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Abstract 

Background:  Systemic inflammatory response syndrome (SIRS) is defined as a non-specific inflammatory process 
in the absence of infection. SIRS increases susceptibility for organ dysfunction, and frequently affects the clinical out-
come of affected patients. We evaluated a knowledge-based, interoperable clinical decision-support system (CDSS) 
for SIRS detection on a pediatric intensive care unit (PICU).

Methods:  The CDSS developed retrieves routine data, previously transformed into an interoperable format, by using 
model-based queries and guideline- and knowledge-based rules. We evaluated the CDSS in a prospective diagnostic 
study from 08/2018–03/2019. 168 patients from a pediatric intensive care unit of a tertiary university hospital, aged 
0 to 18 years, were assessed for SIRS by the CDSS and by physicians during clinical routine. Sensitivity and specificity 
(when compared to the reference standard) with 95% Wald confidence intervals (CI) were estimated on the level of 
patients and patient-days.

Results:  Sensitivity and specificity was 91.7% (95% CI 85.5–95.4%) and 54.1% (95% CI 45.4–62.5%) on patient level, 
and 97.5% (95% CI 95.1–98.7%) and 91.5% (95% CI 89.3–93.3%) on the level of patient-days. Physicians’ SIRS recogni-
tion during clinical routine was considerably less accurate (sensitivity of 62.0% (95% CI 56.8–66.9%)/specificity of 
83.3% (95% CI 80.4–85.9%)) when measurd on the level of patient-days. Evaluation revealed valuable insights for the 
general design of the CDSS as well as specific rule modifications. Despite a lower than expected specificity, diagnostic 
accuracy was higher than the one in daily routine ratings, thus, demonstrating high potentials of using our CDSS to 
help to detect SIRS in clinical routine.

Conclusions:  We successfully evaluated an interoperable CDSS for SIRS detection in PICU. Our study demonstrated 
the general feasibility and potentials of the implemented algorithms but also some limitations. In the next step, the 
CDSS will be optimized to overcome these limitations and will be evaluated in a multi-center study.

Trial registration: NCT03661450 (ClinicalTrials.gov); registered September 7, 2018.
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Background
Sepsis, an imbalance between pro- and anti-inflamma-
tion as the body’s response to an infectious agent [1], is 
one of the most common and critical conditions entail-
ing high morbidity and mortality in critically ill children 
[2–6]. Specific age-dependent definitions have been 
provided by the International Pediatric Sepsis Consen-
sus Conference (IPSCC) in 2005 [7]; in addition to evi-
dence for an infectious agent, these definitions require 
the presence of a systemic inflammatory response syn-
drome (SIRS). Although the newest Sepsis-3 guidelines 
for adults removed this relationship between SIRS and 
sepsis [8, 9], the definitions are still valid for children due 
to a different clinical course in younger patients. SIRS in 
pediatric patients may quickly proceed to severe sepsis, 
septic shock and multiple organ failure [10]. In pediatric 
cardiothoracic patients, SIRS was related to a prolonged 
stay in pediatric intensive care (PICU) with all entailed 
risks [11]. Early recognition of pediatric SIRS is impor-
tant for a timely commencement of treatment and sepsis 
diagnostics.

Digitalization in healthcare has fostered the develop-
ment of clinical decision-support systems (CDSS) capa-
ble of supporting human decision-making by reusing 
routinely documented data [12, 13]. However, current 
research for pediatric SIRS detection by CDSS is scarce 
[14]. Related approaches were described by Dewan 
et  al. [15], Scott et  al. [16], Vidrine et  al. [17], Le et  al. 
[18], Sepanski et  al. [19], Cruz et  al. [20] and Eisenberg 
et al. [21], but focused on severe sepsis, septic shock, or 
therapy improvements rather than SIRS diagnosis. To 
our knowledge, a CDSS for detection of pediatric SIRS 
has not yet been successfully developed. Furthermore, 
related CDSS were only rarely tested under clinical 
routine settings as neither routine data nor appropri-
ate reference standards were used [14]. We designed a 
knowledge-based CDSS for pediatric SIRS detection 
that uses routine data from a patient data management 
system (PDMS) and implements algorithms based on 
guidelines and experts’ knowledge assets [22]. Our CDSS 
is based on an interoperability standard for clinical infor-
mation modelling (openEHR [23]), international termi-
nologies and model-based, standardized data queries, to 
overcome the CDSS dependence to local infrastructures 
and to facilitate cross-institutional reuse.

