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Abstract

Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial
drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P.
falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills
in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein
translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these
proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination
of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria
whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single
inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.

Citation: Johnson RA, McFadden GI, Goodman CD (2011) Characterization of Two Malaria Parasite Organelle Translation Elongation Factor G Proteins: The Likely
Targets of the Anti-Malarial Fusidic Acid. PLoS ONE 6(6): e20633. doi:10.1371/journal.pone.0020633

Editor: Gordon Langsley, Institut National de la Santé et de la Recherche Médicale Cochin, France
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Introduction

Numerous anti-bacterials are also effective anti-malarials and

are a part of current malaria management programs. For instance,

doxycycline is widely prescribed for malaria chemoprophylaxis [1]

and clindamycin and doxycycline are recommended for use in

ACT therapy in the case of initial treatment failure [2]. Anti-

bacterials typically work by blocking vital prokaryotic processes

such as DNA replication, RNA transcription, protein translation,

or peptidoglycan wall synthesis. The key to the success of anti-

bacterials is that they specifically target the fundamental

differences between these processes in bacteria and the equivalent

processes in humans and other eukaryotes. How anti-bacterials kill

eukaryotic malaria parasites is not well understood. Two malaria

parasite organelles derived from endosymbiotic bacteria, the

mitochondrion and the relict plastid (or apicoplast), are the likely

targets of these compounds.

Mitochondria occur in most eukaryotes and derive from an

alpha proteobacterium that entered into an endosymbiotic

partnership with a host cell at the outset of eukaryotic evolution

[3]. Though much reduced, mitochondria retain clear hallmarks

of their bacterial ancestry, and their housekeeping and metabolic

activities are essentially bacterial in nature. Plastids are typically

the site of photosynthesis in algae and plants and derive ultimately

from endosymbiotic cyanobacteria. A vestigial plastid that lacks

the ability to photosynthesize was identified more than a decade

ago in malaria parasites [4] and is indispensable for parasite

survival [5]. It is now clear that non-photosynthetic plastids occur

in almost all members of the Phylum Apicomplexa, where they are

referred to as apicoplasts. Recently, a photosynthetic apicoplast

was discovered in an apicomplexan symbiont of corals [6],

confirming the hypothesis that the ancestors of apicomplexan

parasites were photosynthetic autotrophs and converted to

parasitism of animals early on in their evolutionary radiation.

Apicoplasts are reminiscent of mitochondria in that they retain

numerous hallmarks of their bacterial ancestry but their metabolic

suite is markedly different, being derived from a different lineage

of bacterial ancestors-the photosynthetic cyanobacteria.

Fusidic acid is a potent, narrow spectrum steroid anti-bacterial

derived from the fungus Fusidium coccineum [7]. It is often used in

conjunction with rifampicin to treat severe Gram-positive bacterial

infections, such as methicillin-resistant Staphylococcus aureus

(MRSA). Fusidic acid targets elongation factor G (EF-G), a

GTPase critical to the translocation step of bacterial protein

synthesis [8]. Fusidic acid binds to EF-G on the ribosome and

prevents the EF-G:GDP complex from leaving the ribosome,

effectively stalling protein synthesis by steric inhibition [9]. Fusidic

acid exhibits anti-Plasmodium activity in vitro [10], but it has never

been utilized as an anti-malarial and nothing is known about its

mode of action.

Both the apicoplast and the mitochondrion apparently maintain

bacterial-style translation machineries that are candidate targets

for fusidic acid. Hard evidence for translation has only been

obtained for the Plasmodium falciparum apicoplast courtesy of an

antibody directed against elongation factor Tu that is encoded on

the apicoplast genome [11]. No such evidence for translation in

malaria parasite mitochondria exists, but assays of their predicted

enzymatic activity suggest that the three proteins encoded by the
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Plasmodium mitochondrial genome are indeed manufactured within

the mitochondria [12]. This evidence is supported by the presence

of ribosomal RNAs [13] and a host of nucleus-encoded bacterial-

like translation components that are targeted to the mitochondrion

[14].

With a view to further defining the likely target of fusidic acid in

malaria parasites, we explore whether either or both of these

organellar translation systems utilize EF-G. Drug trials confirmed

the anti-parasitic activity of fusidic acid but demonstrate different

characteristics to other bacterial translation inhibitors. Searches of

the P. falciparum genome for EF-G encoding genes identified two

candidates. Bioinformatic analysis and protein sequence compar-

isons of the predicted protein sequence indicate that one candidate

gene is of mitochondrial origin and the other is of a plastid origin.

