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Abstract: Wireless sensor networks usually suffer from the issue of time synchronization discrepancy
due to environmental effects or clock management collapse. This will result in time delays between
the dynamic responses collected by wireless sensors. If non-synchronized dynamic response data are
directly used for structural modal identification, it leads to the misestimation of modal parameters.
To overcome the non-synchronization issue, this study proposes a time synchronization approach
to detect and correct asynchronous dynamic responses based on frequency domain decomposition
(FDD) with frequency-squeezing processing (FSP). By imposing the expected relationship between
modal phase angles extracted from the first-order singular value spectrum, the time lags between
different sensors can be estimated, and synchronization can be achieved. The effectiveness of the
proposed approach is fully demonstrated by numerical and experimental studies, as well as field
measurement of a large-span spatial structure. The results verify that the proposed approach is
effective for the time synchronization of wireless accelerometer sensors.

Keywords: time synchronization; wireless sensor; operational modal analysis; frequency-squeezing;
structural health monitoring

1. Introduction

Structural health monitoring (SHM) systems have been widely implemented in a
variety of infrastructures to provide continuous and detailed information to decisionmak-
ers [1,2]. The functionalities of SHM systems are mainly composed of acquiring structural
responses, extracting structural features, and assessing structural conditions [3–6]. In the
process, SHM-derived knowledge on structural condition assessment will be affected if the
structural dynamic properties are extracted from non-synchronized measurements. For
example, a 30 µs synchronization error results in a noticeable error in the modal analysis [7].
This non-synchronization-induced misjudgment will impact the subsequent analysis of an
SHM procedure. Therefore, the synchronization of dynamic measured data from different
sensors should be guaranteed.

Synchronization discrepancy hardly occurs or it can be easily eliminated by multiple
linked data acquisition units (DAU) in a wired sensor network. However, the traditional
wired SHM system may become impractical for large-scale civil structures due to strict
power supply conditions and large investments in labor and material resources [8–11]. With
the rapid development of wireless communication techniques, wireless sensor networks
(WSNs) have been developed to alleviate these limitations. In WSNs, the data transfer
speeds of wireless nodes may be different because of the limited bandwidth and low-power
radio transceivers [12]. Furthermore, although modern WSNs use clock- management tech-
niques, non-simultaneity in sensor start-up can also result in the time non-synchronization
issue. In particular, for passive and low duty cycle wireless sensor nodes, internal clock
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drift can be caused by temperature change, and which result in hardware start random
delay, which poses a significant challenge to the achievement of time synchronization
among the wireless sensor nodes. In general, time synchronization is one of the core issues
throughout the WSNs community.

Extensive studies have been made to investigate the research topic of time synchroniza-
tion [13–19]. The main idea of time synchronization is to determine and align the offset of
data. The existing methods can be broadly classified into two categories: the clock synchro-
nization method and the data synchronization method [12,13]. The clock synchronization
method exchanges the clock information of sensors and synchronizes them with a global
reference time, such as the reference broadcast protocol (RBS) [20], the time-syn protocol
for sensor networks (TPSN) [21], and the flood time synchronization protocol (FTSP) [22].
Nevertheless, the non-synchronization issue may still remain in WSNs even when these
protocols are employed. Some dynamic measurement errors such as offset, drift, and jitter
are commonly found because synchronous sampling is not guaranteed through the use
of the clock synchronization method [23]. In contrast, a feasible way to solve this is to
eliminate the non-synchronization issue by post-processing the measured data based on the
data synchronization method [24]. The core of the data synchronization method is to detect
the phase information among the non-synchronicity of measurement data, which can be
achieved by the time and frequency domain approaches. For the time domain approaches,
Nagayama et al. [25] concluded that only the mode shapes rather than natural frequencies
and damping ratios will be affected by non-synchronization dynamic measurements, which
means that the phase difference caused by time delay strongly influenced the mode shapes.
To correct time-delay-induced errors, Lei et al. [15] estimated the time delay by fitting
the measured data to an autoregressive model (ARX) or an average autoregressive model.
Zhou et al. [26] corrected the time delay by a state-space (SS) equation model combined
with a data-driven stochastic subspace identification (data-driven SSI) method to calculate
the mean phase deviation. These algorithms need to determine a reasonable number of
model orders to obtain the real-time lag information and are too computationally complex
to achieve rapid evaluation. Zhang et al. [27] proposed an output correlation-based ap-
proach, which mainly focused on analyzing the influence on the mode shape estimations
with small delays. Their utility may be diminished if these methods are used to realign
non-synchronous measurement data collected at different locations within a structure. The
frequency-domain methods are based on the correlation between the Fourier amplitudes of
each response and the time lags. Dragos et al. [28,29] estimated the time delays with a high
sampling rate by using the phase information of the Fourier spectrum of acceleration data
from different sensor nodes. Zhou et al. [30] calculated the slope of the phase angle curve
by estimating the cross power spectral density (CPSD) to determine the lag. Bernal [31]
introduced an approach to minimize the errors caused by asynchronicity based on shifting
the signals in the time domain. The phases of the fundamental eigenvector estimated
from the spectral density are zero, which shows that signal realignment is preferred to the
correction of the eigenvectors.

