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Cryptococcus species are life-threatening human fungal pathogens that cause

cryptococcal meningoencephalitis in both immunocompromised and healthy hosts. The

natural environmental niches of Cryptococcus include pigeon (Columba livia) guano,

soil, and a variety of tree species such as Eucalyptus camaldulensis, Ceratonia siliqua,

Platanus orientalis, and Pinus spp. Genetic and genomic studies of extensive sample

collections have provided insights into the population distribution and composition of

different Cryptococcus species in geographic regions around the world. However, few

such studies examined Cryptococcus in Turkey. We sampled 388 Olea europaea (olive)

and 132 E. camaldulensis trees from seven locations in coastal and inland areas of the

Aegean region of Anatolian Turkey in September 2016 to investigate the distribution

and genetic diversity present in the natural Cryptococcus population. We isolated

84 Cryptococcus neoformans strains (83 MATα and 1 MATa) and 3 Cryptococcus

deneoformans strains (all MATα) from 87 (22.4% of surveyed) O. europaea trees; a total

of 32 C. neoformans strains were isolated from 32 (24.2%) of the E. camaldulensis trees,

all of which wereMATα. A statistically significant difference was observed in the frequency

of C. neoformans isolation between coastal and inland areas (P < 0.05). Interestingly, the

MATa C. neoformans isolate was fertile in laboratory crosses with VNI and VNB MATα

tester strains and produced robust hyphae, basidia, and basidiospores, thus suggesting

potential sexual reproduction in the natural population. Sequencing analyses of the

URA5 gene identified at least five different genotypes among the isolates. Population

genetics and genomic analyses revealed that most of the isolates in Turkey belong to

the VNBII lineage of C. neoformans, which is predominantly found in southern Africa;
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these isolates are part of a distinct minor clade within VNBII that includes several isolates

from Zambia and Brazil. Our study provides insights into the geographic distribution of

different C. neoformans lineages in the Mediterranean region and highlights the need

for wider geographic sampling to gain a better understanding of the natural habitats,

migration, epidemiology, and evolution of this important human fungal pathogen.

Keywords: Cryptococcus neoformans, natural isolates, Turkey, genetic diversity, population, evolution

INTRODUCTION

Cryptococcosis is a potentially lethal disease, especially in
immunocompromised hosts, around the world. It is caused by
environmental encapsulated yeasts belonging to the Cryptococcus
genus, including the C. neoformans and C. gattii species
complexes (Hagen et al., 2015; Kwon-Chung et al., 2017). C.
neoformans has been mainly recovered from pigeon (Columba
livia) droppings, urban environments, and soil (Lin and
Heitman, 2006; May et al., 2016). In addition, it has been isolated
from various tree species (Ellis and Pfeiffer, 1990; Randhawa
et al., 2008, 2011; Cogliati et al., 2016a,b). Following the first
report of C. gattii isolation from trees in Australia (Ellis and
Pfeiffer, 1990), many studies have confirmed the environmental
association of Cryptococcuswith plants in different climatic zones
(Granados and Castañeda, 2005, 2006; Randhawa et al., 2008,
2011; Bedi et al., 2012; Chowdhary et al., 2012). Several studies
have characterized the properties of these yeasts that contribute
to the colonization of new environmental niches (Granados and
Castañeda, 2006; Randhawa et al., 2008; Ergin and Kaleli, 2010;
Ergin et al., 2014; Sengul et al., 2019). With the exception of
iatrogenic (Baddley et al., 2011) and zoonotic (Nosanchuk et al.,
2000; Lagrou et al., 2005; Singh et al., 2018) cases, Cryptococcus
infection is caused by the inhalation of airborne basidiospores
or desiccated yeast cells from the environment (Hull et al.,
2005; Lin and Heitman, 2006; Velagapudi et al., 2009; Springer
et al., 2013; May et al., 2016), emphasizing the importance
of identifying the natural reservoirs of C. neoformans and the
molecular links between environmental and clinical isolates and
their association with disease (Litvintseva et al., 2005; Chen et al.,
2015; Kangogo et al., 2015; Noguera et al., 2015; Spina-Tensini
et al., 2017). In a recent study, MLST analysis revealed that some
C. neoformans genotypes (especially ST63) in Mediterranean
countries may be genetically linked (Cogliati et al., 2019). In
the environment, the most prevalent mating type is MATα