The two gene products localize to the predicted organelles, further

confirming that protein translation is occurring in both the

apicoplast and mitochondria and suggesting that one or both of

these proteins is the target of fusidic acid.

Results

Fusidic acid kills P. falciparum in the first cycle
Most drugs targeting translation in the apicoplast produce a

delayed effect in which the treated parasites grow and replicate

normally for one life cycle following drug treatment, then die after

invading a new blood cell [15,16,17]. To test for this drug response

we determined the IC50 for fusidic acid in in vitro cultures of the P.

falciparum line D10. The IC50 values after one life cycle

(,48 hours) are similar to those previously reported [10] and

only slightly higher than the values found after two cycles

(,96 hours) (Fig. 1A) indicating that fusidic acid’s effects are

immediate. This contrasts with other translation-blocking anti-

bacterials, such as azithromycin, clindamycin and tetracycline,

which exhibit delayed death and have dramatically lower IC50

values at 96 hours compared to 48 hours (Fig. 1A, [15,17]).

Examination of parasite lines exposed to fusidic acid at

concentrations equivalent to the 96 hour IC90 confirmed the

immediate effect. Parasites treated with fusidic acid in early ring

stages failed to progress beyond the early trophozoite stage.

Consistent with this growth arrest is the lack of significant genome

replication and a failure of the organelles to elongate (Fig. 1B).

This contrasts with exposure to ‘‘delayed-death’’ antibiotics, where

treatments with drug concentrations well in excess of the IC90

show no effect on parasite or organellar development during the

first 48 hours of drug treatment [15,17]. It was interesting to note

that many of the fusidic acid treated parasites remained within the

red blood cell after 48 hours of treatment but were no longer

detectable by confocal microscopic examination after a further

48 hours and no nuclear division or merozoite formation was

observed during this period. The progressive loss of drug-killed

parasites may account for the slight reduction in IC50 values

between 48 and 96 hours, as the assay used does not differentiate

between live parasites and those dead and dying parasites

remaining within the red blood cell.

P. falciparum encodes two EF-G proteins of bacterial
ancestry

Searches of the P. falciparum genome identified two candidate

EF-G encoding genes (PFL1590c and PFF0115c) both of which

contain GTPase domains. PFL1590c encodes a protein of 803

amino acids that, excluding apicomplexan orthologues, is most

similar to the EF-G encoding (fusA) gene of the delta proteobacter-

ium Myxococcus xanthus (Genbank accession NC_008095.1) with

which it shares 42 % amino acid identity. PFF0115c encodes a

protein of 937 amino acids that, excluding apicomplexan

orthologues, is most similar to the EF-G encoding (fusA) gene of

the actinobacterium Nocardioides sp. (Genbank accession

NC_008699.1), with which it shares 46 % amino acid identity.

The presence of two bacterium-like EF-G proteins in P. falciparum

is suggestive of an organellar localisation for these proteins and is

consistent with the parasites sensitivity to fusidic acid.

Alignments of putative P. falciparum nucleus-encoded
EF-G proteins reveals that the two proteins are distinct

We aligned the two P. falciparum EF-G protein sequences with

characterised and predicted EF-G sequences from other apicom-

plexans, algae, higher plants, insects and mammals. We also

included the sequence of the previously crystallised Thermus

thermophilus EF-G [18] as a reference for structural features.

Accession numbers for protein sequences used in the alignment

are listed in Table S1.

The alignment of the GTPase domains of these proteins defines

two distinct groups, with a number of amino acids conserved

within each group but differing between the two (Fig. 2Ai, blue

and green boxes). The smaller of the putative P. falciparum EF-Gs

(PFL1590c) and other predicted mitochondrial EF-Gs clearly

group with eukaryotes that do not contain a plastid (i.e. human

and Anopheles mosquito) and with the EF-G localised to the

mitochondria in higher plants [19,20]. The larger of the two PfEF-

Gs (PFF0115c) groups with the plastid-localised EF-G from higher

plants [21,22] and the predicted plastid EF-Gs from other

organisms (Fig. 2Ai). The grouping of the mitochondrial and

plastid EF-Gs is also evident in alignments of other portions of the

protein (Fig. 2A ii, iii), although the overall amino acid

conservation in these regions is much lower making the

associations less obvious. Indeed, in several instances, specific

amino acids are conserved in all EF-Gs except the Plasmodium

proteins. The grouping of EF-Gs in our alignment correlates with

a recently published phylogenetic analysis of bacterial and

organellar EF-Gs, which concluded that the phylogenetic signal

for the apicomplexan EF-Gs is too weak to draw detailed

conclusions about their relationships to other EF-Gs beyond the

organellar origin. [23]

