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Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain, 4 Research Statistics, GSK,

Stevenage, United Kingdom, 5 Computational Biology and Statistics, GSK, Stevenage, United Kingdom,

6 GSK Vaccines, Rixensart, Belgium

* sergi.picart@upc.edu

Abstract

In-silico identification of potential target genes for disease is an essential aspect of drug

target discovery. Recent studies suggest that successful targets can be found through by

leveraging genetic, genomic and protein interaction information. Here, we systematically

tested the ability of 12 varied algorithms, based on network propagation, to identify genes

that have been targeted by any drug, on gene-disease data from 22 common non-cancer-

ous diseases in OpenTargets. We considered two biological networks, six performance

metrics and compared two types of input gene-disease association scores. The impact

of the design factors in performance was quantified through additive explanatory models.

Standard cross-validation led to over-optimistic performance estimates due to the presence

of protein complexes. In order to obtain realistic estimates, we introduced two novel protein

complex-aware cross-validation schemes. When seeding biological networks with known

drug targets, machine learning and diffusion-based methods found around 2-4 true targets

within the top 20 suggestions. Seeding the networks with genes associated to disease by

genetics decreased performance below 1 true hit on average. The use of a larger network,

although noisier, improved overall performance. We conclude that diffusion-based prioriti-

sers and machine learning applied to diffusion-based features are suited for drug discovery

in practice and improve over simpler neighbour-voting methods. We also demonstrate the

large impact of choosing an adequate validation strategy and the definition of seed disease

genes.

Author summary

The use of biological network data has proven its effectiveness in many areas from compu-

tational biology. Networks consist of nodes, usually genes or proteins, and edges that con-

nect pairs of nodes, representing information such as physical interactions, regulatory

roles or co-occurrence. In order to find new candidate nodes for a given biological
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property, the so-called network propagation algorithms start from the set of known nodes

with that property and leverage the connections from the biological network to make pre-

dictions. Here, we assess the performance of several network propagation algorithms to

find sensible gene targets for 22 common non-cancerous diseases, i.e. those that have

been found promising enough to start the clinical trials with any compound. We focus

on obtaining performance metrics that reflect a practical scenario in drug development

where only a small set of genes can be essayed. We found that the presence of protein

complexes biased the performance estimates, leading to over-optimistic conclusions, and

introduced two novel strategies to address it. Our results support that network propaga-

tion is still a viable approach to find drug targets, but that special care needs to be put on

the validation strategy. Algorithms benefitted from the use of a larger -although noisier-

network and of direct evidence data, rather than indirect genetic associations to disease.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

The pharmaceutical industry faces considerable challenges in the efficiency of commercial

drug research and development [1] and in particular in improving its ability to identify future

successful drug targets.

It has been suggested that using genetic association information is one of the best ways to

identify such drug targets [2]. In recent years, a large number of highly powered GWAS studies

have been published for numerous common traits (for example, [3, 4]) and have yielded many

candidate genes. Further potential targets can be identified by adding contextual data to the

genetic associations, such as genes involved in similar biological processes [5, 6]. Biological

networks and biological pathways can be used as a source of contextual data.

Biological networks are widely used in bioinformatics and can be constructed from multiple

data sources, ranging from macromolecular interaction data collected from the literature [7]

to correlation of expression in transcriptomics or proteomics samples of interest [8]. A large

number of interaction network resources have been made available over the years, many of

which are now in the public domain, combining thousands of interactions in a single location

[9, 10]. They are based on three different fundamental types of data: (1) data-driven networks

such as those built by WGCNA [8] for co-expression; (2) interactions extracted from the litera-

ture using a human curation process as exemplified by IntAct [11] or BioGRID [12]; and (3)

interactions extracted from the literature using text mining approaches [13].

On the other hand, a plethora of network analysis algorithms are available for extracting

useful information from such large biological networks in a variety of contexts. Algorithms

range in complexity from simple first-neighbour approaches, where the direct neighbours of a

gene of interest are assumed to be implicated in similar processes [14], to machine learning

(ML) algorithms designed to learn from the features of the network to make more useful bio-

logical predictions [15].

One broad family of network analysis algorithms are the so-called Network Propagation

approaches [16], used in contexts such as protein function prediction [17], disease gene identi-

fication [16] and cancer gene mutation identification [18]. In this paper, we perform a system-

atic review of the usefulness of network analysis methods for the purpose of identification of

disease genes. As further explained in Methods, we define our test set of disease genes as genes

for which the relationship with a disease was sufficiently clear to justify the start of a drug
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development programme. Claims that such methods are helpful in that context have been

made on numerous occasions but a comprehensive validation study is lacking. One major

challenge in doing such a study is to define a list of true disease genes for this purpose.

To address this, the Open Targets collaboration between pharmaceutical companies and

public institutions collects information on known drug targets to help identify new ones [19].

A dedicated internet platform provides a free-to-use accessible resource summarising known

data on gene-disease relationships from a number of data sources, like known released drugs

and genetic associations from GWAS [19].

The purpose of this work is to quantify the performance of network propagation methods

to prioritise novel drug targets, using various networks and validation schemes, and aiming at

a faithful reflection of a realistic drug development scenario. We are not predicting gene tar-

gets for specific drugs, but rather sensible genes to target for a specific disease. Data on actual

compounds targeting a gene is ignored: as long as the gene has been targeted by one or more

compounds reaching the clinical trials, it is considered a sensible drug target. We select a num-

ber of network propagation approaches that are representative of several classes of algorithms,

and test their ability to recover known target genes for several non-cancerous diseases by

cross-validation.

