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Abstract  
Cryptic pockets are of growing interest as potential drug targets. However, it remains 
unclear whether they contribute to protein function or if they are merely happenstantial 
features that can easily be evolved away to achieve drug resistance. Here, we explore 
whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 
(VP35) of Zaire ebolavirus has a functional role. We use simulations and experiments to 
study the relationship between cryptic pocket opening and double-stranded RNA 
(dsRNA) binding of the IIDs of two other filoviruses, Reston and Marburg. These 
homologs have structures nearly identical to Zaire but block different interferon 
pathways because Marburg IID only binds the backbone, while Zaire and Reston IIDs 
bind both backbone and blunt ends of dsRNA. We hypothesized that these differences 
arise from alterations in their pocket dynamics. Simulations and thiol-labeling 
experiments demonstrate that Reston has a lower probability of opening the cryptic 
pocket while Marburg has a higher probability than Zaire. Subsequent dsRNA-binding 
assays with different length substrates suggest that closed conformations preferentially 
bind dsRNA blunt ends while open conformations prefer binding the backbone. Further, 
a point mutation that increases the probability of cryptic pocket opening in Reston 
shows that the open states prefer backbone binding, while a substitution that lowers the 
probability of pocket opening in Zaire improves binding to blunt ends. These results 
demonstrate the cryptic pocket controls a functional tradeoff, suggesting cryptic pockets 
are under selective pressure and may be difficult to evolve away to achieve drug 
resistance. 
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Introduction 
Cryptic pockets have garnered significant attention, particularly for their potential as drug 
targets, but it remains unclear whether they play a role in protein function. Cryptic pockets are 
pockets that are not observed in the experimentally obtained structure of a protein but form due 
to thermal fluctuations in the native structure(1, 2). They are an interesting class of protein 
dynamics as they are increasingly being explored as drug targets(3, 4). Allosteric modulators 
that target cryptic pockets provide many advantages over orthosteric drugs(5). These include 
non-competitive regulation, higher specificity due to greater variation of pocket dynamics within 
protein families than variation in active or functional sites(6, 7), and the possibility of enhancing 
and not just inhibiting function(8). Further, cryptic pockets can provide a means to target 
proteins that appear to be undruggable due to a lack of potential binding pockets in 
experimentally-derived snapshots of the protein (9). However, successfully drugging a cryptic 
pocket would create a selective pressure for the organism to evolve protein variants that lack 
the pocket to achieve drug resistance. If cryptic pockets are happenstantial features that have 
no functional significance, then evolving them away could be trivial. On the other hand, it could 
be impossible to evolve away a cryptic pocket if the pocket is an inevitable consequence of the 
protein’s topology. Alternatively, it could be difficult to evolve away a cryptic pocket if the open 
state plays a functional role. To explore these possibilities, it would be useful to study the 
conservation of cryptic pockets across protein variants. 
 
While there are several examples of functional protein dynamics (10–15), studying cryptic 
pockets and assessing their functional relevance has been challenging. Cryptic pockets have 
largely been identified serendipitously when inhibitor-bound structures of proteins are solved 
and show the inhibitor binds in a cryptic pocket (16–18). While finding such structures proves 
the existence of cryptic pockets, it does not provide a facile means to quantify the probability of 
pocket opening or study the effects of sequence variation on pocket opening in the absence of a 
ligand. Enhanced sampling simulations (19–21) and experimental techniques such as room 
temperature crystallography (22), T-jump spectroscopy (23), T-jump crystallography (24), and 
thiol labeling (25) have been used to study protein dynamics, including cryptic pocket opening, 
and provide an opportunity to assess the conservation of these structural features.   
 
Here, we explore the functional significance of a cryptic pocket that we recently discovered in 
VP35 protein from Zaire ebolavirus, which is the virus that causes the disease commonly known 
as Ebola. VP35 plays an essential role in filovirus immune evasion by binding dsRNA that is 
formed during replication of the viral genome to prevent these nucleic acids from being 
discovered by host innate immune receptors such as RIG-I and MDA5 (26–30). The dsRNA 
binding affinity of the IID is a significant determinant of virulence, making it an appealing 
therapeutic target(31, 32). Though a few studies have attempted to find small molecule drugs to 
target this protein(33–35), none have resulted in a successful drug discovery campaign. The IID 
interacts with RNA via flat surfaces that are often difficult to drug, with some going as far as 
calling these surfaces ‘undruggable’ (36). We discovered a cryptic pocket in VP35 that 
allosterically controls dsRNA binding, thereby providing a potential means to target this 
protein(37). However, targeting this pocket would be of little utility if the pocket is just 
happenstance and the virus can easily evolve resistance by acquiring mutations that prevent the 
pocket from opening without any fitness cost. Therefore, it is important to understand if the 
cryptic pocket has a functional role that may be under selective pressure and make the 
evolution of drug resistance more difficult. 
 
To explore the functional relevance of this cryptic pocket, we used a combination of simulations 
and experiments to study the relationship between cryptic pocket opening and dsRNA binding in 
the IIDs of two other filoviruses, Reston ebolavirus (Reston) and Marburg marburgvirus 
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(Marburg). Zaire binds to dsRNA blunt ends, thereby blocking RIG-I binding to the RNA. It can 
also bind to the backbone to block MDA5 binding (38–40). In contrast, Marburg binds the 
backbone but not the blunt ends, thereby blocking MDA5 binding but is unable to block RIG-I 
binding to shorter blunt ended RNAs (40). Reston is known to bind both blunt ends and the 
backbone of the RNA but is a slightly weaker inhibitor of the interferon response than Zaire (38). 
However, it is difficult to explain these differences given that the crystal structures of all three 
variants are essentially identical in both their RNA-bound and free forms (Fig 1) and all three 
variants have high sequence similarity in residues directly interacting with dsRNA (Fig S1) (40). 
Therefore, we hypothesized that differences in cryptic pocket dynamics are responsible for the 
functional differences between VP35 homologs.  
 

