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Abstract

Background: The conservation of species structured in metapopulations involves an important dilemma of resource
allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an
open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because
none of the population dynamics models developed so far included dispersal.

Methodology/Principal Findings: We developed the first spatially and financially explicit Population Viability Analysis
model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model
incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional
population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in
several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features
are affecting the ability to enhance population viability of four basic management options, designed to incur the same
costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and
reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions
and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to
model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was
enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones
depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch
network.

Conclusions/Significance: Our results underline the importance of spatial and regional aspects (dispersal and connectivity)
in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate
that failure to account for the cost of management scenarios can lead to very different conclusions.
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Introduction

The development of metapopulation theory [1] has contrib-

uted significantly to conservation practice for species with

patchy distribution and limited dispersal by offering a frame-

work for decision making. Efforts for conservation or restoration

can be directed at improving connectivity, increasing habitat

area, improving habitat quality or a combination of these [2].

Initially, much attention was devoted to the purely spatial

aspects of metapopulation functioning [3]. Subsequently, more

emphasis was put on aspects of habitat quality as a crucial

factor in the conservation of more sedentary species [4,5]. In

the end, however, conservation practice requires tools to make a

balanced decision between the various options. Population

Viability Analysis (PVA) [6] has the potential to offer such

tools but efforts to develop these for so-called ‘‘sedentary

species’’ have been limited by poor information on dispersal. In

this paper we explore the potential of PVA models to assist

conservation efforts for the endangered butterfly Maculinea alcon.

Butterflies are often used as model species for conservation

biology studies in our changing world [7,8]. Among them, the

species of the Maculinea genus (Lepidoptera, Lycaenidae) are of

special interest. All five Maculinea species are listed as

‘‘Endangered’’ or ‘‘Vulnerable’’ in Europe [9]. But more

importantly, they are obligate myrmecophiles: the life cycle

contains a phase spent within an ant nest [10]. This interaction

is species specific, each Maculinea species being associated to a

certain ant species [11,12]; some regional variation in these

associations has been observed, however [13]. In conservation

biology, the complicated life history of Maculinea butterflies has

made them fruitful models for the novel field of preserving

species interactions [14].

Given this special interest, scientists put a lot of effort in the

investigation of the Maculinea life history, through field studies

[15,16,17,18], lab experiments [19,20,21], and also modelling
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[22,23,24,25]. Models can indeed be a good (and sometimes the

only) option to study specific aspects of the biology of some

species [26], especially for endangered species, as any interfer-

ence can have drastic impacts on viability. Most of the models

developed for Maculinea species (Appendix S1) aimed at getting a

better insight into their biology, especially the impact of the

interaction with ants on population dynamics [23,27,28].

Applied management options were examined only by some

models, either implicitly (via the impact of plant distribution

[29], or by changing the number of host plants and ants [30])

or explicitly (by modelling the impact of certain management

actions [25,28]). Nevertheless, nearly all these studies focused on

single and hypothetical populations. Only two models [25,31]

considered several patches, but the first one did not include any

dispersal, while the second one considered a hypothetical 10

patch system with distances between them assumed to be short

enough so that the dispersal rates are equal for all the patches.

To our best knowledge, no model on a Maculinea species has

ever included a spatially explicit description of a real landscape.

For long, Maculinea butterflies were considered to be extremely

sedentary [15,32]. This may explain why dispersal did not receive

much attention in population models. However, increasing

evidence is accumulating on their ability to move over distances

similar to inter-patch distances in real landscapes (M. alcon: 500 m

observed by capture-recapture and 2000 m suggested by data on

colonization events [15]; all five Maculinea species: .2000 m [33];

M. nausithous: 3800 m [34]). This suggests that dispersal may be of

crucial importance for Maculinea population viability, as it is for

many species [35].