(Kwon-Chung and Bennett, 1978).
Most areas colonized by C. neoformans are characterized

by the presence of several trees, including 4 dominant species:
Eucalyptus camaldulensis (Mahmoud, 1999; Bernardo et al.,
2001; Campisi et al., 2003; Ergin et al., 2004; Mseddi et al.,
2011; Romeo et al., 2011, 2012; Colom et al., 2012; Gokçen
and Ergin, 2014; Cogliati et al., 2016a,b; Elhariri et al., 2016;
Ellabib et al., 2016), Ceratonia siliqua (Colom et al., 2012; Romeo
et al., 2012; Cogliati et al., 2016a), Olea europaea (Cogliati
et al., 2016a; Ellabib et al., 2016), and Pinus spp. (Cogliati
et al., 2016a,b). Further, studies have described numerous woody
plants colonized by C. neoformans in the Mediterranean region

(Mahmoud, 1999; Bernardo et al., 2001; Campisi et al., 2003;
Ergin et al., 2004; Mseddi et al., 2011; Romeo et al., 2011, 2012;
Colom et al., 2012; Gokçen and Ergin, 2014; Cogliati et al.,
2016a,b; Elhariri et al., 2016; Ellabib et al., 2016). Cryptococcus
neoformans tree colonization has been observed in northern
Mediterranean countries such as Spain (Colom et al., 2012;
Cogliati et al., 2016a), Portugal (Bernardo et al., 2001; Ferreira
et al., 2014; Cogliati et al., 2016a), France (Cogliati et al., 2016a,b),
Italy (Campisi et al., 2003; Romeo et al., 2011, 2012; Cogliati
et al., 2016a,b), Greece (Cogliati et al., 2016a,b), and Turkey
(Ergin et al., 2004; Ergin, 2010; Ergin and Kaleli, 2010; Gokçen
and Ergin, 2014; Cogliati et al., 2016a,b; Sengul et al., 2019),
as well as in the northern parts of Cyprus (Cogliati et al.,
2016a), Libya (Cogliati et al., 2016a; Ellabib et al., 2016), Tunisia
(Mseddi et al., 2011), and Egypt (Mahmoud, 1999; Elhariri et al.,
2016). The olive tree is one of the oldest known cultivated
trees in the world and is grown in the entire Mediterranean
basin mostly for commercial reasons (Uylaşer and Yildiz, 2014).
Although the Olea genus is distributed throughout Europe, Asia,
Oceania, and Africa, only O. europaea is a cultivated species, and
recent studies have reported colonization of O. europaea with C.
neoformans in Spain (Cogliati et al., 2016a) and Libya (Ellabib
et al., 2016).

In this study, we screened O. europaea and E. camaldulensis
trees in southwestern Anatolia for Cryptococcus spp. The
isolates we recovered were genotypically diverse, including
both mating types. Additionally, whole genome sequencing and
phylogenomic analyses showed that most of the isolates in
Turkey belong to the VNB lineage of C. neoformans and are
closely related to isolates from Zambia and Brazil. Our studies
provide insight into the global distribution, epidemiology, and
evolution of this important human fungal pathogen.

MATERIALS AND METHODS

Study Areas
Samples were taken in September 2016 from seven areas along
the Aegean coastal line of Anatolia, Turkey to screenO. europaea
and E. camaldulensis trees for Cryptococcus spp. (Figure 1).
Geospatial characteristics of each sampling area, including
climate and geographical coordinates, are presented in Table 1.

Sampling of E. camaldulensis (tree symbol in Figure 1) were
conducted in southwestern Mediterranean coast of Turkey, near
the village of Gokova, from trees which were previously shown
to be colonized by C. neoformans (Ergin et al., 2004; Ergin,
2010). This area was sampled again to evaluate the current yeast
colonization status and mating type distribution.
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FIGURE 1 | Distribution of trees with Cryptococcus neoformans (orange) and C. deneoformans (blue) colonization and uncolonized (unshaded) trees in Aegean

Anatolia, Turkey. The tree symbol designates the region where C. neoformans is recurrently isolated from Eucalyptus camaldulensis.