In this article, we present the results of a thoroughly 
performed diagnostic study for evaluating the diagnos-
tic accuracy of our CDSS using clinical monitoring data, 

previously transformed into standardized data formats, 
computerized experts’ knowledge and international 
guidelines for SIRS detection in critically ill children.

Methods
Study design
The study is reported in accordance with the Standards 
for Reporting of Diagnostic Accuracy Studies (STARD) 
(see Additional file 1: Appendix 1) [24]. The study proto-
col has been approved by the Ethics Committee of Han-
nover Medical School and published [25].

This diagnostic study was designed to evaluate CDSS 
accuracy by using the reference standard defined by two 
experienced clinicians on the base of IPSCC SIRS crite-
ria (primary aim). The secondary aim was to compare 
CDSS accuracy to the accuracy of assessments of clini-
cians working in clinical routine to assess SIRS aware-
ness of clinicians during challenging routine work [25]. 
The study took place at the PICU of Hannover Medical 
School. Sensitivity and specificity on the level of patients 
(= a patient’s PICU stay) and on the level of patient-days 
(= intensive care days) were defined as primary and sec-
ondary outcome measure, respectively. The patient level 
analysis summarizes the analysis on the level of patient-
days in a conservative way so that e. g. individuals with 
SIRS can also contribute to the estimation of specificity 
(see below). Sensitivity (alternative hypothesis: 98%, null 
hypothesis: 90%) and specificity (alternative hypothesis: 
90%, null hypothesis: 80%) were chosen as the co-primary 
endpoint [25]. A sample size of 97 patients with at least 
one SIRS episode, and 137 patients with or without a 
SIRS episode was calculated based on these assumptions 
(type I error = 0.05, power of 90%; chi square test) [25]. 
Details of three subsequent changes to the protocol are 
given in the Additional file 1: Appendix 2.

Participants
Recruitment started in August 2018 and ended in March 
2019. PICU patients were eligible if (1) aged between 0 
and 18 years, (2) an informed consent was obtained, (3) 
the length of stay exceeded 12 h and (4) standard clinical 
data monitoring in the PDMS was carried out. Patients 
were treated according to standard of care.

Test methods
The self-developed CDSS is an application that is based 
on an open data platform, in which various data sets from 
different primary source systems are gathered together in 
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a standardized, unambiguous format by using a seman-
tic interoperability standard for representation of clinical 
information called openEHR [23]. By this, and in contrast 
to recent stand-alone, institution-specific and locked-in 
solutions, our CDSS will be easily shareable with other 
institutions following the same standard because a shared 
meaning of data that will be used by the CDSS is formed 
(semantic interoperability). Furthermore, this prevents 
that incorrect results of the CDSS occur because wrongly 
interpreted data are inserted into the algorithm.

After recruitment finished, the required routine data 
were integrated from the PDMS of the intensive care unit 
into this standardized data repository, based on inter-
nationally agreed-upon data models (openEHR arche-
types) and terminologies (e. g. LOINC). The data used 
in the CDSS comprise demographic data (e. g. date of 
birth), vital signs (e. g. body temperature, respiratory 
rate, heart rate), laboratory values (e. g. leucocyte count), 
procedures and medical devices (e. g. pacemaker, cool-
ing devices). All data items integrated in the standard-
ized data platform and used for CDSS assessment can be 
found in Additional file 1: Appendix 3. For details of the 
CDSS, we refer to Wulff et al. [22]. The CDSS implements 
model-based data queries by using the openEHR Arche-
type Query Language (AQL) to retrieve these data sets in 
an unambiguous format. The CDSS consists of a knowl-
edge base comprising a working memory and a rule base. 
The routine data sets retrieved are inserted as dynamic 
facts into the working memory. The rule base includes all 
rules related to SIRS diagnosis which were derived from 
the international SIRS criteria for children by the IPSCC 
[7]. Here, pediatric SIRS is defined as the presence of at 
least two out of four criteria (abnormal body tempera-
ture, leucocyte count, heart rate, respiratory rate based 
on age-specific norm values), one of which must be an 
abnormal body temperature or leukocyte count [7].