 
 
Figure 1: Crystal structures of the RNA-bound and unbound states of all three VP35 IIDs are 
nearly identical. A) Crystal structures of Zaire IID alone (3FKE, brown) and bound to 8-bp dsRNA (3L25, 
gray) show that both the blunt end and backbone binding poses of Zaire are nearly identical to the 
unbound (apo) structure. B) Overlay of Zaire IID bound to 8-bp dsRNA (3L25, gray) with unbound 
structures of Reston IID (3L2A, red) and Marburg IID (4GH9, blue) 

 

Results 
Simulations predict the probability of cryptic pocket opening is low in Reston and high in 
Marburg compared to Zaire. 
To assess the probability of cryptic pocket opening in the three filoviruses, we first used 
molecular dynamics simulations guided by adaptive sampling. We first ran 8 μs of simulation of 
each variant using a goal-oriented adaptive sampling algorithm called FAST (19) that balances 
between broad exploration of conformational space and focusing data acquisition on 
conformations with more open pockets. We then built a Markov State Model (MSM) of each 
homolog from these simulations and used the centers as seeds for long MD simulations on the 

Folding@home distributed computing platform (41). We collected a total of 126 and 124 s of 

data for Reston and Marburg IIDs. Then we built a new MSM for each variant that incorporates 
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the data from Folding@home. The cryptic pocket observed in Zaire IID occurs as the helix 
spanning residue 305 to 309 moves away from the alpha helical domain. Therefore, we 
characterize pocket opening based on the distance between residues 236 and 306 in Zaire, 
which corresponds to residues 225 and 295 in Reston and Marburg. For the sake of brevity, 
unless mentioned otherwise, we will use Reston and Marburg numbering going forward. We 
thus obtain the probability distribution of the distance between residues 225 and 295 based on 
the equilibrium probability of each structure in the MSM (Fig 2).  

 
We find that Marburg has a higher probability of opening than Zaire, but that Reston has a 
significantly lower probability (Fig 2). Furthermore, Marburg opens more widely than the other 
variants, as judged by reaching larger distances between residues 225 and 295 (Fig 2 
insets). The differences in pocket opening have an interesting correspondence to the fact that 
Marburg prefers to bind the dsRNA backbone, while Reston and Zaire bind both blunt ends and 
the backbone. We hypothesized that open pocket conformations preferentially bind the 
backbone while closed conformations preferentially bind blunt ends. 
 
 

 
Figure 2. Simulations predict the probability of pocket opening is lowest in Reston and highest in 
Marburg. Each curve is the probability distribution of the distance between two residues that serves as a 
proxy for pocket opening. Reston VP35 IID (red) shows the least probability of opening the pocket. Zaire 
VP35 IID shows a greater probability of opening the pocket as well as an increased maximum distance of 
pocket opening. Marburg VP35 IID shows the highest probability of pocket opening and the highest 
maximum distance of pocket opening. The structure with the largest pocket (i.e. largest distance between 
the two residues) for each variant is shown in ribbon with a transparent surface, using the same color 
scheme as for the probability distributions. Residues 225 (236 in Zaire) and 295 (306 in Zaire) are shown 
in yellow sticks. 
 
 

Thiol labeling experiments confirm Marburg has the highest probability of opening and 
Reston the lowest.  
As a first test of our computational predictions, we used thiol labeling to experimentally measure 
the probability that the cryptic pocket is open in each IID homolog. In these experiments, we 
measure the rate of covalent modification of a cysteine in the cryptic pocket, as we have done 
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previously with -lactamases (42, 43) and Zaire IID (37). In these experiments, 5,5’-dithiobis-(2-

nitrobenzoic acid), or DTNB, is added to the protein sample. In the presence of an oxidized 
(solvent exposed) thiol group of a cysteine residue, the disulfide bond between the two TNB 
molecules breaks, and one TNB molecule attaches to the cysteine via a disulfide bond. The free 
TNB molecule left from this reaction absorbs light at 412 nm. Therefore, when a cysteine buried 
inside a pocket is exposed to solvent as the pocket opens, we observe an exponential increase 
in absorbance at a rate that depends on the opening and closing rates of the pocket. We 
quantify this using the Linderstrøm-Lang model (see Materials and Methods). We focus on thiol 
labeling of cysteine 296 as its solvent exposure is correlated with the extent of pocket opening 
(as measured by the distance between residue 225 and 295) in our simulations (Fig 3A, B and 
C), whereas the solvent exposure of other cysteines are not correlated with pocket opening (Fig 
3E, F and G, and Fig S3). 

 
As expected from the MSMs, we observe the highest probability of pocket opening in Marburg, 
followed by Zaire and Reston in that order. Thiol labeling of Reston IID and Marburg IID fit to 
one exponential per cysteine, each with the same amplitudes, indicating that all the cysteines in 
each variant get labeled (Fig S4). We performed point mutations of individual cysteines to 
serines to assign observed labeling rates to the cysteines as we have previously done for Zaire 
IID (Fig S5). We compare these results to the labeling rates we previously observed for Zaire 
(37). The cysteines in Reston’s cryptic pocket label far more slowly than those in Zaire, while 
the labeling rates of the cysteines in Marburg are intermediate between Zaire and Reston (Fig 
3D and H). These data were fit to the Linderstrøm-Lang model (see Materials and Methods) to 
quantify the probability and kinetics of pocket opening (Supplementary Table 1). In all three 
homologs, C296 labels faster than expected from labeling of the unfolded fraction (Fig S6), 
suggesting that the pocket does exist in all three homologs. The equilibrium constants for C296 

exposure (Eq 3 in Materials and Methods) for Reston, Zaire and Marburg IIDs are 0.078  

0.001, 0.413  0.009, 5.2  0.5. These correspond to probabilities of pocket opening of 0.072, 
0.292, and 0.839 for Reston, Zaire, and Marburg, respectively. Therefore, in agreement with our 
computational prediction, we observe the highest probability of pocket opening in Marburg, 
followed by Zaire and Reston in that order.  
 