Sampling, Culture, and Conventional
Identification of C. neoformans
In total, 388 typical old O. europaea and 132 old E. camaldulensis
trees from the Mediterranean part of Western Turkey were
screened in the study. Tree trunks were randomly sampled
by rubbing with a sterile cotton-tipped swab, as described
by Randhawa et al. (2005). The swabs were soaked in
3mL sterile saline containing chloramphenicol (10 mg/L)
and transferred to the laboratory at 26◦C within 48 h. After
vortexing, swabs were removed, and samples were left to
sediment for 30min. Then, undiluted sample supernatants (100
µL) were used to inoculate Staib agar plates containing 0.5%
(w/v) biphenyl. The plates were incubated at 26◦C for 10
days, and moist, characteristically brown-pigmented colonies

were analyzed for parameters conventionally used to identify
C. neoformans, including urea hydrolysis, nitrate reduction,
phenoloxidase production, growth at 37◦C, and negative reaction
on L-canavanine-glycine-bromothymol blue medium (Table S1).

Genomic DNA Extraction, Polymerase
Chain Reaction (PCR) Amplification, and
DNA Sequencing
All isolates were collected directly from yeast-peptone-dextrose
(YPD; Difco, Detroit, MI) agar plates after the second passage.
Genomic DNA was extracted using the MasterPure yeast
DNA purification kit (Epicenter Biotechnologies, Madison, WI)
according to the manufacturer’s instructions.
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TABLE 1 | Geographical characteristics of sampling regions.

Region Location areaa Distance from sea (mean, km) Screened sampling area (km2)b Temperaturec Precipitationc

I 39◦17′ N, 26◦38′ E 0–5, Coastal area 120 26.9 8

II 38◦42′ N, 26◦49′ E 0–5, Coastal area 150 23.3 6

III 38◦41′ N, 27◦40′ E ∼50 200 23.6 7

IV 37◦51′ N, 27◦30′ E ∼20 350 23.0 5

V 37◦52′ N, 28◦12′ E ∼80 400 23.9 3

VI 37◦10′ N, 27◦51′ E 0–5, Coastal area 350 25.2 5

VII 37◦02′ N, 27◦87′ E 0–5, Coastal area 160 24.9 3

37◦01′ N, 28◦36′ E 0–5, Coastal area 10 24.6 3

aCenter of sampling areas (QGIS, Ver 2.18.20, GPL).
bSampled area (QGIS, Ver 2.18.20, GPL).
cClimate data (https://sites.ualberta.ca/~ahamann/data/climateeu.html).

The species identity and mating type of C. neoformans
isolates were analyzed by PCR using primers specific for
internal transcribed spacer (ITS) and STE20 genes, respectively
(Table S2). PCR assays were conducted in a PTC-200 automated
thermal cycler in a total reaction volume of 25 µL containing
300 ng of template DNA, 10 pM of each primer, 2mM of each
dNTP, 2.5 µL of 10× Ex Taq buffer, 0.25 µL of ExTaq polymerase
(Takara, Shiga, Japan), and an appropriate volume of distilled
water. The following cycling conditions were used for PCR with
ITS1 and ITS4 primers: initial denaturation at 94◦C for 5min,
followed by 36 cycles of denaturation at 94◦C for 1min, annealing
at 57◦C for 1min, and extension at 72◦C for 1min, with a final
extension at 72◦C for 10min. For PCR with Aa, Aα, and Dα

mating-type primers, cycling conditions were as follows: 95◦C for
6min, followed by 36 cycles at 95◦C for 45 s, 60◦C for 45 s, and
72◦C for 90 s, and a final extension step at 72◦C for 6min. For
amplification using Damating-type primers, the cycling protocol
was as follows: 95◦C for 6min, followed by 30 cycles at 95◦C for
45 s, 50◦C for 45 s, and 72◦C for 90 s, and a final extension step at
72◦C for 6min. Sterile water was used instead of DNA in negative
control samples. Congenic C. neoformans strains H99 (VNI-Aα)
and KN99a (Aa), andC. deneoformans strains JEC20 (VNIV-Da),
and JEC21 (VNIV-Dα) were used as positive controls in each
assay. PCR products were analyzed on 1% agarose gels.