In this context, we developed a spatially explicit PVA model for

M. alcon in the Northern region of the Netherlands. Applied

conservation measures being usually taken at a local scale [5,28],

we distinguished four habitat patch networks within the region

that differed in terms of number of habitat patches, their quality,

connectivity, and occupancy rate (Table 1). We used these four

patch networks to explore the relative effectiveness of the following

four basic management options to enhance population viability: (i)

enlargement of existing habitat patches, (ii) improvement of

habitat quality, (iii) increasing connectivity by creation of new

stepping stone habitat patches, and (iv) raising population size by

reintroduction of reared butterflies. Management options were

designed to incur the same costs, assuming a fixed amount of

money is available to implement conservation measures. Our

results demonstrate that the ranking of management options may

considerably differ depending on the actual network configuration.

Recommendations ensuing from the study can be readily used in

the implementation of conservation and restoration actions (see

[5]).

Methods

Study Species and Region
In the Netherlands, M. alcon fly in July - early August and use

two hosts to complete their life cycle [18]. After two to three weeks

on their host plant Marsh Gentian (Gentiana pneumonanthe), on the

flower buds of which females deposit eggs, caterpillars emerge and

fall to the ground. Caterpillars may then be picked up by various

Myrmica species but survive only in the nests of proper host species

(in the case of M. alcon in the Netherlands, they are primarily

Myrmica ruginodis, but also M. scabrinodis), in whose nests they

overwinter and pupate.

Our study system is located in Drenthe-Friesland region, in the

Northern part of The Netherlands (Fig. 1). The regional habitat

network consists of 96 heathland patches with areas ranging from

0.005 ha to 7.5 ha (25th percentile = 0.023 ha, median = 0.1 ha

and 75th percentile = 0.5 ha) and between-patch distances ranging

from 282 m to 75 km. Within the region, we selected as targets for

conservation measures four patch networks, differing in basic

features such as number of habitat patches, their quality,

connectivity, and occupancy rate (Table 1, Fig. 2).

Model Parameterization
The model is a Structured Population Model, combining local

population processes (the dynamics within each single population)

with metapopulation processes via the dispersal between patches

([6] and references therein). It was developed with RAMAS/GIS

software version 5.0 [36], using 1000 replications of each run and

a time horizon of 200 years (200 generations). In order to keep the

number of parameters reasonable, we did not explicitly model

population dynamics of the plant and ant hosts; their impact on

butterfly population was integrated in the carrying capacity of the

habitat patches.

Local demography. Density-dependent processes including

contest competition during the larval stages of M. alcon on the host

plant and in the ant hosts nest are well-documented [10,21,28]. In

our model, we modelled it with the Beverton-Holt equation:

Rit~
Rmax

:Ki

Rmax
:Nit{NitzKi

ð1Þ

with Rit the growth rate of population i from year t to year t+1,

Rmax the maximum growth rate, Nit the population size of

population i the year t, and Ki the carrying capacity of patch i.

Carrying capacity of habitat patches was estimated based on

five habitat quality categories defined by [18] on the basis of a set

of patch descriptors (e.g. density of host plants, presence of host

ants): low, moderate, average, fair and excellent, with K = 10, 30,

50, 70, and 90 individuals/ha, respectively.

Table 1. Basic features of the four habitat patch networks selected within the study region for scenario analysis (Fig. 1).

Patch network Number of patches % occupied patches Connectivity (%)*
Mean patch carrying
capacity (ind.) Mean patch area (ha)

Ballooërveld 7 0.71 0.24 52 0.780

Delleburen 9 0.33 0.16 26 0.599

Drents-Friese Wold 17 0.35 0.35 31 0.516

Dwingeloo 9 0.78 3.01 144 2.203

*Connectivity was calculated by dividing the suitable area (sum of the area of all patches) by the total area of the network (delineation of the minimum convex polygon
around all the network patches).
doi:10.1371/journal.pone.0038684.t001

Spatially Explicit PVA of Maculinea alcon
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Rmax was fixed at 3.29, according to estimates from Polish (3–