To gain insight into the possible targets of fusidic acid in P.

falciparum, we compared the conservation of amino acids known to

confer fusidic acid resistance in various bacteria. These amino

acids occur in three areas of the protein corresponding to

Figure 2A i, ii and iii [24]. Amino acid residues identified as

interacting with fusidic acid in crystallographic studies [25] are

largely conserved in all EF-Gs examined, particularly in the

GTPase domain (Fig. 2A i, ii black arrows). While several of the

fusidic acid interacting amino acids in P. falciparum differ from the

bacterial residues in the second region, none of the changes

correspond to those conferring resistance. They do suggest

differences between plastid-localised and mitochondrial EF-Gs

(T437-starred) and unique amino acids in the Plasmodium EF-Gs

(H458, R465-starred).

Other residues that have been correlated with resistance or

hypersensitivity but do not interact directly with fusidic acid are

highlighted with red and blue arrows, respectively. There is less

conservation among these residues than those directly interacting

with fusidic acid, but the pattern of conservation in these amino

acids is similar to the fusidic acid interacting residues. There are

several differences highlighting the separation of mitochondrial

and plastid EF-Gs (D109 and E119, starred) and of the Plasmodium

EF-Gs and all others (P436, M450, G617 – starred). Only one

difference suggests enhanced resistance; the amino acid methio-

nine 453 (black pound sign) is altered in the putative P. falciparum

Two Malaria Parasite Elongation Factor G Proteins

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20633



mitochondrial EF-G to an isoleucine residue that confers limited

(4-fold) resistance in Staphylococcus aureus [26].

Bioinformatic analyses suggest that PFL1590c is a
mitochondrial-targeted protein and that PFF0115c is an
apicoplast-targeted protein

Nucleus encoded organelle-targeted proteins typically contain

an N-terminal targeting peptide that directs them either to the P.

falciparum mitochondrion [27] or apicoplast [28]. Alignment of the

two putative EF-G proteins encoded by the P. falciparum genes

PFL1590c and PFF0155c with EF-G from the bacterium T.

thermophilus indicated that both malaria parasite proteins bear N-

terminal extensions (Fig. 2B). The 44 amino acid N-terminal

extension (Fig. 2B green box) of the PFL1590c protein was

designated by the Plasmodium mitochondrial-targeting prediction

program PlasMit [27] to be a likely mitochondrial targeting

peptide (Table S2). The 103 amino acid N-terminal extension of

PFF0115c (Fig. 2B blue box) is predicted to contain both a signal

peptide and a transit peptide by the Plasmodium apicoplast targeting

prediction program PlasmoAP [29], so PFF0115c is likely an

apicoplast-targeted protein (Table S2).

PFL1590c is a nucleus-encoded mitochondrial-targeted
EF-G protein involved in P. falciparum mitochondrial
translation

To provide insight into the localisation of PFL1590c, we

transfected D10 parasite lines with constructs containing this

putative EF-G fused to a 3x hemagglutinin (HA) tag at the C-

terminus and driven by the 59 region of PfHSP86, which we call

MitoEFG-HA (Fig. 3A). Western blot analysis of the transgenic

parasites confirmed expression of the recombinant protein. A

single band of ,96 kDa was detected, which matches the size of

Figure 1. Fusidic acid kills malaria parasites within the first life cycle. A. Parasiticidal activity of fusidic acid on in vitro cultured erythrocyte
stages of Plasmodium falciparum. Fusidic acid kills parasites with an IC50 of 52.8 mM (S.E. 2.5, n = 3) after 48 hours (one life cycle). After drug treatment
over two erythrocytic cycles, the IC50 of fusidic acid (36.6 mM S.E. 2.4, n = 3) is not significantly lower as compared the difference seen for azithromycin
(14.4 mM (+/20.85) v. 0.0750 mM (+/2.015), n = 3); death of malaria parasites is immediate and not delayed. B. Synchronised ring-stage parasites
expressing RFP targeted to the apicoplast (red) and YFP targeted to the mitochondria (green) were exposed to i) 80 mM of fusidic acid (IC90) or left
untreated ii) for 40 hours, the nuclei were stained with Hoescht 33342 (blue) and viewed by confocal laser microscopy.
doi:10.1371/journal.pone.0020633.g001

Two Malaria Parasite Elongation Factor G Proteins

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e20633



PFL1590c protein with its putative transit peptide and a 3x-HA

tag (Fig. 3B). Transit peptides are usually removed after trafficking

to the mitochondria and the slight mass anomaly may be due to

small differences in predicted and observed molecular mass that

are not unusual in polyacrylamide gel electrophoresis.