The ORF of the URA5 gene was amplified using the following
primers: 5′-GTGCCCGATAACATCTGCGA-3′ (forward) and
5′-TGGTATGTACTGGGGCAGTGA-3′ (reverse). PCR products
were purified and sequenced as previously described (Sun et al.,
2012, 2014). Alignment of the URA5 sequences was conducted
using program ClustalX (Larkin et al., 2007).

To sequence the ITS region, amplified products were purified
using the QIAquick PCR Purification Kit (Qiagen, Germantown,
MD) as recommended by the manufacturer. Both DNA strands
were sequenced using the BigDye Terminator v. 3.1 cycle
sequencing ready reaction mix (Applied Biosystems, Foster City,
CA) in an ABI 3130 automated sequencer (Applied Biosystems).
Sequences were assembled using the Sequencher 4.8. software
(Gene Code Corporation, Ann Arbor, MI).

Mating Assay
Each of the study strains were tested for the ability to mate
and compared to the reference C. neoformans strains H99

(VNI-MATα) and KN99a (VNI-MATa) using mating assays
as described previously (Sun et al., 2019). Mating abilities for
the MATa and MATα strains derived from isolate AD215
(AD215-D1 and AD215-D2) were also tested in crosses between
themselves, as well as with the tester strains H99 and Bt63 (VNBI-
MATa). Mating assays were carried out at 25◦C in the dark for 2
weeks (Idnurm and Heitman, 2005; Li et al., 2012). Hyphae and
basidiospore formation were assessed by light microscopy every
other day (Figure 2).

Genome Sequencing and Phylogenomic
Analyses
Whole genome sequences were generated for 9 isolates (AD116,
AD119, AD129, AD130, AD131, AD132, AD161, AD215-
D1, and AD215-D2). Whole genome sequencing libraries
were constructed using the Illumina Nextera XT protocol
and sequenced on a HiSeqX, generating 150 base-paired
end reads (accessible in the NCBI SRA under BioProject
PRJNA533587). For SNP calling, reads were downsampled
to ∼130X sequence depth using Samtools view. Data from
a large population survey of 387 isolates (Desjardins et al.,
2017), from a Zambian collection (Vanhove et al., 2017) and
of VNB isolates from Brazil (Rhodes et al., 2017) were also
included. For this set of 446 isolates, reads for each isolate
were aligned to the C. neoformans H99 assembly (GenBank
accession GCA_000149245.2) using BWA-MEM version 0.7.12
(Li, 2013). Variants were then identified using GATK version
3.4 (McKenna et al., 2010). Briefly, indels were locally realigned,
haplotypeCaller was invoked in GVCF mode with ploidy = 1,
and genotypeGVCFs was used to predict variants in each strain.
All VCFs were then combined and sites were filtered using
variant filtration with QD < 2.0, FS > 60.0, and MQ < 40.0.
Individual genotypes were filtered if the minimum genotype
quality was <50, percent alternate allele was <0.8, or depth
was <10.

For phylogenetic analysis, the 1,269,132 sites with an
unambiguous SNP in at least one strain and ambiguity in ≤10%
of strains were concatenated, and insertions or deletions at these
sites were treated as ambiguous to maintain the alignment.
Phylogenetic trees were estimated using FastTreeDP v 2.1.8 with
parameters -gtr and -nt.
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FIGURE 2 | Successful mating between natural MATa and MATα isolates of Cryptococcus neoformans. Top: Images of solo cultures of a MATa colony of strain

AD215-D1 and MATa tester strain Bt63; left: images of solo cultures of a MATα colony from strain AD215-D2 and MATα tester strain H99. All images of solo cultures

were taken with 10× magnification. Images of pairwise mating between MATa and MATα strains are shown within the 2×2 grid: left, 10× magnification; right, 20×

magnification. All crosses were carried out on MS medium.

Statistical Analysis
Data were analyzed by Chi-square test using the Epi InfoTM

Stat Calc software (v. 7.2.1.0; Centers for Disease Control and
Prevention, Atlanta, GA). A 2-tailed P ≤ 0.05 was considered to
indicate statistical significance.