Despite the developments of time-synchronization methods, the existing method
seldom considered measuring noise. In practice, the field-measured data of a real structure
is inevitably subjected to ambient noise. In particular, for large-span structures with large
stiffness, the signal-to-noise ratio (SNR) will be rather small. In this case, the estimation of
the modal phase will be greatly affected, which may cause failure when using the existing
methods. To cope with it, this study develops a frequency squeezing-based frequency-
domain decomposition method (FSP-FDD) for time synchronization. The FSP-FDD exploits
the characteristics of multi-channel dynamic responses on the spectral concentration distri-
bution. It can reduce the uncertainty of peak selection caused by noise by appropriately
squeezing the frequency, thereby getting a more accurate estimate of the modal phase.
Then, the lags are determined based on the relationship between the lags and the modal
phase. The effectiveness of the presented approach is firstly demonstrated by numerical
simulation and experimental study. Subsequently, the practicality of the approach is further
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validated using the field-measured non-synchronous dynamic data of a cable-net structure
subjected to strong wind.

2. Time Synchronization Approach

Generally, the dynamic behavior of civil structures is described as a linear system with
a light and proportional damping assumption. Under this assumption, the mode shapes
of structures can be accurately extracted from synchronized measurements. The different
degrees of freedom (DOFs) reach the furthest and the equilibrium position simultaneously.
Accordingly, the mode shape components of one certain mode extracted between any
two synchronous signals lie on the real axis in a complexity plot, i.e., the phase angles
are equal to 0◦ (in-phase) or 180◦ (out of phase) [29]. When these two dynamic response
measurements are non-synchronous, there is a mapping relationship between the relative
lag and their phase angles. Then, the delays between the signals can be obtained based on
the deviation between the actual and ideal phase angles. The framework of the presented
synchronization algorithm is shown in Figure 1.
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Considering two non-synchronous responses y1(t) and y2(t− τ12) collected by WSNs,
where τ12 denotes the relative time lag between two responses, their Fourier transforms are

Y1(ω) =
∫ ∞

−∞
e−iωty1(t)dt (1)

Y′2(ω) = eiωτ12

∫ ∞

−∞
e−iωty2(t− τ12)dt = eiωτ12Y2(ω) (2)

where ω and i are the circular frequency and the imaginary unit, respectively. The cross
power spectral density (CPSD) is a fundamental tool for modal identification, which mea-
sures the distribution of power for the pair of signals across a frequency spectrum. Through
CPSD, the relationship between these two time-domain signals can also be expressed as

S′12(ω) = Y∗1 (ω)Y′2(ω) = eiωτ12Y∗1 (ω)Y2(ω) (3)

where the superscript * refers to the complex conjugate operator. Comparison of
Equations (2) and (3) show that the time-delayed response results in a rescaling within
the frequency domain by multiplying with eiωτ12 . Correspondingly, it also describes that
the time lags will lead to a shifted phase θ12 in a polar form where θ12 = ωτ12. Therefore,
the relationship between the two outputs can be extended to the frequency spectra for
estimation of the relative time lags.

