
insertions of the ancestral ESX-4 locus (128). These clusters
share six core genes encoding: three ESX conserved-components
(EccB, EccC, EccD), a mycosin (MycP), and two small, secreted
Esx proteins. Besides the most ancestral ESX-4 locus, the
ESX clusters also encode genes for PE, PPE, EccA, EccE, and
ESX-1-specific component (Esp) proteins. The esp genes are
not specific to ESX-1, but they are most abundant in that
system. Orthologs of ESX-4 can be found among mycobacterial
and non-mycobacterial species in the phylum Actinobacteria
(128, 129). ESX-4 is the simplest gene cluster among the ESX
secretion systems, containing only seven genes. ESX-4 encodes
the FtsK/SpoIIIE protein EccC4, the WXG proteins EsxU and

EsxT, the conserved ESX core components EccB4 and EccD4, the
mycosin proteaseMycP4, and the hypothetical valine and alanine
rich protein Rv3446c.

The components of the ESX systems can be divided into
cytosolic, membrane bound, and secreted proteins. EspG and
EccA function in the cytosol. EspG is found in all ESX clusters
besides ESX-4, and is thought to function as a specific chaperone
for PE and PPE proteins (130–132). EccA is an AAA+ family
(ATPase associated with various cellular activities) protein that
is thought to form a hexamer and functions in the secretion of
Esx and PE-PPE proteins (133–136). The conserved membrane
components of ESX secretion systems (EccB, EccC, EccD, EccE,
and MycP) are essential for secretion in all of the studied loci
(137–141). These proteins contain large hydrophilic domains
in either the N- or C-terminus and a range of transmembrane
domains. EccB, EccC, EccD, and EccE are thought to form
the transport channel through which the ESX substrates are
transported across the inner membrane. EccB, EccC, EccD, and
EccE form a stable membrane complex of∼1,500 kDa that can be
co-immunoprecipitated (139). MycP, a mycosin, is a subtilisin-
like protease containing a C-terminal transmembrane domain
that tethers the protein on the cell membrane (142, 143). Its role
in secretion remains unknown.
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The components described thus far have been localized
to the inner membrane. The inner membrane, however, is
surrounded by a thick, lipid-rich cell wall (also referred to as
the outer membrane or mycomembrane) in addition to another
thick capsular layer [reviewed in (144)]. How ESX substrates
are exported beyond these structural boundaries has been a
mystery. Recently, Lou et al. discovered that EspC forms a long
filamentous structure that localizes to the cell membrane, and its
expression is required for secretion of EsxA (145).

The conserved secreted effectors of ESX systems are
comprised of Esx and PE/PPE proteins (the latter is described
in more detail in the following section). The Esx proteins
are also referred to as WxG100 proteins due to a conserved
tryptophan-X-glycine motif that causes a turn between two
helical domains in the ∼100 amino acid proteins (146). The
most well-studied Esx proteins are EsxA and EsxB, encoded
within the ESX-1 locus. ESX-1, the prototypical ESX secretion
system in tuberculosis research, has been demonstrated to be
essential for the intracellular survival of Mtb due to its critical
role in host-pathogen interaction during Mtb infection via
secretion of its substrates, many of which are secreted in a
codependent manner (147). EsxA and EsxB are secreted as
antiparallel heterodimers (148, 149) via recognition of an ESX
secretion signal on the C-terminus of EsxB (150). EsxA has
long-been associated as a cytolytic virulence factor of Mtb (126,
135, 151, 152). Experiments demonstrating recombinant EsxA
could induce its cytolytic effect in the absence of infection led
to the notion that EsxA was primarily responsible for ESX-1’s
pathogenicity (152, 153). However, recent work has definitively
demonstrated that the cytolytic effect of recombinant EsxA was
due to a residual detergent in the extract (154). Therefore, the
cytolytic effect is dependent on other factors dependent onMtb’s
ESX-1 secretion system.