Immunofluorescence analysis of parasites expressing this

episome revealed that the MitoEFG-HA fusion protein is localised

to the P. falciparum mitochondrion (Fig. 3C). MitoTracker labelling

of the mitochondrion co-localised with staining of the MitoEFG-

HA protein. Both MitoTracker labelling and antibody staining of

the MitoEFG-HA protein reveal a large, crescent shaped organelle

characteristic of the P. falciparum mitochondrion during the late

trophozoite stage of the parasite’s asexual cycle [22].

To confirm that the organelle containing PFL1590c is the

mitochondrion, we compared the localisation of the MitoEFG-HA

fusion protein with the apicoplast resident acyl carrier protein

(ACP) [28]. The signal from the HA tagged protein clearly

localises to an intercellular compartment distinct from the

apicoplast (Fig. 3D), further confirming that PFL1590c is a

nucleus-encoded EF-G protein targeted exclusively to the P.

falciparum mitochondrion.

PFF0115c is a nucleus-encoded apicoplast-targeted EF-G
protein involved in P. falciparum apicoplast translation

Bioinformatic analysis revealed that PFF0115c has all the

characteristics of a nucleus-encoded apicoplast-targeted protein.

To localise PFF0115c, we transfected constructs containing this

putative EF-G fused to a C-terminal GFP in a construct driven by

the 59 region of PfHSP86, which we called ApicEFG-GFP

(Fig. 4A). Western blot analysis of parasites expressing ApicEFG-

GFP showed a band of between 120 and 160 kDa in mass. This

corresponds reasonably well with the predicted molecular mass of

Figure 2. Bioinformatic analysis of P. falciparum EF-Gs. A. Sequence alignment of Plasmodium falciparum EF-G proteins, selected eukaryotic EF-
Gs and the previously crystallised EF-G from the bacterium Thermus thermophilus. Only the three regions known to carry fusidic acid resistance
mutations are shown. Red boxes indicate amino acids conserved across all EF-Gs. Blue and dark green boxes highlight amino acids conserved within
the mitochondrial or plastid EF-Gs, respectively. Light green, orange and pink boxes indicate amino acids conserved in all but the Plasmodium EF-Gs,
Plasmodium mitochondrial EF-Gs and Plasmodium apicoplast EF-Gs, respectively. Arrows indicate amino acids known to be involved in fusidic acid
activity. Black arrows indicate amino acids that directly interact with fusidic acid. Red and blue arrows indicate amino acids that do not interact
directly with fusidic acid but whose mutation can cause resistance and hypersensitivity, respectively. Stars indicate residues that differ between
mitochondrial and plastid EF-Gs. The pound sign indicates the only residue in P. falciparum mitochondrial EF-G in which the wild type amino acid may
confer resistance to fusidic acid. Assignment of EF-Gs to cellular location is based on published studies for A.thaliana [20,22], H. sapiens [41] and O.
sativa [21,23] and bioinformatic analysis of targeting sequences for the other proteins. B. Sequence alignment of the N-terminal region of the EF-Gs
from P. falciparum and T. thermophilus. Red boxes indicate areas of homology between the three proteins. Blue and green boxes highlight the N-
terminal extensions of the two P. falciparum proteins used to predict protein targeting.
doi:10.1371/journal.pone.0020633.g002
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the apicoplast EF-G protein fused to GFP (126.3 kDa). Some

highly expressed apicoplast-targeted proteins show a second,

larger product that corresponds to a preprocessed form of the

protein that retains the apicoplast transit peptide while transiting

to the apicoplast [30]. No such product was noted on the Western

Blot (Fig. 4B). This is not unusual and likely results from the low

levels of recombinant protein expression in this experiment.

Immunofluorescence assays on parasites expressing the Api-

cEFG-GFP episome in conjunction with ACP as an apicoplast

marker [28] reveal that PFF0115c is indeed localised to the P.

falciparum apicoplast (Fig. 4C). Both ACP antibody labelling and

ApicEFG-GFP fluorescence revealed a dot-like organelle in the

parasite, characteristic of the apicoplast in ring stage parasites

during the asexual cycle [31]. These data confirm that the gene

annotated as PFF0115c is a nucleus-encoded EF-G protein

targeted to the P. falciparum apicoplast.