For better illustration, dynamic monitoring data of one channel are selected as a
reference, then the delays between the referenced channel and the rest channels can be
uniquely quantified. The vectors of the rest channels can be written as

Y(t)g×N = [y1(t), y2(t− τ12), · · · , yg(t− τ1g)]
T (4)

where τ12, · · · , τ1g are the time lags between the referenced and rest channel, and N is the
length of the signal, g is the number of the output channel; Similar to Equation (3), the
CPSD matrix is introduced as follows.

SYY(iω) =

 S11(iω) · · · e−iωτ1g Sk1(iω)
...

. . .
...

eiωτ1g Sg1(iω) · · · Sgg(iωp)

 (5)

Assuming that one mode is dominant at the frequency ω
(k)
p associated with the reso-

nance of k-th mode. Then, by taking the singular value decomposition (SVD) of the CPSD
matrix, the CPSD matrix can be approximated to a 1-rank matrix, rewritten as

SYY(iω
(k)
p ) =


S11(iω

(k)
p ) · · · e−iωkpτ1g Sk1(iω

(k)
p )

...
. . .

...
eiωkpτ1g Sg1(iω

(k)
p ) · · · Sgg(iω

(k)
p )

 ≈ σ1u1u1
H ω → ω

(k)
p (6)

where the superscript H refers to the complex conjugate transpose operator; and u1 is the
first singular vector representing the estimation of the k-th mode shape

Φ(k) = u1(ω
(k)
p ) =

[
1, · · · , eiωkpτ1g

]
Φ

(k) (7)

where Φ
(k) is the k-th mode shape extracted from the ideal synchronization signals. Con-

sidering the assumption of proportional damping, the mode shape vectors are real-valued.
Without the loss of generality, suppose that φ

(k)
1n and φ

(k)
1n are n-th components of Φ(k)
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and Φ
(k), respectively. Their one-to-one relationship between φ

(k)
1n and φ

(k)
1n is conducted,

given by
φ
(k)
1n = sgn

(
cos θ

(k)
1n

)∣∣∣φ(k)
1n

∣∣∣ (8)

Accordingly, the time lag τ1n can be written as follows

τ1n =
θ
(k)
1n

ω
(k)
p

(9)

where sgn means the sign function; and θ
(k)
1n denotes the shifted phase in one period

(T(k)
p = 2π/ω

(k)
p ) between the referenced channel and the rest channel n under the k-th

mode, that is θ
(k)
1n = θ

(k)
1 − θ

(k)
n . Additionally, the phase angle for the k-th mode shape

vector can be obtained

θ
(k)
j =


arctan

(
Re(φ(k)

j )

Im(φ
(k)
j )

)
if arctan

(
Re(φ(k)

j )

Im(φ
(k)
j )

)
≥ 0

arctan

(
Re(φ(k)

j )

Im(φ
(k)
j )

)
+ π if arctan

(
Re(φ(k)

j )

Im(φ
(k)
j )

)
< 0

j ∈ [1, · · · , m, · · · , g] (10)

Considering that the lag τ1n may exceed the period, Equation (9) is rewritten in a
generalized form

τ1n =
θ
(k)
1n

ω
(k)
p

+ k(k)1n π k(k)1n ∈ Z (11)

Similarly, a set of g− 1 equations with (2g− 2) unknown parameters k(k)12 , · · · , k(k)1m, · · · , k(k)12
are obtained: 

τ12 =
θ
(k)
12

ω
(k)
p

+ k(k)12 π

...

τ1n =
θ
(k)
1n

ω
(k)
p

+ k(k)1n π

...

τ1g =
θ
(k)
1g

ω
(k)
p

+ k(k)1g π

k(k)12 , · · · , k(k)1n , · · · , k(k)1g ∈ Z (12)

Obviously, Equation (12) is definitely underdetermined because the number of un-
knowns (2g − 2) exceeds the number of equations (g − 1). Hence, additional information
needs to be introduced. Suppose that M (M > 1) modes have been identified by FDD
technique [32]. A shifted-phase matrix is built as

Θ =


θ
(1)
12 · · · θ

(M)
12

...
. . .

...
θ
(1)
1g · · · θ

(M)
1g

 (13)

Accordingly, rewriting Equation (12) in matrix form yields

Γ =


θ
(1)
12 +k(1)12 π

ω
(1)
p

· · · θ
(M)
12 +k(M)

12 π

ω
(M)
p

...
. . .