 
Figure 3: Thiol labeling of C296 confirms that the cryptic pocket in Marburg has the highest 
probability of being open while Reston has the lowest probability of opening.  
(A-C) Plots of the distance between residues 225 and 295 vs. the Solvent Accessible Surface Area 
(SASA) of (A) C296 of Reston IID, (B) C307 of Zaire IID, (C) C296 of Marburg IID. Each point on the plot 
represents an MSM center and is colored according to its equilibrium probability.   
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(D) Observed thiol labeling rates for C296/C307 of Zaire IID (black circles), Marburg IID (blue squares), 
and Reston IID (red triangles) at a range of DTNB concentrations.  
(E-G) Plots of the distance between residues 225 and 295 vs. the SASA of  (E) C315 of Reston IID, (F) 
C326 of Zaire IID, and (G) C315 of Marburg IID calculated from our MSMs.  
The SASA of C296 is more correlated with the opening of the cryptic pocket than the SASA of C315, so 
we focus on thiol labeling of C296 to experimentally characterize pocket opening.  
(H) Observed thiol labeling rates for C315/C326 of Zaire IID (black circles), Marburg IID (blue squares), 
and Reston IID (red triangles) at a range of DTNB concentrations. Fits to the Linderstrøm–Lang model 
are shown in colored lines and the expected labeling rate from the unfolded state is shown as blue dotted 
lines for Marburg IID and red dotted lines for Reston IID. This rate is estimated from the stability and 
unfolding rate measured for these homologs shown in Fig S6. The mean and standard deviation from 
three measurements are shown for D and H. Error bars are smaller than the marker used.  

 

 

 
Binding to different length RNAs suggests closed conformations preferentially bind 
dsRNA blunt ends while open conformations prefer binding the backbone 

 
To test our prediction that more open homologs prefer the backbone while more closed ones 
preferentially bind the blunt ends, we used a fluorescence polarization assay to quantify the 
affinity of the homologs to different length dsRNA substrates, thereby varying the number of 
backbone binding sites available. Briefly, we use dsRNA labeled with fluorescein on one 5’ end 
and titrate in varying concentrations of the proteins into a fixed concentration of the RNA (100 
nM). Free RNA emits depolarized light upon excitation with polarized light due to its fast rotation 
whereas bound RNA emits polarized light. Recording the fluorescence polarization throughout 
the titration gives us the fraction of RNA bound to the protein. Particularly, we used a short 8bp 
RNA to get an accurate measure of binding to the blunt-ends and the same 8bp RNA with a 2 
nucleotide overhang on the 3’ ends to get an accurate measure of the binding to the backbone 
alone. Structural studies on these homologs suggest that the backbone binding mode has a 
footprint of 3 nucleotides (32, 38, 40). Previous RNA binding studies also suggest multiple IID 
molecules bind to each RNA molecule in solution (32, 39). Therefore, we also performed 
measurements with a longer 25bp RNA with and without a 2 nucleotide overhang on the 3’ ends 
to get an accurate measure of any cooperativity in the backbone binding. To accurately account 
for multiple protein molecules binding to a single molecule of dsRNA, we used a one-
dimensional lattice binding model to fit the experimental data (see Materials and Methods). This 
model allows nearest neighbor cooperativity between all binding modes. Globally fitting these 
four binding curves for each homolog to this model (Fig 4A, B and C) generates estimates for 
the equilibrium constant for opening the pocket (Fig S7A), the dissociation constants of the 

closed and open conformations to each site on the backbone (𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑐𝑙𝑜𝑠𝑒𝑑  and 𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

𝑜𝑝𝑒𝑛
 

respectively), the dissociation constant of closed conformations to the blunt-end of the RNA 

(𝐾𝐷,𝑒𝑛𝑑
𝑐𝑙𝑜𝑠𝑒𝑑), and the cooperativity between these interactions (Fig 4D and Fig S7B).  

 
In support of our proposed model, we find that the equilibrium constant for pocket opening (𝐾𝑜𝑐 , 
where oc stands for open vs closed) from our fits to dsRNA-binding data are in good agreement 

with those from our thiol labeling experiments (𝐾𝑒𝑞
𝐶296). If the pocket opening observed in the 

thiol-labeling assays is the same conformational change affecting the RNA binding, we would 

expect the 𝐾𝑜𝑐 obtained from the fits to be comparable to 𝐾𝑒𝑞
𝐶296. Indeed,  𝐾𝑜𝑐 for all three 

homologs obtained from the fits to the binding model agree very well with the equilibrium 
constant for the exposure of C296 (C307 in Zaire IID) obtained from the thiol labeling assay (Fig 
S7A).  
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In support of our hypothesis, our global fits show that the probability of pocket opening is the 
main difference between the variants. As described above, the equilibrium constants for pocket 
opening vary over a range of about 80-fold between the three homologs. In contrast, each of the 
dissociation constants between either open or closed protein and the blunt ends or backbone of 
dsRNA varies by no more than a factor of about 7-fold between the homologs. We also do not 
observe large differences in the magnitude of the cooperativity parameters between the 
homologs (Fig S7B). The interaction between the closed state and the blunt ends of dsRNA is 
far stronger than the interaction of either the closed state or the open state for the backbone 
(Fig 4D). There is also negative cooperativity between two closed structures binding the 
backbone at adjacent positions (Fig S7B). As a result, homologs with low probabilities of pocket 
opening predominantly bind the blunt ends and their binding curves are left-shifted compared to 
more open homologs. Homologs with a higher probability of pocket opening are less likely to 
bind the blunt ends despite the high affinity of the closed state for blunt ends since the open 
state is incompatible with blunt end binding. The interaction between the open state and the 