Discussion

We have shown that fusidic acid, an anti-bacterial that stalls

bacterial protein translation by binding to EF-G, kills malaria

parasites with an IC50 of 52.8 mM. This inhibitory concentration

falls within the range seen for other bacterial translation inhibitors

when applied for only a single plasmodium life cycle [15,17],

although it is much higher than that seen after prolonged exposure

of those compounds causing the delayed-death effect [15,16,17]. It

is also too high for fusidic acid itself to be an effective drug.

However, fusidic acid has only an immediate effect, suggesting that

this compound kills Plasmodium via a different mechanism that the

delayed-death anti-bacterials and may present an effective lead

compound for drug development. The inhibitory concentration of

any compound reflects many factors, including differences in their

ability to come in contact with the target molecule, affinity for the

site of action and the ability of the inhibitor to block target activity.

All of these factors may be contributing to the IC50 of fusidic acid

against P. falciparum and need to be optimised during further drug

development. Determining the specific target of fusidic acid is an

important first step in assessing these factors in a systematic way.

Two candidate EF-G proteins that may be fusidic acid targets

were identified and localised (Fig. 2–4). Bioinformatic analysis is

consistent with these proteins having been introduced as

endosymbiont-derived genes that are now located in the parasite

nucleus. One EF-G is localised in the parasite mitochondrion, and

the second is localised to the relict plastid or apicoplast (Fig. 3,4).

Comparisons between primary protein structure of the apicoplast

and mitochondrial EF-Gs and sensitive bacterial EF-G proteins

suggests that the apicoplast localised EF-G is sensitive to fusidic

acid while the mitochondrial EF-G carries a single amino acid

residue that confers a weak resistance phenotype in S. aureus

(Fig. 2,[26]). Although this finding implies that the P. falciparum

mitochondrial EF-G may be resistant to fusidic acid, differences

between the bacterial and Plasmodium mitochondrial EF-Gs at

other conserved positions makes it difficult to draw specific

conclusions about the sensitivity of the P. falciparum mitochondrial

EF-G to fusidic acid from this single amino acid change without

further investigation. A further possibility is that fusidic acid acts

by targeting a mechanism unrelated to organellar protein

synthesis, but the two EF-Gs identified here represent the most

likely targets and require further investigation.

The identification of two nucleus-encoded, organelle localised

EF-Gs that could be the target of the same inhibitor presents

unique opportunities for the investigation of the effects of organelle

specific drugs and in the development of novel anti-malarials. For

almost all anti-bacterial compounds currently in use, the target (or

predicted target) is encoded on the genome of at least one of the

organelles [15,17,32] making them refractory to genetic manip-

Figure 3. P. falciparum EF-G PFL1590c localises to the mitochondrion. A. PFL1590c was fused to a 3x-HA tag to create the construct MitoEFG-
HA. B. Western blot analysis of D10 parasites expressing MitoEFG-HA reveals a single band at ,96 kDa, approximately the mass of the PFL1590c
protein fused to a 3x-HA tag. C. An immunofluorescence assay on D10 parasites expressing MitoEFG-HA reveals that PFL1590c is localised to the P.
falciparum mitochondrion. MitoEFG-HA (green) co-localises with MitoTracker labelling of the mitochondrion (red). DNA stained with Hoescht 33342
(blue). D. An immunofluorescence assay on the MitoEFG-HA expressing parasites counterstained with the ACP antibody as an apicoplast marker [29].
MitoEFG-HA protein localises to the typically elongated mitochondrion (green), but does not co-localise with the punctate apicoplast (red). DNA
stained with Hoescht 33342 (blue).
doi:10.1371/journal.pone.0020633.g003
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ulation and difficult to investigate. The presence of nucleus-

encoded EF-Gs in both the mitochondrion and apicoplast provides

the opportunity to use known bacterial resistance mutations to

dissect the effects of specifically blocking protein synthesis in each

organelle. It also presents the possibility of developing novel

compounds that target EF-G in both organelles, thereby yielding a

single anti-malarial compound that could have all the advantages

of a multi-drug therapy in terms of avoiding drug resistance.

Materials and Methods

Fusidic acids drug trials
Drug trials on P. falciparum line D10, were performed as

previously described [17]. Parasitemia was assessed using a

modified version [17] of the SYBR-Green assay [33]. Inhibitory

concentrations were calculated using the Hill-Slop method

available in SigmaPlot (Systat software).