3.3: [33]) and Italian populations (3.29: [16]). Egg count data from

Dutch populations were available for the period 1993–2009. The

large sampling variation associated with the small size of sampling

plots (mostly 100 m2) precluded direct estimation of Rmax from

these data. However, converted into adult counts by assuming

each female lays 80 eggs with a 1:1 sex ratio [15,28], these egg

counts were used to check whether the value of 3.29 was adequate

for Dutch populations. To do so, we assessed the match between

the Rit values obtained using equation 1 and values observed for

each habitat patch and year. No systematic over- or underesti-

mation was found in predictions from equation 1 compared to

observed Rit values (paired t-test: t211 = 0.04, p = 0.97), and only

3.7% of observed growth rates were higher than 3.29. Equation 1

(both its structure and parameter values) was therefore judged

adequate to estimate local demography for the populations

modelled in this study.

Environmental stochasticity, the standard deviation of the series

of residuals between observed and predicted (with equation 1)

growth rates, was estimated at 1.12. It was implemented in the

Figure 1. Map of M. alcon populations in the Drenthe-Friesland region, with the four selected habitat patch networks. Size of the
symbol indicates the carrying capacity of the patch with closed circles used for occupied and open ones for empty habitat patches. Inset shows the
map of the Netherlands with the study region delineated by the square.
doi:10.1371/journal.pone.0038684.g001

Figure 2. The four habitat patch networks differed in total area and quality of habitat patches. For each network the total area of the
patches in each habitat quality category (low, moderate, average, fair and high) is shown.
doi:10.1371/journal.pone.0038684.g002
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PVA model via the standard deviation of the population growth

rate Rt. Demographic stochasticity was included by sampling the

number of individuals for each new generation from binomial

distribution [36].

Correlation of demography between local

populations. Correlation between the dynamics of local pop-

ulations was estimated by Spearman’s correlation coefficients

between time series of population growth rates, as estimated from

egg counts. The mean correlation between two populations was

0.08. Only 4% (13 population pairs out of 325) were significant at

the 0.05 level. Exactly 4% of significant correlations were expected

under the null hypothesis of no correlation, as computed with a

permutation test to take into account the non-independence of the

data. Nowicki et al. (2007) [37] also concluded that there is no

correlation between population dynamics for Polish population of

the species. Consequently, no correlation of local population

dynamics was included in the model.

Dispersal. Dispersal in metapopulations is usually estimated

from Capture-Mark-Recapture (CMR) data or genetic data (Fst).

Unfortunately, none was available for M. alcon in the study area.

Fst values were available for seven Danish populations (D. Nash,

personal communication), but no estimate of population size exists

to convert these into dispersal estimates. We therefore estimated

dispersal by fitting the Virtual Migration model (VM: [38]) to data

on 19 colonization events (incidental butterfly records within a

surveyed area from the nearest existing population) in the

Netherlands. VM models dispersal according to the following

equations (for more details see [38]):

ei~g:A
fem
i ð2Þ

Si~
P

j=i exp({a:dij):A
fim
j ð3Þ

yi,j~
exp({a:dij):A

f
j

l
Si

zSi

ð4Þ

with ei the probability of emigration from the patch i, g the

emigration probability from a patch of unit size, fem scaling the

dependence of emigration rate on patch area A, Si the connectivity

of patch i, a the distance-dependence in dispersal, dij the distance

between patches i and j, fim scaling the dependence of immigration

rate on patch area, yi,j the probability of an individual leaving

patch i to reach patch j, and l scaling mortality during dispersal.

Starting from a synthesis integrating VM parameter values

available for other Maculinea species [34,39] and expert opinion (P.

Nowicki, Jagiellonian University, Kraków, Poland), we used the

vmsim module of VM to search for parameters best predicting the

observed colonization pattern. Those were: g = 0.1, fem = –0.9,

a = 2.1, l = 0.05, fim = 0.75, predicting a distribution of successful

dispersal events not significantly different from the one observed

on colonization data (Kolmogorov-Smirnov: D = 0.38, p = 0.09).

VM equations with these parameter values were used to calculate

the proportions of individuals moving from one patch to each

other patch in the system.