backbone (𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑜𝑝𝑒𝑛

) is about two orders of magnitude stronger than that of the closed state 

(𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑐𝑙𝑜𝑠𝑒𝑑 ) for all three homologs (Fig 4D). There is also strong positive cooperativity between 

a protein in the open state binding the backbone alongside either a closed or open state (Fig 
S7B). As a result, homologs with high probabilities of pocket opening, like Marburg, 
predominantly bind the backbone and have right-shifted binding curves compared to more 
closed variants. Interestingly, most of the proteins that do bind the backbone are in the open 
state even for homologs where pocket opening is rare (Fig 4E and F). For example, about 80% 
of the backbone is covered by Reston proteins in the open state even though the equilibrium 

constant for pocket opening (𝐾𝑜𝑐  ) is 0.061  0.008, which corresponds to a probability of cryptic 
pocket opening of 0.057, the lowest of the three homologs. It is also noteworthy that crystal 
structures capture the closed state bound to the backbone but not the open state, suggesting 
that the crystallization conditions may shift the equilibrium in favor of the closed state.  
 

 
 
Figure 4: Binding to different length dsRNAs suggests closed conformations preferentially bind 
dsRNA blunt ends while open conformations prefer binding the backbone. (A-C) Binding to 
fluorescently labeled 8bp (dashed lines) and 25bp RNA (solid lines) with and without a 3’ 2 nucleotide 
overhang of (A) Wild Type (WT) Reston IID (B) WT Zaire IID (C) WT Marburg IID. 
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The anisotropy was measured via a fluorescence polarization assay, converted to anisotropy, and fit to a 
one-dimensional lattice binding model. The mean and standard deviation from three replicates is shown 
but error bars are generally smaller than the symbols.  
(D) Comparison of binding affinities obtained from the global fits. The mean and standard deviation from 
fits to each of the three replicates are shown. 
(E-F) Fraction of the backbone of 25 bp RNA covered by the open states (empty markers) and closed 
states (colored markers) calculated from the binding parameters obtained from the fits for (E) Reston WT 
IID and (F) Zaire WT IID.  

 
Point mutations that alter the probability of pocket opening also induce differential 
binding to blunt ends versus the backbone 
 
As a further test of our model, we next sought to identify point mutations that modulate the 
probability of pocket opening and assess if they have the expected impact on backbone versus 
blunt end binding. We started by comparing the sequences of the homologs. Zaire and Reston 
IIDs are particularly good candidates for this as there are only 14 amino acid substitutions 
between these homologs and they are all distal to the RNA-binding interfaces. Of these 
substitutions, one causes an interesting structural difference between Zaire and Reston IIDs 
(38). Residue P280 in Reston IID results in a formation of an alpha helix where an alanine in the 
same structural position (A291) in Zaire IID results in a disordered loop. This disordered loop 
forms a hinge that rotates as the pocket opens, and we reasoned this motion may be inhibited 
by the structure the proline induces in Reston. Therefore, we hypothesized that mutating the 
alanine in Zaire IID to a proline would result in a reduced probability of opening the pocket and a 
stronger preference for binding dsRNA blunt ends. This hypothesis is supported by our past 
work showing that the substitution A291P in Zaire IID reduces the probability of pocket 
opening(37). Furthermore, we propose that mutating the proline in Reston to an alanine should 
increase the probability of pocket opening and enhance the binding to the dsRNA backbone.  

 
As expected, introducing A291P into the Zaire IID leads to a reduced probability of pocket 
opening in both simulations and thiol labeling experiments, while introducing P280A into the 
Reston IID leads to an increased probability of pocket opening. FAST simulations performed on 
these variants indeed showed an increased probability of opening the pocket in Reston IID 
P280A and a decreased probability in Zaire IID A291P (Fig 5A). The pocket also opens more 
widely in Reston IID P280A than Wild Type (WT) Reston IID. As before, examining the solvent 
exposure of the cysteines observed in simulation shows that while exposure of C296 (C307 in 
Zaire) is correlated with pocket opening, that of other cysteines is not Fig S8. We followed this 
up with the thiol labeling assay and assigned labeling rates to cysteines by labeling point 
mutations of individual cysteines to serines Fig S9. We observe that both cysteines in Reston 
IID P280A labeled faster than WT Reston IID (Fig 5B and S10A). In comparison, both cysteines 
in Zaire IID A291P labeled slower compared to WT Zaire IID Fig 5B and S10B. Fits to the 
Linderstrøm-Lang model show a 26-fold increase the in the equilibrium constant for C296 
exposure in Reston IID P280A compared to Reston IID WT and a 36-fold decrease in Zaire IID 
A291P compared to Zaire IID WT (Fig 5B). We observed only moderate differences in the 
stability of Reston IID WT and Reston IID P280A under urea denaturation (Fig S6). Taken 
together, this indicates that the mutation modulates pocket opening without significantly 
impacting the stability of the protein.  
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Figure 5: Single amino acid substitutions at residue 280 (291 in Zaire) modulate the probability of 
pocket opening. A) Probability distribution of the distance between residues 225 and 295 obtained from 
MSMs built from FAST adaptive sampling simulations of Reston IID WT (solid red), Reston IID P280A 
(dashed red), Zaire IID WT (solid black), and Zaire IID A291P (dashed black). B) Observed labeling rates 
of C296 for Reston IID WT (transparent solid red) and Reston IID P280A (dark dashed red) Zaire IID WT 
(transparent solid black), and Zaire IID A291P (dashed black).  