ESX-1 has been ascribed numerous roles in Mtb’s
pathogenesis. As previously mentioned, ESX-1 is required
for membrane disruptions in its host cell, allowingMtb to escape
from the phagosome and enter the cytosol whereupon necrosis-
like cell death is induced (155–157). While EsxA has been shown
to be insufficient to induce membrane disruptions, this process
is dependent on its presence and secretion (154). EspB, which
is encoded outside of the ESX-1 locus and depends on secretion
of EsxA and EsxB for its own secretion, forms a ring-shaped
heptamer with a hydrophobic domain, suggesting the possibility
that it could be involved in membrane disruption via EsxA
and EsxB (158). EsxA has been shown to induce expression of
matrix metalloproteinase-9 (MMP9), which recruits additional
phagocytes to the site of infection and facilitates its spread
to new cells (156). The recurrent recruitment of additional
leukocytes to take up the apoptotic debris of the former round
of infected macrophages amplifies the bacterial population in
successive waves and leads to the formation of the tuberculosis
granuloma (159).

The regulation of ESX-1 differs among MTBC species,
perhaps contributing to distinct infection phenotypes among
lineages. The PhoPR regulon, a two-component regulation
system, regulates the production and secretion of, among other
things, EsxA and EsxB (160), and is central to the pathogenesis of
Mtb (161). Strains from L5, L6 and the animal-adapted species

all contain a missense mutation in phoR that downregulates
the PhoPR system when genetically transferred into L2 and
L4 strains (162). Intriguingly, Gonzalo-Asensio et al. noted
that there were no significant differences in the production of
proteins induced by PhoPR in the L5, L6 and animal-adapted
species compared to L2 and L4, and that a deletion found
only in the former rescued the defect. The authors went on
to show that an outbreak of an unusually virulent strain of
M. bovis that was transmitting among humans was associated
with the insertion of an IS6110 sequence upstream of phoP,
serving as a promoter to increase the expression of the PhoPR
regulon (162).

The pathogenic species of mycobacteria possess two
additional ESX secretion systems, ESX-2 and ESX-5, that are
not found in the rapid-growing, non-pathogenic mycobacteria
(128, 163). The duplication of these systems in pathogenic
mycobacteria is linked to the expansion of the PE and PPE gene
families (163). The PE and PPE proteins, the other core substrates
of ESX secretion systems, and their role in pathogenesis are
discussed below.

PE/PPE Family Proteins
Initial sequencing of the Mtb genome led to a surprise finding
that 10% of its genes code for a unique family of proteins
with signature proline-glutamate and proline-proline-glutamate
residues conserved at their N-termini, linked to a variable C-
terminus. Due to their variable C-termini, initially they were
thought to be a source of antigenic variation to evade host
immune system (68). The pe/ppe genes have greatly expanded in
the pathogenic species of mycobacteria and have been critical for
host adaptation (164, 165). This family of proteins are thought to
help in Mtb survival and dissemination through diverse modes.
This includes upregulation of anti-inflammatory cytokine levels
(166), induction of apoptosis inmacrophages (167) and increased
secretion of chemokine MCP-1 (168). They also interact with
TLR-2, leading to macrophage activation, promote apoptosis and
necrosis in host cells (164). PE-PGRS a subfamily of PE family
is unique to MTBC and related species (165). Mutations in
their corresponding genes have been associated with impaired
replication and decreased persistence in the host indicating
a direct role for this class of genes in virulence (169). The
“modern” Beijing strains from L2 have been demonstrated to
harbor a deletion affecting ppe38, a consequential mutation that
increases the virulence of affected strains (170). The authors
found that the absence of ppe38 inhibits the secretion of a large
number of PPE_PGRS and PPE_MPTR (major polymorphic
tandem repeats) substrates through ESX-5, and postulate that
this mutation played a significant role in the global spread of the
“modern” Beijing L2 strains. Thus, variation in these gene classes
may contribute to the degree of virulence, transmissibility, and
evolutionary success for mycobacterial species and strains within
discrete hosts and genetic backgrounds.