Initialization. 27 out of the 96 patches in the network were

occupied in 2003, used as year 1 in the model. Their initial

population sizes were calculated from egg counts measured on the

field in that year (assuming 80 eggs per female [28]). Seven

populations had no record for numbers of individuals but presence

of butterflies was recorded; their initial population sizes were

estimated using a regression linking numbers of observed eggs and

gentians (M.F. WallisDeVries: unpublished field census data from

2003): Neggs = 2.0129NNgent +529.81 (R2 = 0.52, F1,28 = 28.7,

p,0.0001).

Model Analysis
Validation. The model was validated by comparing the

mean occupancy times (proportion of years the patch was

occupied) predicted by the model to field observations on the

persistence/extinction of populations in these patches, made in

2010 (M.F. WallisDeVries: unpublished field census data), seven

years after the situation used to initialize the model. Model

predictions nicely matched the empirical data: the 16 patches

observed to be occupied had a largely superior (t23 = 22.41,

p = 0.02) average predicted occupancy time (91 years) compared

to seven patches in which populations went extinct (6 years).

Sensitivity analysis. Local sensitivity analysis was conducted

separately for the whole region and for each network by altering

the following parameters in the baseline scenario model: carrying

capacity, maximum growth rate, initial abundances and dispersal

rates. As a response variable we used the population size (total

abundance in the system) associated to a 50% quasi-extinction

risk. The quasi-extinction risk is a measure of viability quantifying

the probability that (the system of) population(s) will fall below a

threshold population size at least once during the simulation time

period [36,40]; it is basically an extension of the notion of

extinction risk to population size thresholds above 0. The value of

each parameter was changed by 65% and the sensitivity

coefficient was calculated using the following equation [41,42]:

Qi~
dY
dXi

: Xi
Y

ð5Þ

with dY the change in the response variableY (here the

population threshold below which the system has 50% chance to

fall at least once during the simulated 200 years), dXi the change in

the model parameter Xi, and
Xi

Y
a normalizing coefficient used to

remove the effect of the units. The sensitivity index of each

parameter was computed as the average of the absolute values of Q
sensitivity coefficients [42] for both +5% and -5% changes.

To test the impact of adding some between-population

correlation, we calculated expected correlation coefficients be-

tween all possible pairs of populations using the following

equation:

Cij~a:exp({D
c=b
ij ) ð6Þ

predicting the correlation coefficient Cij between populations i and

j according to the distance Dij between the two populations, and a,

b, and c the function parameters [36]. We ran a model with two

different levels of correlation between the population growth rates:

(1) a = 0.91, b = 1 and c = 3, resulting in a correlation of 0.91 at

0 km, 0.33 at 1 km, 0 at 2 km and (2) a = 0.8, b = 1 and c = 0.1,

resulting in a correlation of 0.8 at 0 km, 0.29 at 1 km, 0.23 at

10 km and 0.18 at 50 km.

Management options. The relative impact of four alterna-

tive management options was compared: (1) habitat enlargement, (2)

habitat quality improvement, (3) stepping stones creation, and (4)

reintroduction of reared butterflies. These management options were

designed in a way to incur an approximately equal cost of 20,000

J to allow comparison in terms of cost/benefit ratio. They were

implemented for each network separately to assess if different

Spatially Explicit PVA of Maculinea alcon
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networks required different management measures in order to

efficiently preserve the species. Table 2 provides details for the four

options: management actions undertaken, costs, practical imple-

mentation in the model, and time lag before they affect the patch

network.

Results

Baseline Scenario
The model predicted a decline of population size in the region

over the next 200 years, with only 17 patches being occupied at

the end of the 200 yr period (to compare to 27 occupied in 2003,

starting point of the simulation, Fig. 3). Viability of the four

networks differed greatly: Dwingeloo . Ballooërveld . Drents-

Friese Wold . Delleburen. Delleburen was highly vulnerable,

presenting a 78% extinction probability under the baseline

scenario. Only the Dwingeloo network was predicted to keep a

stable (and high) occupancy rate. This ranking coincides with the

ranking according to three basic features known to affect

population viability (carrying capacity, occupancy and connectiv-

ity: Table 1, Fig. 2). Nevertheless, the total number of populations

is decreasing, illustrating the threat existing for the species in the

Northern part of The Netherlands.