Based on the standardized, semantically-enriched rou-
tine patient data and these algorithms, the CDSS started 
to operate by deciding on the presence or absence of 
SIRS episodes (diagnostic approach I) [22].

In parallel to patient recruitment, clinicians performed 
a real-time SIRS assessment by filling in pseudonymized 
digital forms per shift without chart review (diagnostic 
approach II).

Two experienced pediatricians defined the reference 
standard by blinded, retrospective digital chart review 
and analysis based on the above mentioned IPSCC pedi-
atric SIRS criteria. In case of disagreement, a third clini-
cian was consulted. A day was defined as SIRS-positive, 
if the patient suffered from SIRS for at least one full 
hour per day. The starting time of the SIRS episode was 
marked, and the end was documented as soon as SIRS 
criteria were not fulfilled for a minimum of 24 h.

Data preparation
Results were assessed per patient’s PICU stay according 
to six cases (1) false positive, (2) true positive, (3) false 
negative, (4) true negative, (5) false negative and false 
positive, (6) false positive and true positive. Every SIRS 
episode needed to be detected within −/+ 4 h of the epi-
sode starting time according to the reference standard 
documentation [25] (see Additional file  1: Appendix  4). 
Results were also assessed per intensive care day accord-
ing to the first four cases.

Data analysis
Diagnostic accuracy on the level of a patient’s PICU stay 
was used as primary outcome measure. Additionally, 
the specificity among patients who had no SIRS during 
their stay was estimated to assess the probability of false 
alarms among unaffected patients. Diagnostic accuracy 
on the level of intensive care days was used as second-
ary outcome measure. Sensitivity and specificity with 
Wald 95% CI were estimated via Generalized Estimat-
ing Equations (GEE) [26] using R version 4.0.2 [27] and R 
package geepack (version 1.3–1) [28]. Subgroup analyses 
were conducted among patients younger and older than 
12 months.

Missing values in the diagnostic approach II were 
excluded for the primary analysis (complete case analy-
sis). To quantify the impact of missingness, we calculated 
sensitivity and specificity under the assumption that all 
missing days were either rated correctly (i.e., imputa-
tion as true positive or true negative) or incorrectly (i.e., 
imputation as false positive or false negative).

Results
Participants
Recruitment resulted in a final effective sample size of 
n = 168 (with 1,998 days), with 101 SIRS patients (60.1%) 
and 67 No SIRS patients (39.9%, Fig. 1). This fulfilled the 
pre-required sample size of 97 patients with at least one 
SIRS episode, and 137 patients with or without a SIRS 
episode was required [25]. Overall, the patients expe-
rienced 210 SIRS episodes (see enhanced flow diagram 
with intensive care days and stays in Additional file  1: 
Appendix  5) with 123 alerts for abnormal respiratory 
rate, 39 for heart rate, 58 for temperature, 117 for low-
ered/elevated leucocyte count or left shift of neutrophils.

Baseline characteristics of the patients are shown in 
Table  1. The mean length of an intensive care stay was 
12  days; 42 of 168 patients (25.0%) had multiple stays.1 
Overall PICU mortality was 4.8% (8/168).

1  28 patients with 2 stays, 11 patients with 3 stays, 2 patients with 4 stays and 
1 patient with 5 stays.
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Test results
Diagnostic approach I (CDSS assessment)
On the level of patients (Table 2), sensitivity was 91.7% 
(95% CI 85.5–95.4%) and specificity was 54.1% (95% CI 
45.4–62.5%). Among patients, who had no SIRS accord-
ing to the reference standard, specificity was 73.0% 
(95% CI 63.2–81%). Comparison of the lower bound 
of the 95% confidence interval with the predefined null 
hypothesis in the primary endpoints (sensitivity of 90% 
and specificity of 80%) [25], revealed that we were not 
able to reject it. When stratifying by age, specificity was 
higher among children younger than 12  months but 
lower among older children while sensitivity did not 
vary (Fig. 2).