...
θ
(1)
1g +k(1)1g π

ω
(1)
p

· · ·
θ
(M)
1g +k(M)

1g π

ω
(M)
p

 k(i)1j ∈ Z (14)
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where the superscript in Equation (14) denotes the number of the identified mode; and
ω
(1)
p , · · · , ω

(M)
p are the selected frequencies associated with the peak of resonance of the

identified modes. Since the values k(i)1j can only be taken in the integer domain, this greatly
narrows the scope of the solution. For each row of the matrix in Equation (14), through
a series trial of k(i)1j where j ∈ [1, · · · , g] and i ∈ [1, · · · , M], then, a candidate pool for the
actual time lags can be easily determined as

Γ̂ =
[
τ̂12, · · · , τ̂1g

]
(15)

Obviously, there exists more than one possible candidate for each relative time lag.
Therefore, it necessitates a solution to determine the optimal time lags. The final time lag
can be estimated based on the lowest standard deviation of Equation (15). In other words,
the lags are often around the expectation of the set of final lags, which yields the lowest
standard deviation. The actual lags τ12, · · · , τ1g can be estimated as follows

Γ∗ = argmin
ki

1j∈Z
σ(Γ̂) (16)

[τ12, · · · , τ1g] = E(Γ∗) (17)

It is noteworthy that the accuracy of the identified natural frequencies and non-
synchronous mode shapes play a primary role in lag estimation. However, in the process of
estimating the CPSD by FDD, the sampled signal duration is limited and accompanied by
various noises. When the SNR is low, there are multiple potential candidate peaks caused
by the noise, which increases the uncertainty in the peak selection. As a result, the presence
of noise affects the estimation of the modal parameter, especially in weak excitation. Thus,
it is necessary to minimize the influence of the noise.

Learning from the stabilization diagram [32], the actual modes can be identified
from alignments of stable poles since the spurious modes tend to be more scattered when
increasing model orders. Given this, this study introduces frequency-squeezing to improve
the readability of the power spectrum/singular value (SV) spectrum representation. The
FSP is based on shifting the local spectrum shape to its nearby natural frequency without
changing its magnitude [33]. A schematic diagram of FSP is depicted in Figure 2, which
consists of three main steps detailed as follows.
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Figure 2. A schematic diagram of FSP.

Step 1: Amplitude pretreatment of the first-order singular spectrum. First, the spec-
trum amplitude is normalized to [0, 1]. Then, the amplitude is “shaped” by taking the m-th
power of the normalized amplitude for subsequent processing. The amplitude pretreatment
can be written as

α(ωi) = α(ωi)/max(α(ωi)) i = 1, 2, . . . , K (18)
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α̂(ωi) = (α(ωi))
m (19)

where α(ωi) and α̂(ωi) are the spectral amplitudes before and after processing, respectively;
ωi is the sampling frequency point from a vector ω = [ω1, ω2, · · · , ωK]; m can be set as
integer multiples of 10 to reduce rapidly the amplitude of the peak nearby.

Step 2: Frequency-squeezing for the pretreated signal. Considering the continuous
2p + 1 (p ≥ 1) spectral lines α̂(ωi−p), · · · , α̂(ωi), · · · , α̂(ωi+p), the frequency ω̂i is replaced
by the centroid coordinate of a graph, which is composed of these spectral lines and the
frequency ωi−p, · · · , ωi, · · · , ωi+p, given by

ω̂i =



∑
i+p
k=1 ωk α̂(ωk)
i+p
∑

k=1
α̂(ωk)

i = 1, · · · , p

∑
i+p
k=i−p ωk α̂(ωk)

i+p
∑

k=i−p
α̂(ωk)

i = p + 1, · · · , K− p

∑K
k=i−p ωk α̂(ωk)

K
∑

k=i−p
α̂(ωk)

i = K− p + 1, · · · , K

(20)

where p and K are the user-specified step and the signal length, respectively. Then, repeat
the step until the convergence criterion is satisfied. The convergence criterion is defined as.