Sensitivity Analysis
Sensitivity analysis (Fig. 4) revealed that model predictions, both

at regional and individual network levels, were highly sensitive to

carrying capacity K and environmental stochasticity, moderately

sensitive to maximum growth rate Rmax and dispersal rates, and

fairly insensitive to initial abundances. Viability was improved by a

higher K, a higher Rmax (except for Drents-Friese Wold), a lower

magnitude of environmental stochasticity and higher dispersal

rates among the habitat patches. Nevertheless, these general trends

vary among the networks (Fig. 4), with Ballooërveld and

Delleburen being sensitive to carrying capacity and environmental

stochasticity (but with a quite larger impact in Delleburen), Drents-

Friese Wold being especially sensitive to environmental stochas-

ticity, and Dwingeloo being relatively equally sensitive to all

parameters (except initial population sizes).

The inclusion of between-population correlation decreased

viability: compared to the baseline model, the population size

corresponding to a 50% quasi-extinction risk was lower by 2% and

25% for the two levels that were tested, respectively. However, the

second level corresponds to a correlation affecting a very large

spatial extent, and seems unlikely under current conditions.

Management Options
The comparison of four management options with similar

financial costs revealed that investment in habitat enlargement was the

single most cost-effective technique to improve the overall viability

of the species in the region (Fig. 5). However, the impact of the

other management options differed between networks, in a way

that was clearly linked to the network features (Table 1, Fig. 2).

Habitat quality improvement resulted in an increase of viability that

was less than half the one gained from habitat enlargement. There are

two reasons for that. The first one is that we assumed a similar cost

for restoring from degraded heathland (enlargement) and from low

quality habitat (improvement), creating in both cases average quality

Figure 3. Population occupancy over the simulated period (200
years) for each habitat patch network under the baseline
scenario. Solid line: average number of occupied patches; dotted lines:
95% confidence limits for 1000 replications; dashed line: total number
of patches in the system.
doi:10.1371/journal.pone.0038684.g003
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habitat; the gain in K is 50 individuals/ha for enlargement, but only

40 individuals/ha for improvement. More importantly, habitat quality

improvement is inefficient in many patches because of their tiny size,

which keeps their K very low even when habitat quality is high. For

a similar cost, habitat enlargement allows increasing the size of some

patches (and hence K) to a non-negligible value, able to support a

viable population.

Stepping stones creation was efficient only in Ballooërveld, and to a

lesser extent in Dwingeloo. Contrary to Delleburen and Drents-

Friese Wold, these two networks were characterized by a small

number of patches with a high occupancy rate; therefore, newly

Figure 4. Sensitivity indices of model parameters, as quantified at regional and individual networks levels. A higher absolute value of
the index means that model predictions were undergoing a larger change for a given change in the model parameter ([42]). The direction of the
impact (+ or – sign), indicates a positive and a negative effect on viability of an increase in the model parameter, respectively.
doi:10.1371/journal.pone.0038684.g004

Figure 5. Assessment of M. alcon viability in the four habitat patch networks under the baseline and management scenarios. The
quasi-extinction risk is a measure of viability quantifying the probability that (the system of) population(s) will fall below a threshold population size
at least once during the simulation time period [36,40]. This risk is given here for the full range of population size thresholds, from a 0% to a 100% risk
of falling below the threshold; for a given population size, a lower quasi-extinction risk means a higher viability. Habitat enlargement is the best
management option in three patch networks (Ballooërveld, Drents-Friese Wold and Dwingeloo), and reintroduction is the best for Delleburen
network.
doi:10.1371/journal.pone.0038684.g005
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created habitat patches are likely to be rapidly colonized by

dispersal events. Stepping stone populations improve viability

through (1) an increased buffer effect against extinction typical for

a metapopulation with more patches, and (2) an enhanced

connectivity, clearly exemplified by the poorly connected Bal-

looërveld network.