We benchmark multiple definitions of disease genes as input for the prioritisers, computa-

tional methods, biological networks, validation schemes and performance metrics. We account

for all possible combinations of such factors and derive guidelines for future disease target

identification studies. The code and data that support our conclusions can be found in https://

github.com/b2slab/genedise.

Results

Benchmark framework

Our general approach, summarised in Fig 1, consisted in using a biological network and a list

of genes with prior disease-association scores as input to a network propagation approach. We

tested some variations of classical network propagation -ppr, raw, gm, mc and z- which dif-

fer on the directedness of the propagation, the input weights and the presence of a statistical

normalisation of the scores. Semi-supervised methods included, under the positive-unlabelled

learning framework: knn and wsld. Both work directly on a graph kernel, closely related to

network propagation. Supervised methods were also considered: COSNet, which regards the

network as an artificial neural network, bagsvm, a bagging Support Vector Machine on a

graph kernel, and rf and svm, which apply either Random Forest or a Support Vector

Machine to network-based features that encode propagation states in a lower dimensionality.

The EGAD method, based on neighbour voting, served as a baseline prioritiser. Three input-

naïve baselines were included: pr and randomraw, both biased by the network topology,

and random, a purely random prioritiser.

We used three cross-validation schemes -two take into account protein complexes- in

which some of the prior disease-association scores are hidden. The desired output was a new

ranking of genes in terms of their association scores to the disease. Such ranking was compared

to the known target genes in the validation fold using several performance metrics. Given the

amount of design factors and comparisons, the metrics were analysed through explanatory

additive models (see Methods). Specifically, regression models explained the performance

metrics (dependent variable) as a function of the prediction method, the cross-validation

scheme, the network and the disease (regressors). This enabled a formal analysis of the impact

of each factor on overall performance while correcting for the others. Alternatively, we provide
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Fig 1. Benchmark overview. This work describes six performance metrics using two input streams (genetic association

and drug-based genes) to predict drug target-based genes for 22 common diseases. 3-fold cross-validation (CV),

repeated 25 times, was run under three CV strategies. The gene identifiers in each fold are determined using only the

drugs data, regardless of the input. Two validation strategies are complex-aware and therefore needed this data to

define the splits. 15 methods based on network propagation (including 4 baselines) were evaluated, using two networks

Benchmarking network propagation methods for disease gene identification
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plots on the raw metrics in S1 Appendix, stratified by method in Figures J and K or by disease

in Figures L and M.

We considered 2 metrics (AUROC and top 20 hits) and 2 input types (known drug target

genes and genetically associated genes), resulting in a total of 4 combinations, each described

through an additive main effect model. Another 4 metrics were explored and can be found in

Figure Q and Tables F and G in S1 Appendix.

Interaction terms within the explanatory models were explored, but they did not provide

any added value for the extra complexity, see Figure S in S1 Appendix.

Performance using known drug targets as input

Fig 2 describes the additive models for AUROC and top 20 hits, and using known drug targets

as input. Note that the disease was included as a regressor in the explanatory models for further

discussion. This was possible given our definition of drug targets: methods had to predict

whether a gene has been targeted by any drug for a particular disease, implying that metrics

were available at the disease level.

Fig 3 contains their predictions for each method, network and cross-validation scheme

with 95% confidence intervals, averaged over diseases. The models are complex and we there-

fore review each main effect separately.

For interpretability within real scenarios, the top 20 hits is regarded as the reference metric

in the main body. The standard AUROC (quasi-binomial) clearly led to different conclusions

and is kept throughout the results section for comparison. The remaining metrics (AUPRC,

pAUROC 5%, pAUROC 10% and top 100 hits) result in similar method prioritisations as top

20 hits, see Figure Q in S1 Appendix. Detailed models can be found in S1 Appendix, indexed

by Tables F and G.

Comparing cross-validation schemes. Whether protein complexes were properly taken

into account when performing the cross-validation (see Methods) stood out as a key influence

on the quality of predictions: there was a dramatic reduction in performance for most methods

when using a complex-aware cross-validation strategy. For instance, method rf applied on

the STRING network dropped from almost 12 correct hits in the top 20 predicted disease

genes when using our classic cross-validation scheme down to fewer than 4.5 when using either

of our complex-aware cross-validation schemes. Likewise, Table E in S1 Appendix ratifies that

only the classic cross-validation splits complexes. A recent study raised analogous concerns on

estimating the performance of supervised methods when learning gene regulatory networks

[20]. Random cross-validation would lead to overly optimistic performances when predicting

new regulatory contexts, requiring to control for the distinctness between the training and

the testing data. This confirms that other areas in computational biology may benefit from

adjusted cross-validation strategies.

Our data suggests that the performance drop when choosing the appropriate validation

strategy is comparable to the performance gap of competitive methods versus a simple neigh-

bour-voting baseline EGAD (see Fig 2). This highlights the importance of carefully controlling

for this bias when estimating the performance of target gene prediction using network propa-

gation. Overall, the classic cross-validation scheme gave biased estimates in our dataset,

with different properties, by modelling their performance -averaged on every CV round- with explanatory models.