Bioinformatic analysis of EF-G in P. falciparum
Protein sequences of the putative mitochondrial EF-G,

PFL1590c, and the putative apicoplast EF-G, PFF0115c, were

obtained from the Plasmodium Genome Resource (www.plasmodb.

org) as were sequences for putative homologs from Plasmodium

berghei. Sequences for the putative Toxoplasma gondii EF-G proteins

were retrieved using BLAST searches [34] of the Toxoplasma

Genome Resource (www.toxodb.org). All other sequences were

retrieved by text or BLAST searches of GenBank (www.ncbi.nlm.

nih.gov) . Alignments were performed and visualised using

ClustalX [35]. Accession numbers of EF-G sequences used are

included in Table S1. Analysis of N-terminal targeting information

was carried out using the Plasmodium targeting prediction programs

Plasmit [27] and PlasmoAP [29].

Cloning of PFL1590c and PFF115c localisation constructs
Constructs were created using the MultiSite Gateway systemTM

(Invitrogen), as previously described [31]. The complete predicted

open reading frames of PFL1590c and PFF0115c gene were

amplified from P. falciparum genomic DNA using the primers

shown in Table S3, with attB1 and attB2 sites underlined for the

sense and antisense primer, respectively. The PCR products were

recombined into the vector pDONR221 according to the

manufacturer’s instructions (Invitrogen) and fully sequenced.

These vectors were then recombined via LR reaction (Invitrogen)

to create a C-terminal GFP-tagged PFF0115c construct driven by

the PfHSP86 59 UTR (which we called ApicEFG-GFP) and a C-

terminal 3x hemagglutinin (HA)-tagged PFL1590c construct

driven by the PfHSP86 59 UTR (which we called MitoEFG-

HA). Both constructs carried a human DHFR expression cassette

conferring resistance the drug WR99210 [36].

Parasite Lines and Transfection
Parasites were grown as previously described [37]. The D10

parasite line was used for all transfections. D10 parasites

expressing apicoplast- targeted RFP and mitochondrial-targeted

YFP [31] were used for microscopic analysis of drug treatment

effects. Transfection of MitoEFG-HA and ApicEFG-GFP plas-

mids into P. falciparum was performed as previously described

[38,39]. Cultures were split 2:1 14 and 28 days post transfection,

yielding drug resistant parasites within 20–30 days.

Western Blotting
Western blots were performed as previously described [40].

Mouse anti-HA primary antibody was diluted 1/500, and anti-

mouse HRP secondary antibody was diluted 1/5000. Rabbit anti-

GFP primary antibody was diluted 1/500, and anti-rabbit HRP

secondary antibody was diluted 1/5000.

Immunofluorescence assays
Immunofluorescence assays were performed as previously

described [39]. For Mitotracker labelling of the P. falciparum

mitochondrion, cells were incubated in 20 nM MitoTracker Red

(Molecular Probes) diluted in 0/100 RPMI-HEPES medium for

15 mins at 37uC. Cells were washed in 0/100 medium, prior to

Figure 4. P. falciparum EF-G PFF0115c localises to the apicoplast. A. PFF0115c was fused to a C-terminal GFP tag to create the construct
ApicEFG-GFP. B. Western blot analysis of D10 parasites expressing ApicEFG-GFP reveals a single band at approximately the predicted molecular mass
of the PFF0115c protein attached to a GFP tag. C. An immunofluorescence assay on D10 parasites expressing ApicEFG-GFP reveals that PFF0115c is
localised to the P. falciparum apicoplast. ApicEFG-GFP (green) co-localises with ACP labelling of the apicoplast (red), and shows the dot-like organelle
typical of the P. falciparum apicoplast during the ring stage of the asexual cycle [23]. DNA stained with Hoescht 33342 (blue).
doi:10.1371/journal.pone.0020633.g004
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fixation and labelling. Rat anti-HA primary antibody (Roche) was

diluted 1/200. Anti-rat antibody conjugated to Alexafluor 488

(Molecular Probes) was diluted 1/1000. Rabbit anti-ACP antibody

[30] was diluted 1/1000, as was anti-rabbit antibody conjugated to

Alexafluor 546 (Molecular Probes).

Supporting Information

Table S1 Primers used for amplication of PFL1590c and
PFF0115c from P. falciparum gDNA.
(DOC)

Table S2 Targeting predictions for leaders of PFL0159c
and PFF0115c.
(DOC)

Table S3 Accession numbers of protein sequences used
in alignments.

(DOC)
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