‖ω̂s+1 − ω̂s‖2/K < δ (21)

where s is the number of iteration.
Step 3: Amplitude restoration and zero settings. Since the magnitude of the amplitude

is normalized in Step 1, the accurate amplitude information should be retained. The
original amplitude vector is assigned to the newly generated frequency vector in the order
of subscripts, and the amplitude between the edges and the cluster of aggregated frequency
points is set to zero, which can be written as

α̂(ω̂i) =

{
0 i ∈ Ω = {1, K} ∪ {ω̂i+1 − ω̂i > δω}
α(ωi) i ∈ {1, 2, · · · , K}\Ω

(22)

where Ω is the set of frequency subscripts corresponding to the set of zero amplitude.
δω < ∆ω = ωi+1 − ωi is the indicator to determine the abnormal frequency, which is
suggested to be set as 0.01 or 0.001 times ∆ω.

In conclusion, the FSP technique artificially changes the orthogonality characteristics of
the basis vector after the Fourier transform of the signal. It highlights the natural frequency,
which can serve as the referenced frequency for peak selection in the FDD method.

3. Evaluation of FSP-FDD Method with Non-Synchronization Responses
3.1. Numerical Simulation
3.1.1. Structural Description

A linear time-invariant model of a four-story building (Figure 3) is used as tested.
Each floor is represented as masses mi (i ∈ (1, · · · , 4)) interconnected with springs ki and
dampers ci. The weight of each mass, the constants of lateral shear stiffness ki, and the
damping coefficients ci between adjacent floors are 10 kg, 1000 kg/m, and 10 N·s/m, respec-
tively. The mass matrix M, stiffness matrix K, and damping matrix C can be expressed as

M =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 , K =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

× 103 , C =


20 −10 0 0
−10 20 −10 0

0 −10 20 −10
0 0 −10 20

 (23)
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In conclusion, the FSP technique artificially changes the orthogonality characteristics 
of the basis vector after the Fourier transform of the signal. It highlights the natural fre-
quency, which can serve as the referenced frequency for peak selection in the FDD 
method.  
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A linear time-invariant model of a four-story building (Figure 3) is used as tested. 
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and dampers ic . The weight of each mass, the constants of lateral shear stiffness ik , and 

the damping coefficients ic  between adjacent floors are 10 kg, 1000 kg/m, and 10 N·s/m, 
respectively. The mass matrix M, stiffness matrix K, and damping matrix C can be ex-
pressed as 
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Figure 3. A linear time-invariant model of a four-story building.

Each floor is excited by a stationary, zero-mean, Gaussian white noise. By adding
state noise N(0, 0.01) and output noise N(0, 0.001) into the structure, then the structural
responses under white noise excitation are simulated (SNR = 20 dB). All the responses
have a duration of 100 s and the sampling rate is 50 Hz. Suppose that each floor has an
independent acquisition unit for response collection. Four sets of dynamic responses with
different lags are set intentionally to assess the impact of the non-synchronization on modal
identification. The first channel is set as the referenced channel, and the relative time delays
of other channels are shown in Table 1, where the positive sign indicates that the time is
behind the reference timeline and vice versa.

Table 1. Channel delays.

Channel No. CH 2 CH 3 CH 4

Delay (s) −0.24 0.68 −0.54

3.1.2. Method Validation

Figure 4 shows the unprocessed acceleration response measurements. For showing
the impact of time delay on the mode shapes, theoretical mode shapes computed with
synchronous data are introduced. The modal phase angles obtained from the theoretical
mode shapes and the ones identified by FDD using non-synchronous data are plotted in
the polar form shown in Figure 5. It is noteworthy that the phase of the theoretical mode
shapes (red dash lines) lies on nearly straight lines, as expected. The phases of the 1st mode
are moving in phase whereas the rest of modes are moving out of phase. However, the
mode shapes identified from non-synchronous data are highly complex, which could lead
to wrong conclusions such as high levels of nonlinearities or large damping. Meanwhile,
by a complex-to-real conversion of mode shapes, it is found that the amplitude of identified
mode shapes is smaller than the theoretical results. One primary reason for it is that the
amplitudes are rescaled by a factor caused by phase shift. Therefore, the time delay in
dynamic measurement greatly affects the identification of the modal parameters.