RESULTS

Environmental Parameters Characterizing
the Sampling Regions
In the current study, samples were collected from seven
geographic locations in Anatolia, including four coastal regions
(I, II, VI, and VII in Figure 1), and three inland areas (III, IV,
and V in Figure 1). During the sampling period (September
2016), the mean temperature and humidity were higher in the
coastal than in the inland regions (25.3◦C vs. 23.5◦C and 5.5 vs.
5.0mm, respectively).

All seven sampling regions are located within the natural
propagation area of O. europea (Uylaşer and Yildiz, 2014)
with the typical “macchia” vegetation within the Mediterranean
climate (Colom et al., 2012).

Both Mating Types Are Present in Natural
C. neoformans Isolates From Turkey
In the Aegean region of Anatolia, C. neoformans (n = 84) and
C. deneoformans (n = 3) were isolated from 22.4% (87/388)
of sampled O. europae trees. Among them, 95.4% (83/87),
1.1% (1/87), and 3.5% (3/87), were identified as serotypes A
MATα, A MATa, and D MATα, respectively (Figure 3 and
Table 2), whereas strains of serotype DMATawere not identified.
This corresponded to a significantly higher frequency of C.
neoformans strains isolated from the beach/coastal regions
(75/221) compared to inland areas located ≥10 km from the sea
(12/167) (P < 0.001; Table 3).

The single MATa type C. neoformans strain (AD215) isolated
from area VII showed no sign of mating when crossed with a
MATa tester strain (KN99a), but did show signs of robust sexual
reproduction when crossed with the MATα tester strain (H99)
(Figure 2), phenotypically confirming that this isolate is a true
MATa C. neoformans isolate.

Thirty-two of 132 (24.2%) isolates have been isolated from
E. camaldulensis trees, all of which were identified as MATα

C. neoformans.
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FIGURE 3 | Mating type profiles obtained by PCR using STE20 gene-specific primers. (A) 1–26: serotype Aα, H99α, KN99a; (B) 1: serotype Aa (strain AD215),

KN99a, H99α; (C) 1–3: serotype Dα, JEC20a, JEC21α. Congenic C. neoformans strains H99 (VNI-αA) and KN99a (aA), and C. deneoformans JEC20 (VNIV-aD) and

JEC21 (VNIV-αD) were used as positive controls. M, molecular weight markers; N, negative control.

Natural C. neoformans Isolates in Turkey
Are Genetically Diverse (URA5)
Because the genotyping of the MAT locus showed that the vast
majority of the isolates in this study are MATα, we further
investigated how much genetic diversity is present within the
Turkish Cryptococcus isolates. We randomly picked 41 strains
and PCR amplified and Sanger sequenced theURA5 locus, which
in previous studies has been suggested to be more genetically
diverse among natural Cryptococcus strains and has power to
differentiate among different lineages of C. neoformans. Our
sequencing analyses identified 5 URA5 alleles in the 41 isolates
(Figure S1), including 2 major genotypes represented by 14 and
18 isolates, respectively, 1 genotype represent by 7 isolates, and
2 unique genotypes each represented by 1 isolate. Thus, ample
genetic diversity is present among the natural isolates in Turkey.

Natural C. neoformans Isolates in Turkey
Are Closely Related to Those From Brazil
and Zambia
To investigate how isolates from Turkey compare to other global
C. neoformans isolates, we carried out whole genome sequencing
for 7 isolates that represent the 5URA5 genotypes (Figure S1), as
well as the MATa (AD215-D1) and MATα (AD215-D2) strains
derived from isolate AD-215, and then compared their genome
sequences with those of the global C. neoformans sequences that
have been recently published (Desjardins et al., 2017; Vanhove
et al., 2017) based on variants identified compared to the H99
reference genome.

TABLE 2 | Mating types of Cryptococcus neoformans and C. deneoformans

according to tree species.