Because hypothermia was under discussion for being 
a non-valid criterion before, a sensitivity analysis was 
performed excluding the hypothermia rule from the 
CDSS algorithm. When hypothermia was not included, 
specificity was higher but sensitivity was lower. Among 
patients who had no SIRS according to the reference 
standard, specificity was 94.2% (95% CI 87.5–97.4%). 
Exclusion of hypothermia increased specificity among 
children younger than 12 months but decreased it among 
older children.

On the level of intensive care days (Table  3), sensitiv-
ity was 97.5% (95% CI 95.1–98.7%) and specificity was 
91.5% (95% CI 89.3–93.3%). Specificity was higher among 
children younger 12 months, but lower among older chil-
dren. Exclusion of hypothermia in the CDSS SIRS defini-
tion resulted in a higher specificity but a lower sensitivity.

Diagnostic approach II (Routine assessment)
The clinicians submitted 1,704 forms for 141 patients. 
No forms were available for 27 patients (Fig. 1). 563 addi-
tional forms were available but 32 were submitted out-
side the selected PICU stay of the recruited patient and 
531 could not be assigned to a patient. On average, 12 
forms per patient, 14 forms per day and 219 forms per 
clinician were submitted. With increasing study dura-
tion, the compliance for documentation decreased 
(Additional file  1: Appendix  6). Consequently, assess-
ments for 725 out of 1,998  days were missing. Missing-
ness was independent of SIRS status (36.6% of data were 
missing of 462 days with SIRS; 36.2% of data were miss-
ing of 1,536  days without SIRS). In the complete case 
analysis, sensitivity was 38.1% (95% CI 32.5–44%) and 
specificity was 71.5% (95% CI 68.6–74.3%). If we assume 
that all 725 days with missing routine assessments would 

Fig. 1  Flow diagram for recruited patients (PICU; pediatric intensive care unit)
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have been rated correctly evaluated by the routine asses-
sors (true positive or true negative), sensitivity would be 
62.0% (95% CI 56.8–66.9%) with a specificity of 83.3% 
(95% CI 80.4–85.9%). If all missing days would have been 
rated incorrect, sensitivity would be 23.3% (95% CI 18.8–
28.5%) and specificity 39.7% (95% CI 35.9–43.6%).

Discussion
SIRS plays a key role in the development of organ dys-
function in critically ill children and determine morbid-
ity and mortality [11, 29–31]. Therefore, in this study, 
we evaluated a self-developed interoperable CDSS for 
detection of SIRS in pediatric patients. By supporting 
the diagnosis of SIRS, the CDSS is able to detect one of 
the earliest signs for clinical deterioration. By this, early 
treatment can be initiated and progression to severe SIRS 
or sepsis, organ failure and death might be preventable. 
Proving this effect and the clinical benefit of the imple-
mentation of the CDSS will be part of further investiga-
tions in a randomized interventional study, as we have 
decided to demonstrate the diagnostic accuracy of the 
method in this first step.

While the CDSS did not reach the pre-defined pri-
mary endpoints of 90% sensitivity and 80% specificity 
on a patient level (which is a very conservative approach 
to estimate the diagnostic accuracy of the CDSS), the 
diagnostic accuracy on the level of patient-days was 
much higher than the one of physicians’ real-time rat-
ings. Unfortunately, routine SIRS assessment had a low 
compliance with some assessments missing. However, 
even in the best case scenario, where all missing days 
were imputed as correctly diagnosed, the sensitivity 
on patient-day level was only 62.0%. This illustrates the 
potentials for implementing a CDSS in this setting. In 
particular, less experienced clinicians could be supported 
by the CDSS, acting as a co-pilot [32], because they often 
do not suspect SIRS and, thus, miss early initiation of 
sepsis treatment and diagnostics.