 

 
In further support of our model, the point mutation that increases Reston’s probability of pocket 
opening also shifts the protein towards backbone binding while the mutation that reduces the 
probability of pocket opening in Zaire shifts the balance towards blunt end binding. We 
performed fluorescence polarization binding experiments to the four RNA substrates we used 
for the WT homologs (Fig 6A-D). We analyzed these experiments using global fits of the binding 
of each mutant to all four RNAs to the one-dimensional lattice model described for the WT 
homologs (Fig 6A-D and Fig S11). Importantly, the equilibrium constants for pocket opening 
(𝐾𝑜𝑐) obtained from the fits to the binding model continue to agree very well with the equilibrium 
constants for the exposure of C296 obtained from the thiol labeling assay (Fig 6E). While there 
are large differences between the equilibrium constant for pocket opening amongst these 
variants, the rest of the fit parameters are very similar to those from the WT proteins. We 
observe that the dissociation constant of the closed conformations to each site on the backbone 

(𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑐𝑙𝑜𝑠𝑒𝑑 ) is two orders of magnitude weaker than that of the open conformations 

(𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑜𝑝𝑒𝑛 ) for the mutants as well (Fig 6F), further increasing our confidence in the model. We 

do not observe large differences in the magnitude of the binding and cooperativity parameters 
between the WTs and the mutants except for the cooperativity between two neighboring 
molecules in the open state binding to the backbone 𝜎𝑜𝑜 Fig (6F, G and H). This parameter 

seems to buffer the effect of the increased affinity of the open state to the backbone. This 
inherent trade-off also suggests that shifting the equilibrium too drastically in favor of the open 
conformation would not be beneficial for binding to the backbone. Particularly, Reston P280A is 
more open than WT Reston, but its binding curves for the overhang substrates are right-shifted 
compared to WT. This suggests that though the open pocket conformations bind better to the 
backbone, increasing the fraction of open conformation in solution has a negative effect on the 
overall backbone binding. To understand this, we calculated the fraction of the RNA backbone 
covered by the open and closed states of the various homologs and mutants for different 
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lengths of RNA based on the binding parameters obtained from the fit (Fig S12). We see that in 
all cases, a much larger proportion of the backbone is covered by the open states than by the 
closed states. This suggests that while it is necessary to have some ability to open the pocket, 
increasing the probability of opening has no added benefit for backbone binding. Meanwhile, 
Zaire A291P is more closed and prefers to bind the blunt ends more than the WT protein. This is 
reflected by its binding curve for the blunt ended substrates being left-shifted compared to WT. 
Overall, these results show a strong correspondence between the probability of pocket opening 
and the relative affinities of the VP35 IID for different binding sites on dsRNA.  
 
 
 
Conclusion and Discussion 
 
We have shown that the opening and closing of a cryptic pocket in VP35 toggles the protein 
between two different functions. Specifically, we have shown that VP35 preferentially binds the 
blunt ends of dsRNA when the cryptic pocket is closed but preferentially binds the backbone 
when the pocket is open. As a result, variants where the pocket tends to be closed are better at 
blocking RIG-I from binding dsRNA, whereas VP35 variants that are open more often are better 
at blocking MDA5. This model explains differences in the RNA binding behaviors of the Zaire, 
Reston, and Marburg variants of VP35 that were difficult to explain based on crystal structures 
of the proteins. Moreover, it predicts how point mutations that alter the probability of cryptic 
pocket opening will alter the relative affinity of a VP35 protein for the backbone versus the blunt 
ends of dsRNA. More importantly, cryptic pockets are not just happenstance, as they can have 
a functional role. This finding suggests that cryptic pockets are under selective pressure. As a 
result, it shouldn’t be trivial for viruses or cells to evolve resistance to drugs that target cryptic 
pockets by acquiring mutations that prevent pocket opening. Future studies on other proteins 
will help to establish if these findings are generally true or are limited to a subset of cryptic 
pockets. In the meantime, efforts to target the cryptic pocket in VP35 are warranted given the 
evidence that this pocket has a functional role that should prevent Zaire ebolavirus from 
acquiring mutations that give rise to drug resistance by preventing the pocket from opening 
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Figure 6: Single amino acid substitutions that alter the probability of pocket opening also induce 
differential binding to blunt ends and the backbone. (A-D) Binding of Zaire A291P IID (empty black 
circles), WT IID (solid red triangles), WT Zaire IID (solid black circles), Reston P280A IID (empty red 
triangles), WT Marburg IID (blue squares) to fluorescently labeled (A) 8bp blunt-ended RNA (B) 8bp RNA 
with two nucleotide overhangs on 3’ ends (C) 25bp blunt-ended RNA (D) 25bp RNA with two nucleotide 
overhangs on 3’ ends.  
The anisotropy was measured via a fluorescence polarization assay, converted to anisotropy, fit to a one-
dimensional lattice binding model. The mean and standard deviation from three replicates is shown but 
error bars are generally smaller than the symbols. Lines indicate the global fits. 
(E) Comparison of 𝐾𝑜𝑐 obtained from the global fits to 𝐾𝑒𝑞  for C296 exposure obtained from DTNB 

labeling experiments shown in Fig 3D.  
(F) Comparison of dissociation constants obtained from the global fits. 
(G) Comparison of cooperativity between backbone binding modes obtained from the global fits. (H) 
Comparison of cooperativity between end and backbone binding modes obtained from the global fits.  
The mean values of fits to three individual replicates are shown for E, F, G and H. Standard deviations 
are shown as error bars.  

