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Abstract: Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers
rich structural and electronic diversification of the organic isocyanide ligand platform. This article
considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the
corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and ther-
mally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a
non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime
“workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic
{Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis
{dπ(Cr)→ pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of
the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assess-
ment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular,
the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs.
δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing
capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides
CNC6F5 and CNC2F3.

Keywords: chromium pentacarbonyl; isocyanide; azulene; back-bonding; metal-to-ligand charge
transfer; voltammetry

1. Introduction

Organic isocyanides (C≡NR) are isolobal with carbon monoxide (C≡O) and offer
attractive versatility as ligands in coordination chemistry from both steric and electronic
standpoints [1–7]. Indeed, the steric encumbrance exerted by the substituent R is adjustable
to a substantial extent [4,6,7]. In addition, modifying the electron withdrawing/donating
properties of R affects the π-acceptor/σ-donor ratio (i.e., the net electron accepting or do-
nating capability) of the CNR ligand [3]. The fundamental quest for matching or exceeding
the π-acceptor/σ-donor ratio of CO using the isocyanide ligand platform spans more than
three decades [3,4,6]. To date, only polyfluorinated isocyanides, such as the extremely un-
stable and hazardous CNCF3 [8,9], CNC2F3 [10,11], and CNC6F5 [12], have been shown to
exhibit π-acceptor/σ-donor ratios comparable to or significantly approaching that of CO. In
2015, Figueroa and coworkers described convenient synthetic access to three exceptionally
bulky fluorinated m-terphenyl isocyanides, which have reasonably good thermal and air
stability [6]. Notably, CN(2,6-(3,5-(CF3)2C6H3)2-4-F-C6H2) (abbreviated as CNp-FArDArF2)
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nearly rivals CNC6F5 in terms of the net relative electron accepting potential facilitated by
M(dπ)→ CNR(pπ*) back-bonding [4].

Among the currently known isocyanide ligands with a purely hydrocarbon sub-
stituent R, 4-isocyanoazulene and 6-isocyanoazulene have the highest π-acceptor/σ-donor
ratios [13]. Azulene (C10H8) is a dark blue colored bicyclic aromatic hydrocarbon. Because
of the uneven π-electron density distribution between its fused 5- and 7-membered sp2

carbon rings, azulene has a dipole moment of 1.08 Debye (Figure 1a) [14]. Moreover,
in contrast to benzenoid aromatic π-systems, this non-benzenoid isomer of naphthalene
features complementary orbital density profiles within its Highest Occupied Molecular
Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO), as illustrated in
Figure 1b [15].

Figure 1. (a) Zwitterionic resonance form of azulene and the atom numbering scheme for the azulenic
framework; (b) Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular
Orbital (LUMO) of azulene.

Isocyanoazulenes (CNAz) form a distinct class of isocyanoarenes where the position
of attachment of the isocyano functionality to the azulenic core (1, 2, 4, 5, or 6) has a
profound effect on the ligands’ physicochemical properties, including their π-acceptor/σ-
donor characteristics [13,16]. Advances in the coordination and surface chemistry of the
2-isocyanoazulene motif have yielded a quasi-molecular rectifier [17], an on-chip micro-
supercapacitor [18], the first molecular π-linker asymmetrically anchored through both
isocyano and mercapto junction groups [19], as well as various azulenic and biazulenic
self-assembled monolayer films on metallic gold [19–22]. In addition, single molecules
and nanostructures of 2-isocyano-1,3-di-tert-butoxycarbonylazulene adsorbed on Au(111),
where the 2-isocyanoazulenic moieties are decoupled from the gold surface by bulky tert-
butoxycarbonyl substituents, have been recently shown to be amenable to controlled manip-
ulations by Scanning Tunneling Microscopy (STM) methods [23]. Redox-active complexes
of ruthenium(II) tetraphenylporphyrin, featuring coordinated 2-isocyanoazulene [24], and
liquid crystals based on the 2-isocyanoazulene complexes of gold(I) [25] have been reported
as well.