After obtaining the performance metrics, the explanatory models allowed hypothesis testing and a direct performance

comparison between diseases, CV strategies, networks and methods, by setting them as the independent variables of

the models. The latter is depicted by pink (independent variables) and yellow (dependent variable) blocks, and should

not be confused with the “model fitting” block, which refers to the network propagation prioritisers.

https://doi.org/10.1371/journal.pcbi.1007276.g001
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Fig 2. Additive explanatory models for AUROC and top 20 hits. Each column corresponds to a different model, whereas each row depicts the

95% confidence interval for each model coefficient. Rows are grouped by the categorical variable they belong to: method, cv scheme, network and

disease. Each variable has a reference level, implicit in the intercept and specified in brackets: pr method, classic validation scheme, STRING

network and allergy. Positive estimates improve performance over the reference levels, whereas negative ones reduce it. For example, the data

suggest that method rf performs better than the baseline using both metrics, and is the preferred method using the top 20 hits. Switching from

STRING to the OmniPath network, or from classic to block or representative cross-validation, has a negative effect on both performance metrics.

Specific model estimates and confidence intervals can be found in Tables H and I in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1007276.g002
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whereas our block and representative cross-validation schemes had similar effects on the pre-

diction performance. Method ranking was independent of the cross-validation choice thanks

to the use of an additive model. Since both the block and representative schemes led to the

same conclusions, we chose to focus on results from the block scheme in the rest of this study.

Comparing networks. We found that using STRING as opposite to OmniPath improved

overall performance of disease gene prediction methods. Our models for top 20 hits quantified

this effect as noticeable although less important than that of the cross-validation strategy. For

reference, method rf obtains about 3 true hits under both complex-aware strategies in Omni-

Path. It has been previously shown that the positive effect on predictive power of having more

Fig 3. Performance predicted for AUROC and top 20 hits through the additive explanatory models. Each row corresponds to a different model and error bars

depicts the 95% confidence interval of the additive model prediction, averaging over diseases. In bold, the main network (STRING) and metric (top 20 hits). The exact

values can be found in Table I in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1007276.g003
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interactions and coverage in a network can outweigh the negative effect of increased number

of false positive interactions [21], which is in line with our findings. The authors also report

STRING among the best resources to discover disease genes, which is analogous to our find-

ings on the drug targets.

We focus on the STRING results in the rest of the text.

Comparing methods. Having identified the optimal cross-validation scheme and net-

work for our benchmark in the previous sections, we quantitatively compared the performance

of the different methods.

First, network topology alone had a slight predictive power, as method pr (PageRank

approach that ignores the input gene scores) showed better performance than the random
baseline under all the metrics. The randomised diffusion randomraw lied between random
and pr in performance, depending on the metric. Both facts support the existence of an inher-

ent network topology-related bias among target genes that benefits diffusion-based methods.

This finding is compatible with the existence of a reduced set of critical edges that account for

most of the predictive power in GBA methods [22], as highly connected genes are more likely

to be involved in those.

Second, the basic GBA approach from EGAD had an advantage over the input-naïve base-

lines pr, randomraw and random. It also outperformed prioritising genes using other Open

Targets data stream scores such as genes associated to disease from pathways, gene expression

or animal models, while being comparable to the literature stream (see Table S in S1 Appendix).

Most diffusion-based and ML-based methods outperformed EGAD. To formally test the dif-

ferences between methods, we carried a Tukey’s multiple comparison test on the model coeffi-

cients (Fig 4) as implemented in the R package multcomp [23]. Although such differences

were in most cases statistically significant after multiplicity adjustment, their actual effect size

or magnitude can be modest in practice, see Figs 3 and 5. Results from top 20 hits suggest

using rf for the best performance followed by, in order: raw and bagsvm, z and svm (main

models panel in Fig 5).

The ranking of methods was similar when using the metrics AUPRC, pAUROC and top k
hits (see Figure Q in S1 Appendix) and is only intended to be a general reference, given the

impact of the problem definition, cross-validation scheme and the network choice.

With AUROC on the other hand, rf lost its edge whilst most diffusion-based and ML-

based methods appeared technically tied. Despite its theoretical basis, interpretability and

widespread use in similar benchmarks, these results support the assertion that AUROC is a

sub-optimal choice in drug discovery practical scenarios.

Fig 6 further shows how the different methods compare with one another. Distances

between each pair of method in terms of their top 100 novel predictions were represented

graphically. We observe that the supervised bagged Support Vector Machine approach

(bagsvm) behaves similarly to the simple diffusion approach (raw), reflecting the fact that

they use the same kernel. We also observe that diffusion approaches do not necessarily pro-

duce similar results; for instance, raw and z. Besides, methods EGAD (arguably one of the

simplest) and COSNet (arguably one of the most complex) seemed to result in similar predic-

tions. Fully supervised and semi-supervised approaches largely group in the top right hand

quadrant of the STRING plot away from diffusion methods, possibly showing better learning

capability with the larger network.

When comparing overall performances shown in Fig 5 with the prediction differences from

the MDS plot (Fig 6), the best methods owed their performance to different reasons as they do

not occur within the same region of the plot (e.g. rf and raw). MDS plots on the eight possi-

ble combinations of network, input type and inclusion of seed genes are displayed in Figures

O and P in S1 Appendix.