 

 

 

 
Materials and Methods  
 
Molecular dynamics simulations and analysis 
 
Simulations for Reston IID and Marburg IID were initiated from the apoprotein models of 
PDB 3L2A (Reston IID(38)) and 4GHL (Marburg IID(40)) and run with Gromacs(44) using the 
amber03 force field(45) and TIP3P explicit solvent(46) at a temperature of 300 K and 1 bar 
pressure, as described previously(47). We first applied our FAST-pockets algorithm(19) to 
replicate the simulation protocol of Zaire IID in (37). As done previously, we performed ten 
rounds of FAST simulations with 10 simulations/round and 80 ns/simulation. We then performed 
an RMSD-based clustering using a hybrid k-centers/k-medoids algorithm(48) implemented in 
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Enspara(49) to divide the data into 1000 clusters. Then we ran three simulations initiated from 
each cluster center on the Folding@home distributed computing environment, resulting in an 
aggregate simulation time of 126 μs for Reston IID and 124 μs for Marburg IID. We calculated 
the Solvent Accessible Surface Area (SASA) of all atoms in each frame using a 2.8Å probe. We 
summed up the SASA of all the atoms of the sidechain of each residue and clustered this 
sidechain SASA using kcenters upto a cluster radius of 3.5 nm2 for Reston IID and 2.7 nm2 for 
Marburg IID followed by five rounds of kmedoids. We then built Markov State Models (MSMs) at 
multiple lagtimes and used the implied timescales test (Fig S2) to decide on a 6ns lagtime for 
the final MSMs of all homologs.  
 
Protein expression and purification 
 
All variants of VP35’s IID were purified from the cytoplasm of E. coli BL21(DE3) Gold cells 
(Agilent Technologies) following the protocols detailed in (38, 40, 50) . Variants were generated 
using the site-directed mutagenesis and confirmed by DNA sequencing. Cells were transformed 
using heat shock at 42°C. Transformed cells were grown in LB media (Fisher Scientific or 
Lambda Biotech, Ballwin, MO) at 37 °C until OD 0.3 then grown at 18 °C until induction at OD 
0.6 with 1 mM IPTG (Gold Biotechnology, Olivette, MO). Cells were grown for 15 h then 
centrifuged. The pellet was resuspended in 20 mM sodium phosphate pH 8, 1 M sodium 
chloride, 5 mM Imidazole with 5.1 mM β-mercaptoethanol. Resuspended cells were subjected to 
sonication at 4 °C followed by centrifugation. The supernatant was then subjected to Ni-NTA 
affinity (BioRad Bio-Scale Mini Nuvia IMAC column) and eluted with 20 mM sodium phosphate 
pH 8, 1 M sodium chloride, 250 mM Imidazole with 5.1 mM β-mercaptoethanol. This was 
dialyzed to a final buffer of 20 mM sodium phosphate pH 8, 50mM NaCl with 5.1 mM β-
mercaptoethanol. The dialyzed sample was subjected to TEV digestion (proTEV plus, Promega) 
at room temperature for 24-48 hours. We followed this by cation exchange (BioRad UNOsphere 
Rapid S column) and eluted using a slow gradient of 20 mM sodium phosphate pH 8, 1 M NaCl 
with 5.1 mM β-mercaptoethanol. Cleaved VP35 with the sequence shown in Fig S1 elutes at 
around 180 mM NaCl. We follow this by size-exclusion chromatography (BioRad Enrich SEC 70 
column or Cytiva HiLoad 16/600 Superdex 75) into 10 mM HEPES pH 7, 150 mM NaCl, 1 mM 
MgCl2, 2 mM TCEP. 
 
Thiol Labeling  
 
We monitored the change in absorbance over time of 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB, 

Ellman’s reagent, Thermo Fisher Scientific). Various concentrations (100 -1000 M) of DTNB 

were added to the 5 M protein and change in absorbance was measured in an SX-20 Stopped 
Flow instrument (Applied Photophysics, Leatherhead, UK) at 412 nm until the reaction reached 
a steady state (300-1200 s). Each time course was fit with as many cysteines being labeled for 
that protein to obtain an observed labeling rate (kobs) for each cysteine at each DTNB 
concentration. The kobs as a function of DTNB concentration for each cysteine were fit with a 
Linderstrøm–Lang model, shown below, to extract the thermodynamics and/or kinetics of pocket 
opening, as described in detail previously (43).  
 
 
 
 
 
Which leads to,  
 
 

𝐶𝑙𝑜𝑠𝑒𝑑

𝑘open
⇌
𝑘close

𝑂𝑝𝑒𝑛
𝑘𝑖𝑛𝑡[𝐷𝑇𝑁𝐵]
→        𝐿𝑎𝑏𝑒𝑙𝑒𝑑 (1) 

 

𝑘𝑜𝑏𝑠 =  
𝑘𝑜𝑝𝑒𝑛 ∗ 𝑘𝑖𝑛𝑡[𝐷𝑇𝑁𝐵] 

𝑘𝑐𝑙𝑜𝑠𝑒 + 𝑘𝑜𝑝𝑒𝑛 + 𝑘𝑖𝑛𝑡[𝐷𝑇𝑁𝐵]
  (2) 
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From this fit, we report the equilibrium constant for cysteine exposure calculated as: 

𝐾𝑒𝑞 = 
𝑘𝑜𝑝𝑒𝑛
𝑘𝑐𝑙𝑜𝑠𝑒𝑑

 (3) 

 
 
 
As a control, the equilibrium constant for folding and the unfolding rate were measured (Fig S6) 
and used to predict the expected labeling rate from the unfolded state. The equilibrium constant 
was inferred from a two-state fit to urea melts monitored by fluorescence and unfolding rates 
were inferred from exponential fits to unfolding curves monitored by fluorescence after the 
addition of urea, as described previously (25, 43, 51). Fluorescence data were collected using a 
Jasco FP-8300 Spectrofluorometer with Jasco ETC-815 Peltier and Koolance Exos2 Liquid 
Coolant-controlled cuvette holder. 
 