Mating type From O. Europaea

(n = 87)

From E. Camaldulensis

(n = 32)

n (%) n (%)

Aα 83 (95.4) 32 (100)

Aa 1 (1.1) –

Dα 3 (3.5) –

URA5 sequences extracted from the variant calls of these
isolates are in overall agreement with the URA5 genotyping
results described above. Phylogenetic analysis suggested that
three isolates are VNI (AD119, AD129, and AD130), while
four isolates (AD116, AD131, AD132, and AD161) and the two
strains derived from AD215 (AD215-D1 and AD215-D2) are
VNB. The three VNI isolates (AD119, AD129, and AD130) were
placed within the VNIb subclade of global isolates (Figure S2),
and all VNB isolates were placed within the VNBII clade,
which primarily includes South African isolates (Figure 4). Of
the VNBII isolates from Turkey, AD116 belongs to a clade
that contains mostly isolates from Botswana, South Africa, and
Zambia, while the others are more divergent from most VNBII
isolates and are closely related to two isolates from Brazil and
three isolates from Zambia (Figure 4).

Interestingly, two isolates from Turkey (AD132 and AD215-
D2) are separated by only an average of 590 SNPs from two
isolates from Brazil (an environmental isolate, WM-1408, and a
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TABLE 3 | Geographical distribution of Olea europaea and Eucalyptus camaldulensis colonized with Cryptococcus neoformans.

Region Area Tree species 1

(O. europaea)

Tree species 2

(E. camaldulensis)

Total

# of tree sampled # of positive % # of tree sampled # of positive % # of tree sampled # of positive %

Beach/Coast I 29 16 55.2 – – – 29 16 55.2

II 65 23 35.4 – – – 65 23 35.4

VI 78 26 33.3 – – – 78 26 33.3

VII 49 10 20.4 – – – 49 10 20.4

– – – 132 32 24.4 132 32 24.4

Total 221 75 33.9 132 32 24.4 264 107 40.5

Inland III 39 3 7.7 – – – 39 3 7.7

IV 53 3 5.7 – – – 53 3 5.7

V 75 6 8.0 – – – 75 6 8.0

Total 167 12 7.2 – – – 167 12 7.2

Total 388 87 22.4 – 431 119 27.6

clinical isolate, V17; Figure 4). This number of SNPs does not
suggest a recent transmission event between these locations, but
rather a closer than expected relationship across continents in a
lineage formerly thought to be confined to southern Africa.

DISCUSSION

The present study revealed that olive trees are a major reservoir
of environmental C. neoformans strains in the Aegean part of
the Mediterranean region, where cultivation of olive trees is
a tradition (Uylaşer and Yildiz, 2014). This is consistent with
previous studies suggesting that olive trees are one of the major
reservoirs of Cryptococcus species (Cogliati et al., 2016a; Ellabib
et al., 2016, 2017; Montagna et al., 2018). We sampled only
old tree trunks with hollows that constitute an appropriate
yeast habitat, providing stable humidity and temperature and
protection from solar radiation (Lin and Heitman, 2006;
Velagapudi et al., 2009; May et al., 2016). Compared to inland
regions, the colonization of olive trees by C. neoformans is more
prominent in the coastal areas, which are less arid, are at a lower
altitude, and have milder winters. Throughout the study period
(September 2016), the mean temperatures and precipitation in
the coastal areas were higher than those in the inland areas, and
accordingly, the largest number of C. neoformans isolates was
obtained from area I, which had the highest temperature and
precipitation (Tables 1, 3; P < 0.01). Previous reports from the
Mediterranean area (Cogliati et al., 2016a) and Libya (Ellabib
et al., 2016) showedO. europea colonization rates of 9.1 and 1.4%,
respectively. The results of this study were higher at 22.4%.

In the current study,C. deneoformanswas obtained from areas
II, IV, and VII. In 2008, C. deneoformans was isolated mainly
from pigeon droppings in the Aegean region (Karaca Derici and
Tumbay, 2008), which corresponds to area II in the current study.
However, clinical cases of C. deneoformans were documented
in the Black Sea coastal area (Kaya et al., 2012; Birinci et al.,
2016), which is distant from the Aegean coast and where the
climate is more humid and the temperature lower. This finding is
consistent with reports that C. deneoformans is more sensitive to