In order to find actual lags, Figure 6 displays the first-order singular value obtained
from FDD-FSP. Recalling Equation (20), the computational parameters are as follows: the
step size (2p + 1) is set as 121, the order of exponentiation (m) is set as 50, the frequency
convergence threshold (δ) is set as 1 × 10−6, and the total iteration number is 1000. The
spectrum is concentrated at the true position of natural frequency. The advantage of FSP



Sensors 2022, 22, 4784 9 of 22

is the reduction of distortion in the target frequency pickup and the improved estimation
accuracy of the delay (Equation (14)). To exemplify this, a zoomed-in view of Figure 6 is
shown. It is clear that the original first-order spectral line moves to the target peak where
the 1st to 4th order frequencies are well-reflected.

After performing the FSP-FDD, the candidate pool of lags can be easily conducted.
Taking an explanatory example of the relative delay between channel 1 and channel 2, the
candidate lags can be written as

τ
(1)
12 = 0.0494 + 0.2844k(1)12

τ
(2)
12 = −0.0381 + 0.0999k(2)12

τ
(3)
12 = 0.0202 + 0.0646k(3)12

τ
(4)
12 = 0.0252 + 0.0531k(4)12

(24)

When assigning −1, −2, −4, −5 to k(1)12 , k(2)12 , k(3)12 , k(4)12 through trial computation, re-

spectively, the relative delay τ
(1)
12 , τ

(2)
12 , τ

(3)
12 , τ

(4)
12 is −0.2350, −0.2379, −0.2382, −0.2403,

which has the lowest standard deviation of the relative delay set. And the mean of this
set (−0.2378) is nearly equal to the preset delay (−0.2400). Considering that the relative
time lag should satisfy the integral multiple of sampling interval (0.0200 s), the time lag
is obtained as −0.2400 s. Similarly, the detected lag of the rest of channels is also solved
and shown in Figure 7. Finally, the modal parameters are re-identified using the realigned
dynamic response (Figure 8). The modal assurance criterions (MACs) between the mode
shapes obtained from the realigned and synchronous data can be written as

MAC(Φt
i , Φm

j ) =

∣∣∣(Φt
i
)H
(

Φm
j

)∣∣∣(
Φt

i
)H(

Φt
i
)(

Φm
j

)H(
Φm

j

) (25)

where Φt
i and Φm

j refers to the mode shape vector extracted from the realigned and the
previous synchronous responses, respectively. The MACs of the mode shapes are near 1
(Figure 8), which shows that the mode shapes obtained by the processed data match well
with the theoretical ones.
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Figure 4. Artificially misaligned accelerations response of the LTI system.
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Figure 8. Mode shapes of lateral bending modes in synchronous and realigned.

3.2. Experimental Study
3.2.1. Structural Description

As shown in Figure 9, the shake table test model of a five-floor steel frame is utilized
to further demonstrate the effectiveness of the proposed approach. The geometrical and
material properties of this structure are: the floor height is h = 300 mm, the cross-section
of the columns is A = 50 × 5 mm, the elastic modulus E = 206 GPa, the Poisson’s ratio
υ = 0.31, and the mass density is 7850 kg/m3. Each floor consists of two steel plates with a
size of 300 × 300 × 20 mm, connected to the columns by eight angle-iron brackets. The
layout of the wireless acceleration sensors (WASs) is also depicted in Figure 9. The channel
number of these WASs is the same as the floor numbers. The DAU contains two 3-channels
and a 24-bit analog-to-digital conversion (ADC). This frame was excited by the Hollister
earthquake [34]. The sampling frequency was set to 128 Hz. The data collected during
the warming up of the shake table is discarded, and total 15,360 discrete data during
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the earthquake excitation were acquired. The main measurement responses are shown
in Figure 10.
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Figure 10. Artificially misaligned accelerations response under shake-table excitation.

3.2.2. Method Validation

As outlined in Table 2, three cases of relative time delays were artificially injected
into the acceleration data, then the relative percentage error (RPE) between estimated
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time lags and exact time lags also were calculated for evaluating the accuracy of time
delay estimation.