Benchmarking network propagation methods for disease gene identification
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Focusing only on the STRING network and the block validation scheme, we fitted six addi-

tive explanatory models, called the reduced models, to model the six metrics for the drugs data

input as a function of the method and the disease (see Table G in S1 Appendix). Methods were

prioritised according to their main effects (Fig 5). The reduced models better described this

Fig 4. Pairwise contrasts on top 20 hits predicted by the main quasipoisson explanatory model. Differences are expressed in the model space. Most of the pairwise

differences are significant (Tukey’s test, p<0.05) – non-significant differences have been crossed out.

https://doi.org/10.1371/journal.pcbi.1007276.g004
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particular scenario, as they were not forced to fit the trends in all networks and validation

schemes in an additive way. Considering the top 20 hits, rf and svm were the optimal choices,

followed by wsld and knn.

Comparing diseases. The top 20 hits model in Fig 2 shows that allergy (the figure’s base-

line reference), ulcerative colitis and rheumatoid arthritis (group I) are the diseases for which

prediction of target genes was worst, whereas cardiac arrhythmia, Parkinson’s disease, stroke

and multiple sclerosis (group II) are those for which it was best. As shown in Fig 7, group I dis-

eases had fewer known target genes and lower modularity compared to group II diseases.

Prediction methods worked better when more known target genes were available as input

in the network, with two possible underlying reasons: the greater data availability to train the

methods, and the natural bias of top 20 hits towards datasets with more positives. Likewise, a

stronger modularity within target genes justifies the guilt-by-association principle and led to

better performances. In turn, the number of genes and the modularity were positively corre-

lated, see Figure N in S1 Appendix.

Performance using genetic associations as input

Using genetically associated genes as input to a prediction approach to find known drug

targets mimicked a realistic scenario where novel genetic associations are screened as

Fig 5. Ranking of all the methods. Ranking according to the predictions of the main explanatory models (left) and the reduced explanatory models within the

STRING network and block cross-validation (right), in both cases on the drugs input and averaging over diseases. The main models serve as a global description of the

metrics, whereas the reduced models are specific to the scenario of most interest. A column-wise z-score on the predicted mean is depicted, in order to illustrate the

magnitude of the difference. Note how the top 20 hits and the AUPRC metrics lead to similar conclusions, as opposed to AUROC.

https://doi.org/10.1371/journal.pcbi.1007276.g005
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potential targets. However, inferring known drug targets through the indirect genetic evi-

dence posed problems to prediction strategies, especially those based on machine learning.

Learning is done using one class of genes in order to predict genes that belong to another

class, and the learning space suffers from intrinsic uncertainties in the genetic associations

to disease. Both classes are inherently different: certain genes can be difficult to target, and a

gene does not require to have been formally associated genetically to a disease to become a

valid target.

Consequently, we observed a major performance drop on all the prioritisation methods:

using any network and cross-validation scheme, the predicted top 20 hits were practically

bounded by 1. This was more pronounced on supervised machine learning-focused strategies,

as rf and svm lost their edge on diffusion-based strategies. The fact that the genetic associa-

tions of the validation fold were hidden further hindered the predictions and can be a cause of

our pessimistic performance estimates.

Comparing cross-validation schemes. For reference, we also ran all three cross-valida-

tion schemes on the genetic data to quantify and account for complex-related bias. The models

confirm that, contrary to the drugs-related input, the differences between the results for the

different cross-validation schemes were rather modest. For example, method raw with the

STRING network attains 0.59-0.64, 0.50-0.54 and 0.37-0.40 hits in the top 20 under the classi-

cal, block and representative cross-validation strategies. The slightly larger negative effect on

top 20 hits observed with the representative scheme is expected because the number of posi-

tives that act as validation decreased and this metric is biased by the class imbalance. The

agreement between method ranking using AUPRC and top 20 hits was less consistent, possibly

Fig 6. Multi-view MDS plot displaying the preserved Spearman’s footrule distances between methods. The differential ranking of their top 100 novel predictions

using known drug target inputs are taken into account across all 22 diseases. Results are shown separately for the 2 networks considered in this study. Seed genes are

excluded from the distance calculations.

https://doi.org/10.1371/journal.pcbi.1007276.g006
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due to the performance drop, whilst AUROC yielded a noticeably different ranking again. Fur-

ther data can be found in Tables O and P in S1 Appendix.

Comparing networks. The change in performance for using the OmniPath network

instead of the filtered STRING network was also limited. For AUROC the effect was negative,

whereas for the top 20 hits metric the performance improved. Method raw changed from

0.50-0.54 top 20 hits in STRING to 0.61-0.66 in OmniPath under the block validation strategy.

Fig 7. Disease performance in terms of input size and modularity. Disease performance ranked by the number of known target genes and their modularity

(obtained using the igraph package, see Figure F in S1 Appendix). Modularity is a measure of the tendency of known target genes to form modules or clusters in the

network. Diseases have been ranked using their explanatory model coefficient from the top 20 hits metric with known drug targets as input (x axis) and their

modularity (y axis). As discussed in the text, best predicted diseases tend to have longer gene lists and be highly modular.

https://doi.org/10.1371/journal.pcbi.1007276.g007
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Comparing methods. To be consistent with the drugs section, we take as reference the

block cross-validation strategy and the STRING network.

The baseline approach pr that effectively makes use of the network topology alone proved

difficult to improve upon, with 0.43-0.47 expected true hits in the top 20. Methods raw and

rf respectively achieved 0.50-0.54 and 0.23-0.26 – although significant, the difference in prac-

tice would be minimal. The best performing method was mc with 0.65-0.7 hits. All the perfor-

mance estimates can be found in Table P in S1 Appendix. To give an idea of the effort that

would be required in a realistic setting to find novel targets, the number of correct hits in the

top 100 hits was 3.29-3.45 with the best performing method (in this case, ppr), against 2.25-

2.38 of pr.