However, CDSS development is still in progress, since 
this study also showed weaknesses, which will be opti-
mized in future work (all misclassifications are summa-
rized in Additional file 1: Appendix 7). All errors by the 
algorithm itself were caused by a wrong interpretation 
of a dependence between respiratory rate and mechani-
cal ventilation, so that this specific rule will be modified. 
Furthermore, new data sets will be integrated because 
patients often suffered from underlying diseases, under-
going procedures or taking drugs that caused hypother-
mia, elevated or lowered heart rate, or leukocytosis, thus 
not interpretable as SIRS sign.

Although intensive care environments are often char-
acterized by a high-quality technical infrastructure with 
continuous data monitoring, another reason for errors 
was a low data quality due to either inconclusive values, 
that have been manually validated, or missing values. 
Furthermore, false positive alerts were often caused by 
borderline values for the IPSCC criteria. Since the qual-
ity of primary source data might differ between institu-
tions, the accuracy of the CDSS also might vary. These 
aspects will be examined in detail by testing more flexible 

Table 1  Baseline characteristics of participants (n = 168)

*Median age in years (range) = 2 (0–17)

Patient characteristics Patients n = 168 (%)

Age*

 0 days to 1 week 18 (11%)

 1 week to 1 month 10 (6%)

 1 month to 1 year 60 (36%)

 2–5 years 44 (26%)

 6–12 years 25 (15%)

 13 to < 18 years 11 (7%)

Gender

 Female 64 (38%)

 Male 104 (62%)

Underlying disease category

Surgical

 Cardiology (with cardiopulmonary bypass) 78 (46%)

 Pediatric surgery 9 (5%)

Non-surgical

 Cardiology 20 (12%)

 Oncology 4 (2%)

 Metabolic disease 3 (2%)

Mixed

 Pulmonology (including lung transplantation) 17 (10%)

 Gastroenterology (including liver transplanta-
tion)

16 (10%)

 Neurology/neurosurgery 11 (7%)

 Others (ear-nose and throat, immunology, 
maxillofacial surgery, trauma surgery)

9 (5%)

 Nephrology (including kidney transplantation) 1 (1%)

Mortality 8 (5%)

Table 2  Contingency table for  evaluating the  accuracy 
of the CDSS on the level of patients 

1  True positive (case 2) + false positive/true positive (case 6)
2  False negative (case 3) + false positive/false negative (case 5)
3  False positive (case 1) + false positive/false negative (case 5) + false positive/
true positive (case 6)
4  228 patient’s stays (PICU stay) were assessed

CDSS Reference standard

Positive Negative Total

Positive 80 + 321 27 + 2 + 323 173

Negative 8 + 22 79 89

Total 122 140 2624
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approaches (e. g. fuzzy logic) and evaluating the CDSS in 
a multi-center study.

Most of the misclassifications can be overcome by 
incorporating additional algorithms and variables. How-
ever, errors that occurred because individual patient situ-
ations need to be rated other than defined by guidelines, 
will be difficult to overcome by conventional knowledge-
based approaches. One example is hypothermia, which 
had a relevant impact on specificity. Many factors asso-
ciated with a patient’s individual situation are influenc-
ing temperature and temperature measurement. Our 
study showed that ignoring hypothermia as a SIRS cri-
terion is not helpful, because this considerably decreases 

sensitivity. Since hypothermia is prone to errors espe-
cially in children > 12 months, a rule adaption might lead 
to increased sensitivity and specificity. The incorpora-
tion of machine learning algorithms able to determine a 
patient’s individual baseline or to learn new relations in 
real-time might be valuable, too.

The development and evaluation of an interoperable 
CDSS for SIRS detection was a first step in the process. 
Currently, we are working on the integration of micro-
biological results and started to include the IPSCC cri-
teria for organ dysfunction and failure. The combination 
of the CDSS with a prediction model for the differentia-
tion between SIRS and sepsis, e. g. as published by our 
study group [33], could raise additional benefits to our 
approach. Furthermore, since all experts in our study 
come from the same department, this could have affected 
the reference standard, so that a further validation by 
using experts from different locations is aspired.