Time delays in each case are estimated by using the proposed time synchronization
approach. Although affected by random measurement noise, the first four modes can be
easily identified through the reference peak position by FSP (Figure 11). The first-order
spectrum is smoothly concentrated at the target frequencies. Then, the relationship between
the candidate pool of relative time lags and its standard deviation is obtained by minimizing
the standard deviation (Equation (16)), as is depicted in Figure 12.
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Table 2. Comparison between estimated and artificially misaligned time lags.

No. Time Lag (s) CH2 CH3 CH4 CH5

1
estimated 0.2692 −0.8023 0.4475 −0.0946

exact 0.2656 −0.8047 0.4453 −0.0938
RPE 1.36% −0.3% 0.49% 0.85%

2
estimated 0.9175 −0.0289 0.6016 −0.7179

exact 0.9141 −0.0313 0.6037 −0.7188
RPE 0.37% −7.67% −0.35% −0.13%

3
estimated −0.0953 0.0023 0.0022 0.0008

exact 0 0 0 0

As is shown in Figure 13, the value of the MAC matrix indicates that the mode
shapes obtained from the realigned responses are very similar to those obtained from the
synchronous data. In particular, in the synchronous case (Case 3), the estimated lag is
near zero. Hence, the relative lags of the experimental data are precisely estimated by the
proposed approach, which validates the effectiveness of the proposed approach.
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4. Verification with Monitoring Data
4.1. Description of NSSO and Its Monitoring System

To further investigate the performance of the presented approach, the field-measured
data of the National Speed Skating Oval (NSSO) is adopted. The NSSO (Figure 14), located
in the Beijing Olympic Park, China, was built for hosting the speed skating events during
the 2022 Beijing Winter Olympics, with a span of 220 m × 153 m. It comprises four main
parts: the saddle-shaped cable net, the mega ring truss, the concrete stand columns, and the
stay cables. As shown in Figure 15, the cable net consists of stable cables and load-bearing
cables and has a span of 200 m × 130 m.

A customized wireless SHM system designed by Zhejiang University Space Structure
Center is implemented on the structure [35,36]. This wireless SHM system consists of more
than 300 sensors. Each WAS, composed of a tri-axis accelerometer and a wireless unit,
is deployed at the cables to obtain the modes of interest. An idle-wakeup mechanism is
used in this wireless SHM system to reduce energy consumption. The measured data from
all WAS is transmitted to the sink nodes by Long Range Transmission (LoRa), which is a
proprietary low-power wide-area network modulation technique. Although this wireless
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system promotes high flexibility and less implementation cost, it also brings the time
synchronization challenge.
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4.2. Sensor Attitude Adjustment for Modal Identification

Acceleration measurements were automatically recorded by the monitoring system
during strong wind on 18 May 2021. The acceleration WAS-1, shown in Figure 16, was
chosen as the reference. Note that these measured 3-dimensional accelerations contain
gravity information. The mean components in the x-axis, y-axis, and z-axis of WAS-1 are
−0.094 g, −0.105 g, and 1.003 g, respectively. However, the ideal components should be
0 g, 0 g, 1 g when the sensor coordinate system coincides with the Earth coordinate system.
This indicates that the sensor attitude is changed from the instrumentation plan due to the
curvature changes of cable or installation deviation. The sensor attitudes can be corrected
into the earth coordinate system by applying the coordinate transformation matrix [37] to
improve the accuracy of the identified mode shapes. The proposed measurement responses
after the sensor attitude correction are depicted in Figure 17.
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Figure 16. Raw acceleration and adjusted acceleration example from WAS-1.
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Figure 17. Processed acceleration sets after sensor attitude adjustment.

4.3. Analysis Results

As mentioned above, the time synchronicity cannot be secured with long-distance and
multi-hop communication in the WSN system. The proposed approach is used to detect
the relative time delays between different response channels.
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The FE model of the NSSO was built to analyze the modal parameters, and the modal
frequencies calculated from the FE model are listed in Table 3.

Table 3. FE model-derived modal frequencies.