Two main conclusions can be drawn from these results. First, the network topology base-

line retained some predictive power upon which most diffusion-based methods, as well as

machine-learning approaches COSNet and bagsvm, only managed to add minor improve-

ments, if any. Second, drug targets could still be found by combining network analysis and

genes with genetic associations to disease, but with a substantially lower performance and with

a marginal gain compared to a baseline approach that would only use the network topology to

find targets (e.g. by screening the most connected genes in the network).

It is worth noting that gene-disease genetic association scores themselves have drawbacks

and that better prediction accuracy could result as genetic association data improves.

Discussion

We performed an extensive analysis of the ability of several approaches based on network

propagation to identify novel non-cancerous disease target genes. We explored the effect of

various choices in factors including the biological network, the definition of disease genes act-

ing as seeds, and the statistical framework being used to evaluate methods performance. We

show that carefully choosing an appropriate cross-validation framework and suitable perfor-

mance metric has an important effect in evaluating the utility of these methods.

Our main conclusion is that network propagation seems effective for drug target discovery,

reflecting the fact that drug targets tend to cluster within the network. This may be due to the

fact that the scientific community has so far been focusing on testing the same proven mecha-

nisms, which can induce some ascertainment bias.

In a strict cross-validation setting, we found that even the most basic guilt-by-association

method was useful, with *2 correct hits in its top 20 predictions, compared to *0.1 when

using a random ranking. The best diffusion based algorithm improved that figure to *3.75,

and the best overall performing method was a random forest classifier on network-based fea-

tures (*4.4 hits). Leading approaches can be notably different in terms of their top predic-

tions, suggesting potential complementarity. We found a better performance when using a

network with more coverage at the expense of more false positive interactions. In a more con-

servative network, random forest performance dropped to *3.1 hits. Comparing performance

on different diseases shows that the more known target genes, and the more clustered these are

in the network, the better the performance of network propagation approaches for finding

novel targets for it.

We also explored the prediction of known drug target genes by seeding the network with

an indirect data stream, in particular, genetic association data. Here, the best performing

methods were diffusion-based and presented a statistically significant, but marginal, improve-

ment over approaches that only look at network centrality.

We conclude that network propagation methods can help identify novel targets for disease,

but that the choice of the input network and the seed scores on the genes needs careful
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consideration. Based on our approach and endorsed benchmarks, we recommend the use of

methods employing representations of diffusion-based information (the MashUp network-

based features and the diffusion kernels), namely random forest, the support vector machine

variants, and raw diffusion algorithms for optimal results.

Materials and methods

Selection of methods for investigation

Network propagation algorithms were selected for validation based on the following criteria:

1. Published in a peer-reviewed journal, with evidence of improved performance in gene dis-

ease prediction relative to contenders.

2. Implemented as a well documented open source package, that is efficient, robust and usable

within a batch testing framework.

3. Directly applicable for gene disease identification from a single gene or protein interaction

network, without requiring fundamental changes to the approach or additional annotation

information.

4. Capable of outputting a ranked list of individual genes (as opposed to gene modules, for

example).

In addition, we selected methods that were representative of a diverse panel of algorithms,

including diffusion variants, supervised learning on features derived from network propaga-

tion, and a number of baseline approaches (see Table 1).

Testing framework, algorithms and parameterisation

All tests and batch runs were set-up and conducted using the R statistical programming lan-

guage [36]. When no R package was available, the methodology was re-implemented, building

upon existing R packages whenever possible. Standard R machine learning libraries were used

to train the support vector machine and random forest classifiers. Only the MashUp algorithm

[35] required feature generation outside of the R environment, using the Matlab code from

their publication. Further details on the methods implementation can be found in S1 Appen-

dix, section “Method details”.

EGAD [27], a pure neighbour-voting approach, was used here as a baseline comparator.

Diffusion (propagation) methods are central in this study. We used the random walk-based

personalised PageRank [26], previously used in similar tasks [28], as implemented in igraph

[37]. The remaining diffusion-based methods were run on top of the regularised Laplacian

kernel [38], computed through diffuStats [39]. We included the classical diffusion raw, a

weighted approach version gm that assigns a bias term to the unlabelled nodes, and two statis-

tically normalised scores (mc and z), as implemented in diffuStats. The normalised scores

adjust for systematic biases in the diffusion scores that relate to the graph topology, in order

to provide a more uniform ranking. In the scope of positive-unlabelled learning [40, 41], we

included the kernelised scores knn and the linear decayed wsld from RANKS [42]. knn
computes each gene score based on the k-nearest positive examples, using the graph kernel to

compute the distances. Conversely, wsld uses all the kernel similarities to the positive exam-

ples, but applies a decaying factor to downweight the furthest positives. Closing this category,

we implemented the bagging Support Vector Machine approach from ProDiGe1 [34], here

bagsvm, which trains directly on the graph kernel to find the optimal hyperplane separating

positive and negative genes.
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Purer ML-based methods were also included. On one hand, network-based features were

generated using MashUp [35] and two classical classifiers were fitted to them, based on caret

[43] and mlr [44]. These are svm, the Support Vector Machine as implemented in kernlab

[45], and rf, the Random Forest found in the randomForest package [46]. On the other hand,

we tried the parametric Hopfield recurrent neural network classifier in the COSNet R package

[33, 47]. COSNet estimates network parameters on the sub-network containing the labelled

nodes, extends them to the sub-network containing the unlabelled ones and then predicts the

labels.