Due to our interoperable design, the reasoning pro-
cedures and knowledge base of our CDSS are function-
ally independent of the underlying local infrastructures. 
All queries used for retrieving data needed in the CDSS 
can be shared with other institutions without modifica-
tions as long as the same (inter)national openEHR data 

Fig. 2  Summarized results of the CDSS regarding primary and secondary outcome criteria (including results when hypothermia rules are excluded)

Table 3  Contingency table for  evaluating the  accuracy 
of the CDSS on the level of intensive care days 

CDSS Reference standard

Positive Negative Total

Positive 450 143 593

Negative 10 1395 1405

Total 460 1538 1998
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models are in use [22]. We already tested this approach 
with a prototypical application for outbreak detection 
of pathogens in hospitals and tracking of COVID-19 
patients. This tool was built upon the architectural idea 
of the CDSS of this work and was successfully rolled out 
quickly to other university medical centers which inte-
grated their primary source data using the same standard 
for data representation and terminologies [34, 35]. There-
fore, we expect that an implementation of our CDSS 
for SIRS detection at another institution which follows 
the same interoperability approach will be possible, too. 
Afterwards, the conduction of a multi-center study with 
an optimized CDSS will be another future step. Further 
evaluations will also encompass real-time performance 
of the CDSS and clinical relevance about improvement of 
goal-directed therapy concerning SIRS and sepsis.

We are aware that our approach of determining CDSS 
accuracy by comparison with decisions made by manual 
chart review comes with weaknesses in terms of objec-
tivity. However, it is still one of the best approaches to 
reach a reference standard that fits the type of decisions 
made in clinical settings. Alternatives, such as ICD codes, 
are inaccurate in terms of sensitivity or timing. Never-
theless, it is a time-consuming approach demonstrating 
the impossibility of manually assessing large retrospec-
tive datasets as needed for developing machine learning 
algorithms. A knowledge-based CDSS, such as the one 
presented in this study, might be a tool to reliably label 
large retrospective data sets to make them available for 
machine learning training purposes. This is of particular 
interest, because SIRS-labeled training data for pediatric 
patients are currently not available [14].

To our knowledge, we present the first interoper-
able CDSS for detection of pediatric SIRS that has been 
successfully evaluated in a clinical-driven study, using 
routine data, broad eligibility criteria for patients of all 
pediatric ages and underlying diseases, and an appro-
priate reference standard. Previous CDSS rather tried to 
optimize SIRS criteria or were using non-specific sepsis 
criteria, often with impressive results [15, 19, 20]; other 
approaches aimed at predicting severe sepsis [16, 18] or 
improving time to goal-directed therapy [17]. All these 
studies focused on recognizing severe sepsis or septic 
shock directly instead of SIRS as the initial clinical fea-
ture; some used their own criteria differing from the 
IPSCC definition or set different age ranges, excluding 
newborns, infants or young adults, thereby limiting the 
routine (re)use of such system [14]. Often, the reference 
standard used seems problematic such as in Dewan et al. 
[15], who chose initiated treatment as reference. The doc-
umented time of treatment might not reflect the clini-
cally relevant time as SIRS onset is often missed during 
clinical routine, as underlined by our findings.

Conclusions
We successfully evaluated a self-developed, interopera-
ble CDSS for SIRS detection in pediatric patients rang-
ing from newborns to young adults. The CDSS is based 
on an interoperable concept facilitating the reuse of the 
CDSS across institutions.

Our study results demonstrated the general feasibil-
ity of the implemented algorithms while specificity 
on patient level was not as good as expected. Several 
strategies will be combined to minimize the false posi-
tive alerts and optimize the CDSS before conducting 
a multi-center study. Nevertheless, the low diagnos-
tic accuracy results of the routine assessment show 
that awareness for SIRS seems quite low, thus, under-
lining that this clinical domain is in need for CDSS 
implementation.
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