 
Fluorescence Polarization Assay 
Binding affinities between homologs and variants of VP35’s IID and dsRNA were measured 
using fluorescence polarization in 10 mM HEPES pH 7, 150 mM NaCl, 1 mM MgCl2. 8bp and 
25bp FITC-dsRNA (Integrated DNA Technologies) substrates with or without a 2 nucleotide 3’ 
overhang of the following sequences was included at 100 nM.  
 

RNA Sequence 

8bp Blunt Ended 5’-/56-FAM/CGCAUGCG-3’ 
               5’-CGCAUGCG-3’ 

8bp 2nt 3’ Overhang 5’-/56-FAM/CGCAUGCGCU-3’ 
               5’-CGCAUGCGCU-3’ 

25bp Blunt Ended 5’-/56-FAM/AAACUGAAAGGGAGAAGUGAAAGUG-3’ 
               5’-CACUUUCACUUCUCCCUUUCAGUUU-3’ 

25bp 2nt 3’ Overhang 5’-/56-FAM/AAACUGAAAGGGAGAAGUGAAAGUGCU-3’ 
               5’-CACUUUCACUUCUCCCUUUCAGUUUCU-3’ 

 
The sample was equilibrated for one hour before data collection. Data were collected on a 
BioTek Synergy2 Multi-Mode Reader as polarization and were converted to anisotropy (r) as in 
(52):  

                           𝑟 =  
2𝑝

3−𝑝
   

Where 𝑝 in the polarization calculated from the observed parallel and perpendicular intensities, 

𝐼∥ and 𝐼⊥ as: 

 

𝑝 =  
𝐼∥−G𝐼⊥

𝐼∥+G𝐼⊥
. 

 
 

The total fluorescence intensities were checked at each well for fluorescence anomalies such as 
quenching. 
 
Analysis of dsRNA binding experiments.  
To obtain the contributions from the end-binding and backbone-binding to the increase in 
anisotropy observed in the fluorescence polarization experiments, we used a one-dimensional 
lattice model for proteins competing to bind to nucleic acids. Here we consider our labeled 
dsRNA to be the macromolecule and the IIDs to be the ligands. Specifically, our model has the 
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open and the closed conformations of the IIDs competing for binding to the dsRNA. The total 
concentration of the ligand is known for every point in the titration and relates to the relative 
concentration of the open and the closed states as: 

[𝐼𝐼𝐷]𝑡𝑜𝑡𝑎𝑙 = (1 + 𝐾𝑜𝑐)[𝐼𝐼𝐷]𝑐𝑙𝑜𝑠𝑒𝑑  (4) 
 

[𝐼𝐼𝐷]𝑜𝑝𝑒𝑛 = 𝐾𝑜𝑐[𝐼𝐼𝐷]𝑐𝑙𝑜𝑠𝑒𝑑  (5) 
 
To treat the simplest case first, we assume that only the closed state binds to the ends of the 

dsRNA. We refer to the intrinsic association constant for this interaction as 𝐾𝐴
𝑒𝑛𝑑. We assume 

that the open and closed states bind to the dsRNA backbone with intrinsic association constants 

𝐾𝐴
𝑜𝑝𝑒𝑛

 and 𝐾𝐴
𝑐𝑙𝑜𝑠𝑒𝑑.  

 
We performed the fits at varying binding site sizes for the three interactions described above. 
Specifically, we varied the end binding site size between 1-8 nucleotides and the backbone 
binding site sizes between 3-8 nucleotides, choosing the lower limits in both cases to be the 
binding site size observed in the available crystal structures. We analyzed the sum of the 
residuals squared obtained from these fits across all five variants used in this study to obtain the 
binding site sizes that produce the best fit (Fig S13). This analysis showed that the best fit was 
obtained for the blunt end and both backbone binding site sizes all being 3 nucleotides each. 
Using a threshold of 5 times the minimum sum of the residuals squared, we note that binding 
site sizes ranging from 1-4 nucleotides for the end binding, 3-5 nucleotides for the closed state 
binding to the backbone, and 3-4 nucleotides for the open state binding to the end produce 
comparable fits.  
 
Further, we found that the major conclusions of the study hold true for varying binding site sizes 
in this range (Fig S14-17). Future RNA binding studies with a technique with a higher sensitivity 
for binding site sizes will help in confidently estimating these parameters.  
 
The dissociation constants referred to in the text are inverses of the association constants 
described above. Therefore, 
 

𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑐𝑙𝑜𝑠𝑒𝑑  =  

1

𝐾𝐴
𝑐𝑙𝑜𝑠𝑒𝑑

 (6) 

𝐾𝐷,𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒
𝑜𝑝𝑒𝑛

 =  
1

𝐾𝐴
𝑜𝑝𝑒𝑛   (7) 

    

𝐾𝐷,𝑒𝑛𝑑
𝑐𝑙𝑜𝑠𝑒𝑑  =  

1

𝐾𝐴
𝑒𝑛𝑑
  (8) 

   
 
 
We treat the backbone binding of the closed state, the backbone binding of the open state, and 
the end-binding of the closed state as three ligand species competing for binding the dsRNA. 
We denote the ligand type by 𝑠 = 1,2 𝑜𝑟 3 for each of those cases respectively. 
 
We use the transfer matrix method detailed in (53) to calculate the probability, 𝑝𝑠(𝑖), that a 

base-pair 𝑖 is occupied by a ligand of type 𝑠 given by: 
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𝑝𝑠(𝑖) =  
𝑍𝑠(𝑖)

𝑍
 (9) 

Where 𝑍 is the partition function and 𝑍𝑠(𝑖) is a sum over all allowed Boltzmann-weighted states 
consistent with base pair 𝑖, for 𝑖 ∈ (1,𝑁) where N is the length of the dsRNA, being covered by 

a type 𝑠 ligand. 𝑍𝑠(𝑖)  and 𝑍 are calculated using transfer matrices. 
 