The reintroduction of butterflies reared in captivity had a

negligible impact on viability in three out of the four networks,

whereas it was the best option in Delleburen. This network was

characterised by poorly connected habitat patches with a high

proportion of vacant patches, some of them with rather high K

(Fig. 1). In such a case, reintroduction allows to maintain/recreate

populations in several patches, thereby strengthening the meta-

population buffer effect against extinction.

Discussion

To our best knowledge, our model is the first spatially explicit

PVA for a Maculinea species, integrating both a real multipatch

network and a quantitative description of the magnitude of

between-patch dispersal. Furthermore, it is also the first of such

models to be financially explicit. Initialised with the 2003 situation,

the model predicted an occupancy pattern closely matching

observed occupancy in the field in 2010, and it can therefore be

considered as a validated and reliable tool in the context of

predicting population viability and comparing management

scenarios, in order to develop conservation guidelines for the

species in the Northern Netherlands.

Altogether, the future of M. alcon in the Northern region of the

Netherlands is far from safe. The number of populations is

dangerously small and is predicted to further decline over the next

decades if the current conditions prevail. The probabilities are

high that the populations reach very low abundances: 50%

probability that the total abundance in the whole region would

decline to 262 individuals only in 200 years. Extinction risk may be

even larger in reality than predicted here because of processes

adversely affecting very small populations (such as genetic

inbreeding or Allee effect [43]) that were not included in our

model. Management actions are clearly necessary to improve the

conservation status of the species.

Viability of M. alcon was highly sensitive to parameters affecting

the local demography: carrying capacity, environmental stochas-

ticity, and to a lower extent maximum growth rate. Local

demography has also been found a very important aspect of

metapopulation viability for several butterfly species (e.g. Icaricia

icarioides fenderi [44], Euphydryas aurinia [45], Boloria eunomia [46],

Boloria aquilonaris [47]). Similarly, previous models on Maculinea

species focussed mostly on the comparison of different habitat

restoration options to improve habitat patch quality: e.g. burning

the vegetation layer every 4–6 years [28], using small-scale sod

cutting [18], or mowing with different frequency and timing [25].

This focus on habitat quality is important as it is the one direct

measure likely to increase the carrying capacity of habitat patches.

However, by implementing dispersal in a spatially explicit

quantitative way and by ranking management options that were

controlled to be equal in their financial cost, our model was able to

bring important and new conclusions, demonstrating that (1)

improving quality of existing habitat patches, though beneficial,

was not the best option, and that (2) the different patch networks

showed contrasted predicted impact of the management options.

Overall, the best management option with 20,000 J at hand

would be to restore 4 ha of degraded heathland to enlarge existing

habitat patches. It outperforms the improvement of habitat quality

of existing patches for two reasons. (1) For the same cost

(restoration from degraded heathland), it brings a larger increase

in carrying capacity (+50 ind./ha instead of +40 ind./ha), but this

might partly be due to an approximation of the cost quantification

for habitat quality improvement. (2) More importantly, even after

their quality is improved by restoration, many patches are too

small to sustain a local population viable on the long term. Only

their enlargement to the required minimum area [18] is able to

increase their carrying capacity to the threshold needed for such

population viability. Unfortunately, this is a common situation in

intensively used and highly fragmented areas such as the

Netherlands, responsible for the poor state of M. alcon populations.

The creation of new stepping stone habitat patches was never

the best management option. However, concluding that connec-

tivity is currently sufficient would be misleading, especially in the

case of the poorly connected Ballooërveld patch network. Indeed,

the lower impact of restoring habitat area in the form of new

stepping stone patches than in the form of enlarged existent

patches is due to the high price of restoring habitat from

agricultural land, doubled compared to restoration from degraded

heathland. Therefore, with the same money for conservation, the

area that can be restored under the stepping stone creation

scenario was only 2 ha (vs 4 ha for patch enlargement). If a fixed

4 ha area can be restored, placing it in stepping stone patches

would lead to a higher improvement of species viability (Fig. 6),

confirming the biological importance of limited connectivity in

determining viability of M. alcon in that network. Additionally it

underlines how failing to consider the costs associated to each

management option can lead to an opposite conclusion about the

best practically feasible management option.