heat than C. neoformans (Martinez et al., 2001; Lin and Heitman,
2006; Bedi et al., 2012). Molecular type VNIV (serotype AD
diploid hybrid) has been reported in the northern part of the
Aegean region, where temperatures are lower (Cogliati et al.,
2016a,b). Three reports using a MaxEnt model for the prediction
of the Cryptococcus species showed that C. neoformans strains
may have spread mostly in the southern and western part of
Turkey (Cogliati et al., 2017; Acheson et al., 2018; Ergin et al.,
2019). The discrepancy between the environmental presence of
C. neoformans and related clinical cases should be addressed
by further studies screening different areas in Turkey. The
northern and southern areas of the Turkish Mediterranean coast
have different climatic conditions and, consequently, distinct
tree populations, which may potentially influence the rate of
cryptococcal colonization.

The first isolation of C. neoformans from E. camaldulensis in
Anatolia was reported in 2004 (Ergin et al., 2004). A previous
study investigated the presence of C. neoformans in the flowers
of E. camaldulensis trees from the Akyaka/Gökova (tree symbol,
Figure 1) districts in southwestern Turkey and identified only
1 C. neoformans isolate (0.09%) (Ergin et al., 2004). In 2010,
repeated screening of 17 E. camaldulensis trees with large trunks
was performed in the same region, and a colonization rate of
64% was reported (Ergin, 2010). In this study, we had only found
24.2% colonization rate from 132 sampled E. camaldulensis trees
in the same region which is probably more representative due to
the larger screening area. Compared with previous reports form
Mediterranean area (Cogliati et al., 2016a) and Libya (Ellabib
et al., 2016) about colonization rate (48/527; 9.1% and 3/210;
1.4%, respectively) on O. europaea, our result is higher (87/388;
22.4%, Table 3).

Trees play an essential role as a reservoir and breeding

ground for the propagation of C. neoformans. A recent study

showed that Cryptococcus has the ability to colonize some

plant such as E. camaldulensis, Terminalia catappa, Arabidopsis

thaliana, Colophospermum mopane, Tsuga heterophylla, and
Pseudotsuga menziesii, as well as their debris, which constitutes
the ecological niche and reservoirs of infectious propagules of
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FIGURE 4 | Phylogenic analyses places isolates from Turkey in the VNBII lineage of C. neoformans. Isolates from Turkey are part of a divergent subclade that included

isolates from Brazil and Zambia. The phylogeny was estimated from 1,269,132 segregating sites using FastTree (Price et al., 2009), and the tree was rooted with VNII

as the out-group, see Figure S2 for full phylogeny.

Cryptococcus in the environment (Springer et al., 2017). Climate
conditions, including humidity, temperature, evaporation, and
solar radiation, play significant roles in the environmental
distribution of C. neoformans (Lin and Heitman, 2006;
Velagapudi et al., 2009; Springer et al., 2013; May et al., 2016).
Our findings indicate that C. neoformans colonization of olive
trees reflects the Mediterranean ecological model influenced by
climate changes and urbanization (García-Mozo et al., 2016).
Several studies reported the presence of environmental C.

neoformans in Mediterranean countries, including Spain (Colom
et al., 2012; Cogliati et al., 2016a) and Libya (Ellabib et al.,
2016), based on the association between the climate and yeast
distribution. Warmer temperatures can affect Cryptococcus spp.
spread, especially that of C. gattii, a sibling species of C.
neoformans (Granados and Castañeda, 2006; Randhawa et al.,
2011; Bedi et al., 2012; Chowdhary et al., 2012; Uejio et al., 2015;
Cogliati et al., 2016b). Although it is seen that the olive trees
practiced in the Mediterranean “macchia” are more interrelated
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with the C. gattii, C. neoformans colonization is not far from the
ecosystem (Cogliati et al., 2017). The duration of the dry season,
natural degradation of woods, and drier habitats account for
lower bacterial presence and less competition for nutrients, thus
constituting favorable conditions for C. neoformans colonization,
especially of old tree trunks (Ruiz et al., 1981; Granados and
Castañeda, 2006; Cogliati et al., 2017).