Herein, we consider the impact of the functionalization of carbon atoms 1 and 3 of
the azulenic scaffold on the π-acceptor/σ-donor characteristics of the 2-isocyanoazulene
ligand platform (compounds 1–5 in Figure 2). These properties were assessed through the
comparative analyses of X-ray crystallographic; electrochemical; and 13C NMR, FTIR, and
UV-vis spectroscopic data for the corresponding complexes [(OC)5Cr(CNAz)]. The parent
compound, 2-isocyanoazulene (1), is an air- and thermally stable crystalline solid (mp:
70–73 ◦C) [13]. Whereas most relatively volatile isocyanides have a characteristic pungent,
often disagreeable odor [26], 1 is nearly odorless (although some of us find that it exerts a
very mild, minty scent). We demonstrate that 2-isocyano-1,3-dicyanoazulene (5) pushes the
higher end limit of the achievable π-acceptor/σ-donor ratio of the isocyanoarene ligands
without requiring fluorination. This limit has been hitherto bracketed by pentafluorophenyl
isocyanide, CNC6F5 [12].
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Figure 2. Five 2-isocyanoazulene ligands considered in this work: 2-isocyanoazulene (1), 2-isocyano-
1,3-dimethylazulene (2), 2-isocyano-1,3-diethoxycarbonylazulene (3), 2-isocyano-1,3-dibromoazulene
(4), and 2-isocyano-1,3-dicyanoazulene (5).

2. Results
2.1. Synthesis and Properties of 2-Isocyano-1,3-Dimethylazulene (2)

Syntheses of the 2-isocyanoazulene ligands 1, 3, and 5 via formylation of the corre-
sponding 2-aminoazulenes followed by dehydration of the resulting 2-formamidoazulenes
were described in our previous reports [13,19,21]. In order to access 2-isocyano-1,3-
dimethylazulene 2, we envisioned converting both ester groups in 2-amino-1,3-diethoxycar
bonylazulene into the methyl substituents via chemical reduction. Among various reduc-
tants considered, sodium bis(2-methoxyethoxy)aluminumhydride (Red-Al®) proved to be
superior in effecting the reduction of the ester functionalities without compromising the
integrity of the azulenic moiety. Formylation of the 2-amino-1,3-dimethylazulene interme-
diate (red oil) with acetic-formic anhydride afforded 2-formamido-1,3-dimethylazulene
as a fluffy blue powder after workup. In a CDCl3 solution at 25 ◦C, this formamide exists
as an unequal mixture of two conformational rotamers due to hindered internal rotation
about the amide’s C-N bond. The 1H NMR resonances for the NHCHO unit of the more
abundant trans H-C(O)-N(Az)-H rotamer show a characteristic 3JHH coupling of 11 Hz [27].
Dehydration of 2-formamido-1,3-dimethylazulene afforded green microcrystals of 2 in a
high yield (Scheme 1).

Scheme 1. Synthesis of 2-isocyano-1,3-dimethylazulene (2).

Similar to 1, 2 (m.p. 99–101 ◦C) is air- and thermally stable under ambient conditions
and has only a very mild, inoffensive odor. These properties are in stark contrast with
those of 2,6-dimethylphenyl isocyanide (2,6-CNXyl), which has been arguably the most
commonly employed isocyanoarene in synthetic organic and organometallic chemistry for
decades [28]. Indeed, 2,6-CNXyl (m.p. 73–74 ◦C) has a pungent odor, is air-sensitive, and
must be stored at T < 5 ◦C to avoid extensive decomposition. The IR (νN≡C), 13C NMR,
and 14N NMR signatures of the isocyano group in 2 are comparable to the corresponding
characteristics documented for 1 [13] and 2,6-CNXyl [29] (Table 1). Moreover, the X-ray
structure of 2 revealed very close similarities between the metric parameters of the C≡N–C
units in 2 and those in 2,6-CNXyl, previously reported by Schmidbaur et al. [30] (Figure 3). As
expected from the geometric considerations, the steric encumbrance exerted by the methyl
substituents with respect to the isocyano unit is only slightly less pronounced in 2 than in
2,6-CNXyl (Figure 3b,c). Notably, the ortho protection of the isocyano functionality with
hydrocarbon substituents is often critical for the stability of highly electron-rich transition
metal–benzenoid isocyanoarene complexes, especially isocyanometalates [3].
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Table 1. Selected FTIR, 13C NMR, and 14N NMR data for 1, 2, and 2,6-CNXyl.