Mycobacterial Genetic Diversity and Its
Intersection With Host Tolerance
Variation in mycobacterial lipids, ESX secretion systems and
their effectors among the genetic lineages and sublineages ofMtb
intersect with the nature of the host response to mycobacterial
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infection. Evidence from experimental infection models suggests
that different Mtb lineages exhibit diverse growth phenotypes
and elicit variable host immune responses. Hence in addition
to these factors, the role of variable host tolerance among these
lineages in shaping their diversity may be important. Some of
the first evidence supporting this argument came from aerosol
infections in mice with Mtb strains CDC1551, HN878, and
HN60. CDC1551 belongs to lineage 4 whereas HN878 and
HN60 belong to lineage 2. Mice infected with HN878 and HN60
succumbed earlier. This observation correlated with the cytokine
profiles of CDC1551 infected mice which showed increased
production of pro inflammatory cytokines TNF-α, IL-12, and
IFN-γ in comparison to HN878 and HN60 infected mice (91).
Moreover, strains from the modern lineages 2, 3, and 4 induced
significantly lower levels of pro inflammatory cytokines than
ancient lineages in a human monocyte-derived macrophages
infection model (79).

Mtb sublineages too exhibit significant differences in virulence
and immune modulatory functions. The M—Strain, a highly
prevalent strain in Argentina belonging to the Haarlem family of
Lineage 4 failed to induce PMN apoptosis and ROS production as
opposed to the LAM family of the same lineage (171). Collectively
these findings may help explain the emergence and evolutionary
success of the modern lineages.

Recent work on tolerance in animal models of TB suggests
that specific host factors can contribute differentially to bacterial
restriction and host tolerance. For example, Phox-deficient mice
are not compromised for resistance to infection but do display
tolerance defects (172–174). Similarly, previous work in the
zebrafish model of mycobacterial infection suggested that, in
addition to overall bacterial load, inflammatory state influences
disease outcome (175, 176). Thus, the degree of host tolerance to
infection has important consequences to host survival, bacterial
burden, and presumably transmission; indeed the majority of
humans who do not manifest active disease upon exposure
to Mtb suggests a high level of tolerance to infection (177).
Reciprocally, how variation within distinct bacterial lineages
and strains influences inflammation, tolerance, pathogenesis,
and ultimately successful transmission, may determine the
evolutionary trajectories of both pathogen and host.

A number of examples exist in which bacterial-host
interactions appear to be specific to lineage. For example Lineage
2 mediated TB has been shown to be associated with C allele
of TLR-2—T597C, and NRAMP1—D543N polymorphisms (18,
178). The−261TT variant in the Immunity-related GTPase
Family M (IRGM) confers defense against pathogens including

Lineage 4 Mtb which lacks pks1/15, but is not associated
with M. africanum mediated TB. This gene is associated
with PGL biosynthesis highlighting a potential role of the
lipid in inhibiting IRGM mediated autophagy (179). Lineage
4 contains both ubiquitous (presumed to be generalist) and
specialized (geographically restricted) sublineages, suggesting
that at least someMtb strainsmay have specialized to specific host
populations (74). More recently, a large study in a Vietnamese
population identified increased transmission of Lineage 2 Beijing
strains between individuals than endemic strains, consistent
with previous studies of transmission of Beijing strains in
other regions (180–182). These studies underscore the need
for further research that integrates data on Mtb strains
and lineages with human genotypes to understand how this
intersection contributes to the clinical outcome ofMtb infection.
Ongoing studies with larger cohorts and deeper descriptions
of clinical phenotypes should provide additional insight into
these interactions.

Mtb genetic diversity and evolution may reflect the genetic
arms race between successful pathogen and its host, leading
to reciprocal genetic changes. There is newfound appreciation
that host tolerance to mycobacterial infection is an important
component of this interplay, contributing to disease trajectory
and transmission patterns. Thus, genetic variation in aspects
of host tolerance—generated through both bacterial and
host mechanisms—is another important consideration in
understanding the complex interactions between host and
pathogen that have evolved during the long association between
Mtb and its human hosts.
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