Finally, we defined three naive baseline methods: (1) pr, a PageRank with a uniform

prior, where input scores on the genes are ignored; (2) randomraw, which applies the raw
diffusion approach to randomly permuted input scores on the genes; and (3) random, a uni-

form re-ranking of input genes without any network propagation. The inclusion of pr and

randomraw allowed us to quantify the predictive power of the network topology alone, with-

out any consideration for the input scores on the genes.

Biological networks

The biological network used in the validation is of critical importance as current network

resources contain both false positive and false negative interactions, possibly affecting subse-

quent predictions [21].

Here, we used two human networks with different general properties, one more likely to

contain false positive interactions (STRING [48]), and another more conservative (OmniPath

[49]), to test the effect of the network itself on network propagation performance. We further

filtered STRING [48] to retain only a subset of interactions. Having tested several filters, we

settled upon high-confidence interactions (combined score > 700) with some evidence from

the “Experiments” or “Databases” data sources (see Table B in S1 Appendix). Applying these

filters and taking the largest connected component resulted in a connected network of 11,748

nodes and 236,963 edges. Edges were assigned weights between 0 and 1 by rescaling the

STRING combined score.

Table 1. List of methods included in this benchmark.

Method Identifier Method Name Method Class Implementation Reference

pr PageRank with a uniform prior Baseline igraph (Bioconductor [24, 25] package) [26]

random Random Baseline R (see text)

randomraw Random Raw Baseline R (see text)

EGAD Extending Guilt by Association’ by Degree Baseline EGAD (Bioconductor package) [27]

ppr Personalized PageRank Diffusion igraph (R package) [28]

raw Raw Diffusion Diffusion diffuStats (Bioconductor package) [29]

gm GeneMania-based weights Diffusion diffuStats (Bioconductor package) [30]

mc Monte Carlo normalised scores Diffusion diffuStats (Bioconductor package) [31]

z Z-scores Diffusion diffuStats (Bioconductor package) [31]

knn K nearest neighbours Semi-supervised learning RANKS (R package) [32]

wsld Weighted Sum with Linear Decay Semi-supervised learning RANKS (R package) [32]

COSNet COst Sensitive neural Network Supervised learning COSNet (R package) [33]

bagsvm Bagging SVM (based on ProDiGe1) Supervised learning kernlab (R package) [34]

rf Random Forest Supervised learning randomForest (R package) + Matlab (features) [35]

svm Support Vector Machine Supervised learning kernlab (R package) + Matlab (features) [35]

Method identifiers are shortened method names used throughout the text. Other columns are self-explanatory.

https://doi.org/10.1371/journal.pcbi.1007276.t001
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We did not filter the OmniPath network [49]. After removing duplicated edges and taking

the largest connected component, the OmniPath network contained 8,580 nodes and 42,145

unweighted edges.

Disease gene data

We used the Open Targets platform [19] to select known disease-related genes. In this analysis

we defined positive genes as those reported in Open Targets as being the target of any known

drug against the disease of interest, from which all the metrics were computed. We decided to

use drug targets, including unsuccessful ones, as proxies for disease genes on the basis that

genes for which a drug programme has been started, generally with significant investment, are

most likely to have strong evidence linking them to the disease. We therefore regard them as a

set of high-confidence true positive disease genes. This choice means we potentially miss genes

that have strong genetic associations to the disease but are not druggable. In other words, we

focus on limiting false positives in our reference set of positives, at the expense of having more

false negatives in our set of negatives. Alternatively, genes with a genetic association of suffi-

cient confidence with the disease were also used as an input data stream, in order to assess the

predictive power of an indirect source of evidence. Associations were binarised: any non-zero

drugs-related association was considered positive, implying that the methods would predict

genes on which a drug has been essayed, regardless of whether the drug was eventually

approved. Likewise, only genetic associations with an Open Targets score above 0.16 (see

Figure A in S1 Appendix) were considered positive. We considered exclusively common dis-

eases with at least 1,000 Open Targets associations, of which a minimum of 50 could be based

on known drugs and 50 on genetic associations, in order to avoid empty folds in the nested

cross-validations. By applying these filters, we generated a list of phenotypes and diseases

which we then manually curated to remove, non-disease phenotype terms (e.g. “body weight

and measures”) as well as vague or broad terms (e.g.“cerebrovascular disorder” or “head dis-

ease”) and infectious diseases. We also decided to exclude cancers from this analysis. Cancer is

a complex process starting from the driver mutation(s) causing disruptive processes involving

clonal expansions, which are known to carry their own specific and resultant (non-causal) pas-

senger mutations. Also, the fundamental genetic and biological mechanisms underlying can-

cers [50] are generally very distinct from other diseases. We considered this might affect the

reliability of the seed genes and cancers would therefore deserve a separate benchmark. This

left 22 diseases considered in this study (Table 2). Further descriptive material on the role of

genes associated with disease within the STRING network can be found in the section

“Descriptive disease statistics in the STRING network” from S1 Appendix.