The viability predictions were also sensitive to the magnitude of

between-patch dispersal, especially in the Dwingeloo network, the

network where the extinction risk is not as high as in the other

three networks. This, together with the previous conclusion that

creating stepping stone patches would largely improve population

viability, emphasizes the role of dispersal in the long-term

persistence of the species. Consequently, this underlines the

importance to explicitly include habitat configuration and

dispersal in PVA models for M. alcon, and therefore to obtain

precise estimates of dispersal for the species. Considering all the

accumulated knowledge on different aspects of the biology and

ecology of Maculinea species across Europe (e.g. [16,21,48,49,50])

the global paucity and limited quality of available dispersal

estimates surprised us. Published dispersal kernel estimates [39]

failed to predict dispersal to distances that are travelled by

butterflies in the field, as judged, for example, by records on

colonization events up to 7 km in The Netherlands (those used to

parameterize dispersal in our model). One clear reason is that

estimates of the dispersal for this species are biased due to the small

scale of the study areas (maximum inter-patch distance in these

studies was 450 m [51], 650 m [15], 1200 m [39], and 5800 m

[34]); this is a known general limitation of Capture-Mark-

Recapture data to estimate dispersal [52]. Dispersal seems to be

a clear gap in the knowledge on the species, which should be

resolved as soon as possible by further research. A relatively easy

and fast way to estimate dispersal would be to use genetic data,

which is further facilitated by the availability of microsatellite

markers for this species [53].

Reintroduction was suggested by Maes and colleagues [15] as

an additional management option, which should be exploited

cautiously together with an enhancement in carrying capacity to

increase population viability of M. alcon. Our results showed that

reintroduction was usually predicted to have a limited impact on

population viability of M. alcon in the region studied. Only in the

case of the Delleburen patch network, which scored the worst

Spatially Explicit PVA of Maculinea alcon
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against all features considered (Table 1), viability was improved by

reintroduction of captive-reared butterflies.

We focused on four alternative management options; however

the costs needed to implement them might differ for M. alcon

inhabiting other habitat types (meadow instead of heathland) or

for restoration from other land use types (enlarging the habitat

patch using arable lands would be more expensive than from wet

heathlands, as envisioned here). Moreover, diverse combinations

of the explored management options with partial allocation of

money to each of them is possible in order to achieve the most

effective management strategy ensuring increased population

viability yet at least cost. Our model can be readily used by local

managers in order to test possible combinations to identify the

most cost-efficient management strategy for each particular region.

Many studies (e.g. [54,55,56]) explored the impacts of habitat

quality and fragmentation on population viability by simulating

artificial landscapes offering the desired combination of the studied

factors. This is to counteract the obvious peculiarity of real

ecological systems: study situations must be taken as they are

offered, usually far from the well-designed laboratory experiments.

In this study, we took advantage of the availability of four real

patch networks, contrasting in their main local and regional

features (Table 1) to explore how these features influence the

impact of management options. Our results clearly indicate that

these networks differed both in their sensitivities to model

parameters and in the ranking of financially equivalent manage-

ment options. In this specific case of M. alcon in the Northern

Netherlands, our predictions stress the cost effectiveness of

enlarging existing habitat patches to improve species viability,

whereas creating new stepping stone patches in the middle of the

agricultural matrix might do better but at a doubled cost. We

conclude by arguing that the conservation guidelines would have

been very different if the PVA model had failed to integrate both

(1) a spatially explicit description of the landscape and the dispersal

of the species, and (2) a financial quantification of the management

options, to make their comparison on a realistic basis. We

encourage researchers to take these two aspects into account

whenever possible.
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