Worldwide screening for the presence of C. neoformans in
the environment has been performed since the mid−1990s, and
E. camaldulensis was established as the major source of tree-
associated cryptococcosis in the early 2000s (Ellis and Pfeiffer,
1990; Campisi et al., 2003; Ergin et al., 2004; Lin and Heitman,
2006; Randhawa et al., 2008; Noguera et al., 2015). Several studies
reported that the majority of C. neoformans environmental
isolates contain MATα mating-type alleles (Litvintseva et al.,
2005; Nielsen et al., 2005; Lin and Heitman, 2006; Chen et al.,
2015; Kangogo et al., 2015), which is consistent with our
findings that Cryptococcus isolates from E. camaldulensis have
the MATα phenotype. However, in O. europaea, we isolated C.
neoformans harboring Dα and even Aa alleles. While MATa
Cryptococcus strains have been previously isolated from trees in
the Mediterranean regions such as the Mediterranean coast of
Spain and Southern Italy (Viviani et al., 2001; Cogliati et al.,
2016b), to the best of our knowledge, it is the first MATa-
containing serotype A strain isolated from the environment
in Anatolia. A previous study performed by Saracli et al.
(2006) in Anatolia identified C. neoformans with mating types
Aα (65.4%), Da (15.4%), and Dα (11.5%), but not Aa, in
pigeon droppings. AlthoughMATα predominates in clinical and
environmental populations, MATa C. neoformans isolates have
also been isolated in a number of studies from a variety of
geographic areas (Lengeler et al., 2000; Viviani et al., 2001, 2003;
Keller et al., 2003; Nielsen et al., 2003; Cogliati et al., 2006;
Litvintseva et al., 2007, 2011). Population studies suggest sexual
reproduction, including inter-lineage introgression is ongoing
in natural Cryptococcus populations (Desjardins et al., 2017;
Rhodes et al., 2017). In the present study, isolation of a novel
serotype AMATa strain from the environment suggests that a-α
sexual reproduction might occur in the serotype A population.
However, whole genome analyses of additional isolates is
required to detect recombination signatures in the Turkish
Cryptococcus population.

Cryptococcus isolates in Turkey are genetically diverse. Based
on our URA5 genotyping and whole genome sequencing
analyses, most isolates from Turkey belong to the VNI and
VNBII groups. Specifically, of the 41 isolates that were genotyped
for the URA5 locus, 21 likely belong to the VNI group that
includes isolates AD119, AD129, and AD130, while the other
20 belong to the VNBII group that includes isolates AD116,
AD131, AD132, and AD161. Interestingly, of the VNBII isolates,
only 1 (AD116) belongs to the larger sublineage that contains
most VNBII isolates from Botswana, South Africa, and Zambia,
while the other 19 have URA5 alleles identical to isolates AD131,
AD132, and AD161, which, based on whole genome sequence
analyses, belong to within the smaller VNBII sublineage that
includes strains from Botswana and Brazil. Two strains from
Brazil (V17 and WM-1408) may have contributed significant
genetic material to the other lineages (VNI, VNII, and VNB)

through recombination, with V17 donating the most genetic
material to VNI isolates in Africa, India, and Thailand (Rhodes
et al., 2017). The isolation of Turkish isolates, including the
MATa andMATα fertile strains derived from isolate AD215, that
are almost genetically identical to V17 and WM-1408, suggests
that it is possible that the Mediterranean region could be a
fertile ground for genetically diverse Cryptococcus isolates and
could serve as an important center for the global migration and
distribution of Cryptococcus isolates. Further WGS analyses of
additional natural isolates will provide amore complete picture of
the genetic diversity and phylogeny of natural isolates in Turkey
and its surrounding Mediterranean area.

In conclusion, our results indicate that compared to C.
deneoformans, C. neoformans is more common on olive trees
and E. camaldulensis in the Aegean region of Anatolia. While
the vast majority of the natural isolates in Turkey are mating
type α, the presence of a fertile MATa isolate suggests that
sexual reproduction could be ongoing in natural C. neoformans
populations. Our finding that C. neoformans isolates from
Turkey belong to VNBII and are more closely related to
strains from Zambia and Brazil provides insights into the global
distribution of C. neoformans and emphasizes the need for more
extensive environmental screening to reveal new reservoirs for
C. neoformans, which would promote our understanding of
the natural distribution, epidemiology, and evolution of this
important human fungal pathogen.
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