Validation strategies

Input gene scores. We used the binarised drug association scores and genetic association

scores from Open Targets as input gene-level scores to seed the network propagation analyses

(Fig 8) and test their ability to recover known drug targets. With the first approach (panel (A)

in Fig 8), we tested the predictive power of current network propagation methods for drug

target identification using a direct source of evidence (known drug targets). In the second

approach (panel (B) in Fig 8), we assessed the ability of a reasonable but indirect source of

evidence – genetic associations to disease – in combination with network propagation to

recover known drug targets.

Metrics. Methods were systematically compared using standard performance metrics.

The Area under the Receiver Operating Characteristic curve (AUROC) is extensively used

in the literature for binary classification of disease genes [52], but can be misleading in this
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context given the extent of the class imbalance between target and non-target genes [53]. We

however included it in our benchmark for comparison with previous literature. More suitable

measures of success in this case are Area under the Precision-Recall curve (AUPRC) [53] and

partial AUROC (pAUROC) [54].

Based on the notation in [54–56], let Z be a real-valued random variable corresponding to

the output of a given prioritiser, so that largest values correspond to top ranked genes. Let X
and Y be the outputs for negative and positive genes, i.e. Z is a mixture of X and Y, represent-

ing by D the indicator variable (D = 0 for negatives and D = 1 for positives). For an arbitrary

threshold c, the following metrics can be defined: true positive rate TPR(c) = P(Y> c) = P(Z>
c | D = 1), false positive rate FPR(c) = P(X> c) = P(Z> c | D = 0), precision Prec(c) = P(D = 1

| Z> c) and recall Recall(c) = P(Y> c). Then:

AUROC ¼
Z � 1

c¼1
TPRðcÞ dFPRðcÞ ð1Þ

pAUROCðpÞ ¼
1

p

Z cp

c¼1
TPRðcÞ dFPRðcÞ where FPRðcpÞ ¼ p 2 ð0; 1Þ ð2Þ

AUPRC ¼
Z � 1

c¼1
PrecðcÞ dRecallðcÞ ð3Þ

Table 2. List of diseases included in this study.

Disease N(genetic) N(drugs) Overlap P-value FDR

allergy 112 57 1 4.22e-01 4.42e-01

Alzheimers disease 208 103 4 1.10e-01 1.42e-01

arthritis 174 188 6 6.08e-02 1.03e-01

asthma 105 80 6 7.77e-05 5.70e-04

bipolar disorder 117 148 3 1.83e-01 2.12e-01

cardiac arrhythmia 75 177 6 9.15e-04 3.36e-03

chronic obstructive pulmonary disease (COPD) 154 116 6 4.18e-03 1.31e-02

coronary heart disease 111 171 4 7.86e-02 1.24e-01

drug dependence 75 143 6 2.96e-04 1.30e-03

hypertension 66 188 2 2.85e-01 3.14e-01

multiple sclerosis 71 167 4 1.83e-02 4.03e-02

obesity 69 194 3 1.06e-01 1.42e-01

Parkinson’s disease 55 145 0 1 1

psoriasis 131 105 7 1.68e-04 9.23e-04

rheumatoid arthritis 138 95 5 5.18e-03 1.42e-02

schizophrenia 410 163 17 5.44e-05 5.70e-04

stroke 90 156 3 1.18e-01 1.44e-01

systemic lupus erythematosus (lupus) 126 109 5 6.30e-03 1.54e-02

type I diabetes mellitus 87 106 3 4.39e-02 8.04e-02

type II diabetes mellitus 130 154 4 9.14e-02 1.34e-01

ulcerative colitis 136 51 7 1.81e-06 3.98e-05

unipolar depression 123 121 4 3.81e-02 7.63e-02

Diseases included in this study, with a minimum of 50 associated genes both in the known drug targets and the genetic categories (see text). The overlap between these

two lists of genes showed a degree of dependence between these two Open Targets data streams for some of the diseases. P-values were calculated using Fisher’s exact

test and are reported without and with correction for false discovery rate [51].

https://doi.org/10.1371/journal.pcbi.1007276.t002
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Note that pAUROC contains a normalising constant 1

p because the partial area is bounded

between 0 and p; the constant allows the metric to lie in [0, 1] again. AUROC, AUPRC and

pAUROC were computed with the precrec R package [57]. We also included top k hits,

defined as the number of true positives in the top k predicted genes (proportional to precision

at k). Given the output of a prioritiser on n genes, z1� z2� z3� . . .� zn:

topðkÞ ¼
Xzk

i¼z1

Di ð4Þ

It is straightforward, intuitive and most likely to be useful in practice, such as a screening

experiment where only a small number of predicted hits can be assayed.

The main body focuses on AUROC, AUPRC and top 20 hits. We considered another 3 met-

rics, reported only in S1 Appendix: partial AUROC up to 5% FPR, partial AUROC up to 10%

FPR, and number of hits within the top 100 genes.

Cross-validation schemes and protein complexes. Standard (stratified) and modified k-

fold cross-validation were used to estimate the performance of the methods. Folds were based

Fig 8. Input gene scores. Two input types were used to feed the prioritisation algorithms: the binary drug scores in panel (A) and the binary genetic scores in panel

(B). In both cases, the validation genes were deemed unlabelled in the input to the prioritisers. Cross-validation folds were always calculated taking into account the

drugs input and reused on the genetic input.

https://doi.org/10.1371/journal.pcbi.1007276.g008
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upon known drugs-related genes, regardless of which type of input was used (see Fig 8). Genes

in the training fold were negatively or positively labelled according to the input type, whereas

genes in the validation fold were left unlabelled.