Mode No. Frequency
(Hz) Mode No. Frequency

(Hz) Mode No. Frequency
(Hz)

1st 0.6097 5th 1.1276 9th 1.3983
2nd 0.8162 6th 1.1924 10th 1.4191
3rd 0.9140 7th 1.1935 11th 1.4357
4th 0.9597 8th 1.3057 12th 1.5471

As can be seen, this structure has a large number of closely-spaced modes, which
makes it difficult to identify the modal parameters. To highlight the modes of interest,
the acceleration data were down-sampled from 15.625 Hz to 2 Hz. There were a total of
2304 samples in each measurement. The identified frequencies of the first three dominant
modes were 0.55 Hz, 0.71 Hz, 0.91 Hz, respectively, as shown in Figure 18.
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The corresponding mode shapes were extracted from the proposed measurement
responses. It is found that there is a difference between the theoretical and the identified
modal frequencies, which may be caused by the stiffness degradation induced by the cable
relaxation. Based on the prior knowledge of the WSNs, the relative lag ranges from −5 s to
5 s. The estimated time delay between the first output and the rest outputs was calculated in
sequence as −0.6814 s, 2.8492 s, 3.7431 s, 1.1204 s, 2.2698 s, −0.7102 s, −0.9444 s, −0.2650 s,
0.9082 s by the presented approach. Then the time axis of the WASs was shifted according
to the estimated time lags. Ideally, the mode shape components at a symmetric location
of sensor placement should have approximately symmetric or anti-symmetric properties.
Although a previous synchronization measurement response is best to serve as a reference
for comparison, none of the responses are guaranteed to be synchronous due to an inborn
deficiency of non-synchronization in such long-range transmission by WSNs. Therefore,
the mode shapes calculated from the FE model were set as the reference. For comparison,
the modes shapes extracted from the responses before and after the shifted time axis are
plotted in Figure 19, along with the mode shapes obtained from the FE model. It can be
seen that the mode shape seems to be erratic before the time axis shifts compared to the FE
result. The MAC between the reference mode shapes and the mode shapes extracted from
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non-synchronous data is calculated to quantify the consistency (Figure 19a,c,e). Among the
first three dominant modes, the maximum MAC is no more than 0.25, which indicates that
the mode shapes identified by non-synchronous data are not correct. On the contrary, the
mode shapes obtained from the data after shifting the time axis appear in a symmetric or
anti-symmetric manner (Figure 19b,d,f), and the maximum MAC increases to about 0.9.
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To better show the effectiveness of this proposed approach, two orthogonal vertical
projections in the north-south and east-west directions of these mode shapes are introduced
in Figure 20. The results show that the mode shapes extracted from the processed data
are closer to the theoretical results than those obtained from the unprocessed data, which
further demonstrates the practicality of the proposed time synchronization approach.
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Figure 20. Mode shapes of the first 3 modes of NSSO identified from aligned acceleration and
realigned acceleration: (a) E-W Projection of 1st mode, (b) N-S Projection of 1st mode, (c) E-W
Projection of 2nd mode, (d) N-S Projection of 2nd mode, (e) E-W Projection of 3rd mode, and (f) N-S
Projection of 3rd mode.
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5. Conclusions

This study proposes a new time synchronization approach by extending the frequency
domain decomposition (FDD) technique. When fed with asynchronous vibration measure-
ments, this data-driven approach that is only based on output fulfills integrated estimation
of time lags and identification of modal properties. The relative time lag identified by
using lower modes can be regarded as a conservative estimate of the true relative time
lag. The Frequency-squeezing processing (FSP) is used in the modal identification by FDD
technique to reduce the influence of noise and to improve the readability of the power
spectrum representation. A candidate pool of the lags is obtained, and the lags can be
further determined by minimizing their standard deviation. Three cases of simulation,
experimental test, and field measurement are employed to demonstrate and validate this
approach, including the non-synchronous output of a four-story building subjected to white
noise excitation, the misaligned acceleration measurements of a five-floor steel frame struck
by the Hollister earthquake, and the non-synchronous dynamic record of the National
Speed Skating Oval caused by a strong wind.

The application of this time synchronization approach presupposes that at least two
modes need to be identified so that the relative time delay can be uniquely quantified. The
accuracy of the time delay estimation is incrementally related to the higher modes obtained
through the non-synchronous dynamic measurement responses. The analysis results of the
presented three cases show that the proposed time synchronization approach is effective
and helps improve the performance of modal identification in WSNs applications.
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