To construct the transfer matrix for each nucleotide 𝑖, we enumerate all the possible states a 

given nucleotide 𝑖 can be in and assign each state a statistical weight according to the method 
in (53). We need to make two major changes to this model to describe our system.  
 
The first is to account for the fact that the bulk concentrations of the ligand species in our 
system are not independent.  In the model, the statistical weight for the binding of ligand of type 
𝑠 is given by 𝑐𝑠𝐾𝑠 where 𝑐𝑠 is the bulk concentration of the ligand and 𝐾𝑠 is its intrinsic 
association constant. In our system, the bulk concentrations of the ligands are the concentration 
of the open and closed conformations of the protein. These concentrations are related as shown 
in equations (4) and (5). Therefore, the statistical weights for each of the interactions in our 
system are given by 𝐾𝑒𝑓𝑓

𝑠  where, 

 

𝐾𝑒𝑓𝑓
1 = 

𝐾𝐴
𝑐𝑙𝑜𝑠𝑒𝑑[𝐼𝐼𝐷]𝑡𝑜𝑡𝑎𝑙
(1 + 𝐾𝑜𝑐)

 (10) 

 

𝐾𝑒𝑓𝑓
2 = 

𝐾𝑜𝑐 𝐾𝐴
𝑜𝑝𝑒𝑛[𝐼𝐼𝐷]𝑡𝑜𝑡𝑎𝑙
(1 + 𝐾𝑜𝑐)

 (11) 

 

𝐾𝑒𝑓𝑓
3 = 

(𝐾𝐴
𝑒𝑛𝑑 − 𝐾𝐴

𝑐𝑙𝑜𝑠𝑒𝑑)[𝐼𝐼𝐷]𝑡𝑜𝑡𝑎𝑙 

(1 + 𝐾𝑜𝑐)
(12) 

 
The second change we need to make is to account for the fact that end-binding can only occur 
at nucleotides 𝑖 = 1 𝑜𝑟 𝑁 − 𝑁𝑒𝑛𝑑 + 1, where 𝑁𝑒𝑛𝑑 is the end binding site size. Therefore, the 

value of 𝐾𝑒𝑓𝑓
3  given by equation (12) is only included in transfer matrices for nucleotides 

1 𝑜𝑟 𝑁 − 𝑁𝑒𝑛𝑑 + 1  and we set 𝐾𝑒𝑓𝑓
3 = 0 for all other nucleotides.  

 
Further, we allow cooperativity between all binding modes denoted by the constants 𝜎𝑠𝑠′ where 

𝑠 and 𝑠′ can be 1,2 𝑜𝑟 3 denoting the open state binding to the backbone, closed state binding to 
the backbone and the closed state binding to the ends respectively. For example, the 
cooperativity between one closed conformation binding to the backbone and an open 
conformation binding to the backbone to its right is given by 𝜎12. For ease of understanding we 
refer to ligand types s =  1,2 and 3 as o, c and e in the text. Therefore, the cooperativity 

between one closed conformation binding to the backbone and an open conformation binding to 
the backbone to its right is given by 𝜎𝑐𝑜. Examples of these statistical weights are shown in Fig 

S18. 
 
With these statistical weights, we construct the transfer matrices for each nucleotide 𝑖 as below, 

with 𝐾𝑒𝑓𝑓
3 = 0 for all nucleotides other than 1 and 𝑁 − 𝑁𝑒𝑛𝑑 + 1.  
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(

 
 
 
 
 
 
 
 

1 0 0 0 0 0 1 0 0 1
1 0 0 𝜎11 0 0 𝜎12 0 0 𝜎13
0 1 0 0 0 0 0 0 0 0
0 0 𝐾𝑒𝑓𝑓

1 0 0 0 0 0 0 0

1 0 0 𝜎21 0 0 𝜎22 0 0 𝜎23
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 𝐾𝑒𝑓𝑓

2 0 0 0 0

1 0 0 𝜎31 0 0 𝜎32 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 𝐾𝑒𝑓𝑓

3 0 )

 
 
 
 
 
 
 
 

 

 
We use these to calculate the probability, 𝑝𝑠(𝑖), that a base-pair 𝑖 is occupied by a ligand of type 
𝑠 given by equation (9). 

 
 
From this, we calculate the average probability of the backbone being bound as  
 

𝑝𝑏 = 
∑ (𝑝1(𝑖) +  𝑝2(𝑖))
𝑁
𝑖=1

𝑁
  (13) 

and the average probability of the ends being bound as  
 

𝑝𝑒𝑛𝑑 =
𝑝3(1) + 𝑝3(𝑁)

2
 (14) 

 
We then convert this average probability to observed anisotropy (𝑟𝑜𝑏𝑠) as follows: 
 

𝑟𝑜𝑏𝑠 = (𝑟0 − 𝑟𝑚𝑎𝑥
𝑒𝑛𝑑)𝑝𝑒𝑛𝑑 + (𝑟0 − 𝑟𝑚𝑎𝑥

𝑏 )𝑝𝑏 (15) 

 
 
Where, 𝑟𝑜 is the anisotropy of the free RNA.  

 𝑟𝑚𝑎𝑥
𝑒𝑛𝑑 is the maximum anisotropy for blunt-end binding,  

  𝑟𝑚𝑎𝑥
𝑏  is the maximum anisotropy for backbone binding,  

    
 

Here, 𝑟𝑚𝑎𝑥
𝑒𝑛𝑑 and  𝑟𝑚𝑎𝑥

𝑏  are parameters obtained from the fit and are shown Fig S19. 
 
Fits were performed using Scipy 1.8.0, NumPy 1.22.2 and lmfit 1.2.2. 
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