The direct application of cross-validation to this problem posed a challenge: known drug

targets often consist of protein complexes, e.g. multi-protein receptors. Drug-target associa-

tions typically have complex-level resolution. The drug target data from Open Targets comes

from ChEmbl [58], in which all the proteins in the targeted complex are labelled as targets.

If left uncorrected, this could bias cross-validation results: networks densely connect pro-

teins within a complex, random folds would frequently split positively labelled complexes

between train and validation, and therefore network propagation methods would have an

unfair advantage at finding positives in the training folds. In view of this, we benchmarked the

methods under three cross-validation strategies: a standard cross-validation (A) in line with

usual practice and two (B, C) complex-aware schemes (Fig 9) addressing non-independence

between folds when the known drug targets act as input.

Strategy (A), called classic, was a regular stratified k-fold repeated cross-validation. We

used k = 3 folds, averaging metrics over each set of folds, repeated 25 times (see also Fig 1).

Strategy (B), named block, performed a repeated cross-validation while explicitly prevent-

ing any complexes that contain disease genes to be split across folds. The key point is that, where

involved, shuffling was performed at the complex level instead of the gene level – overlapping

complexes that shared at least one known drug target were merged into a larger pseudo-complex

before shuffling. Fold boundaries were chosen so that no complex was divided into two folds,

while keeping them as close as possible to those that would give a balanced partition, see Fig 9.

Fig 9. Cross-validation schemes. Three cross-validation schemes were tested. (A): standard k-fold stratified cross-validation that ignored the complex structure. (B):

block k-fold cross-validation. Overlapping complexes were merged and the resulting complexes were shuffled. The folds were computed as evenly as possible without

breaking any complex. (C): representative k-fold cross-validation. Overlapping complexes were merged and the resulting complexes from which unique

representatives were chosen uniformly at random. Then a standard k-fold cross-validation was run on the representatives, but excluding the non-representatives from

train and validation.

https://doi.org/10.1371/journal.pcbi.1007276.g009
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Nevertheless, a limitation of this scheme is that it can fail to balance fold sizes in the presence

of large complexes (see Figure I in S1 Appendix). For example, chronic obstructive pulmonary

disease exhibited imbalanced folds, as 50 of the proteins involved belong to the Mitochondrial

Complex I.

Strategy (C), referred to as representative, selected only a single representative or

prototype gene for each complex to ensure that gene information in a complex was not mixed

between training and validation folds. In each repetition of cross-validation, after merging

the overlapping complexes, a single gene from each complex was chosen uniformly at random

and kept as positive. The remaining genes from the complexes involved in the disease were set

aside from the training and validation sets, in order (1) not to mislead methods into assuming

their labels were negative in the training phase, and (2) not to overestimate (if set as positives)

or penalise (if set as negatives) methods that ranked them highly, as they were expected to do

so. This strategy kept the folds balanced, but at the expense of a possible loss of information

by summarising each complex by a single gene at a time, reducing the number of positives for

training and validation.

Additive performance models

For a systematic comparison between diseases, methods, cross-validation schemes and input

types, we fitted an additive, explanatory regression model to the performance metrics of each

(averaged) fold from the cross-validation. The use of main effect models eased the evaluation

of each individual factor while correcting for the other covariates. We modelled each metric f
separately for each input type, not to mix problems of different nature:

f � cv schemeþ networkþmethodþ disease ð5Þ

We fitted dispersion-adjusted logistic-like quasibinomial variance models for the metrics

AUROC, pAUROC and AUPRC and quasipoisson for top k hits. The quasi-likelihood formal-

ism protected against over and under-dispersion issues, in which the observed variance is

either higher or lower than that of the theorical fitted distribution [59], affecting subsequent

statistical tests. The effect of changing any of the four main effects is discussed in separate sub-sec-
tions in Results, following the order from the formula above. After a data-driven choice of cross-

validation scheme and network, we fitted reduced explanatory models within them for a more

accurate description:

f � methodþ disease ð6Þ

Qualitative methods comparison

The rankings produced by the different algorithms were qualitatively compared using Spear-

man’s footrule [60]. Distances were computed between all method ranking pairs for each

individual combination of disease, input type, network and for the top N predicted genes,

excluding the original seed genes. This part does not involve cross-validation – all known dis-

ease-associated genes were used for gene prioritisations. Pairs of rankings could include genes

uniquely ranked highly by a single algorithm from the comparison, so mismatch counts (i.e.

percentage mismatches) between these rankings were also taken into account. Mismatches

occur when a gene features in the top N predictions of one algorithm and is missing from the

corresponding ranking by another algorithm. A compact visualisation of distance matrices

was obtained using a multi-view extension of MDS [61–63]. For this we used the R package

multiview [64] that generates a single, low-dimensional projection of combined inputs (dis-

ease, input and network).
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Supporting information

S1 Appendix. Supplement. This document contains complementary material that supports

our claims in the main body. It includes topics such as descriptive statistics, topological prop-

erties of disease-associated genes, raw metrics plots, method details, MDS plots, alternative

performance metrics and further explanatory models.

(PDF)

S1 File. MDS plots. Complementary single-disease MDS plots and distance matrices.

(ZIP)

S2 File. Interactions HTML viewer. Stand-alone viewer to explore models with interaction

terms.

(ZIP)
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Funding acquisition: Alexandre Perera-Lluna.

Investigation: Sergio Picart-Armada, Steven J. Barrett, David R. Willé, Benoit H. Dessailly.
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