CNR υN≡C, cm−1 δ(13C≡N), ppm δ(C≡14N), ppm

1 2127 1 168.6 2,5 175.3 3,5

2 2115 1 170.7 2 172.3 3

2,6-CNXyl 2117 1 167.7 2 175.6 4,6

1 In CH2Cl2. 2 In CDCl3 vs. Si(CH3)4. 3 In CDCl3 vs. NH3(l). 4 In CH2Cl2 vs. NH3(l). 5 [13]. 6 [29].

Figure 3. (a) Solid-state structure of 2, 50% thermal ellipsoids; (b) C≡N, N–C bond lengths, and average
C(methyl)···C(isocyano) distance in the solid-state structure of 2; (c) C≡N, N–C bond lengths, and C(methyl)···C(isocyano)
distance in the solid-state structure of 2,6-xylyl isocyanide (average parameters for two crystallographically independent
molecules [30]).

The cyclic voltammetry profile of 2 in CH2Cl2/[nBu4N][PF6] shows the redox tolerance
span of ca. 2.6 V (Figure 4) between the oxidation and reduction waves. The reduction
of 2 is accompanied by an adsorption process as evidenced by the characteristic shape of
the cathodic wave. Electrochemical reduction and oxidation of monoazulenic derivatives
are usually irreversible due to dimerization of the resulting radical-anion or radical-cation,
respectively [31]. Following Mikkelsen’s interpretation [31] of the qualitatively similar
cyclic voltammetry profiles of other azulenic derivatives, the anodic current at −0.92 V
in Figure 4 likely signifies the oxidation of the biazulenic dianion, whereas the cathodic
current at −0.04 V corresponds to the reduction of the biazulenic dication. For 2, the
oxidation potential is 0.28 V less positive, and the reduction potential is 0.13 V more
negative compared to the corresponding values documented for 1, which is consistent
with the electron-releasing nature of the methyl substituents in 2. The smaller effect of
1,3-methylation of the 2-isocyanoazulene scaffold on its reduction (vs. oxidation) potential
reflects the lack of orbital density at the 1,3-carbon atoms in the LUMO of 1 [15]. In general,
incorporation of an electron donating substituent at an odd-numbered position of the
azulenic framework results in raising the energy of its HOMO while much less significantly
affecting the energy of its LUMO (Figure 1b) [15,16].
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Figure 4. Cyclic voltammogram of ca. 0.02 M solution of 2 in 0.1 M [nBu4N][PF6]/CH2Cl2 vs.
external Cp2Fe/Cp2Fe+ at 25 ◦C. Scan rate = 100 mV/s.

2.2. Preparation of Complexes [(OC)5Cr(2-Isocyano-1,3-X2-Azulene)], X = H, CH3, CO2Et, Br,
and CN

Combining an orange solution of [Cr(CO)5(THF)], generated in situ by UV-photolysis
of Cr(CO)6 in THF, with 2-isocyanoazulene ligands 1, 2, 3, or 5, afforded the corresponding
deeply colored, air- and thermally stable complexes [Cr(CO)5(CNAz)] complexes 6, 7, 8,
and 10 (Scheme 2). Treatment of [(OC)5Cr(2-isocyanoazulene)] (6) with two equivalents of
N-bromosuccinimide resulted in bromination of the carbon–atom positions 1 and 3 of the
coordinated 2-isocyanoazulene to give, nearly quantitatively, complex 9, which features
the 2-isocyanoazulene ligand 4 bound to the Cr(CO)5 unit (Scheme 2). This bromination
reaction represents a relatively rare example of selectively modifying a C≡NR ligand’s
substituent R without affecting the structural transformation/integrity of the rest of the
complex [10,11,19].

Scheme 2. Syntheses of (OC)5Cr(CNAz) complexes 6–10.

2.3. X-Ray Crystallographic Analysis of 6, 7, 8, and 10

Single crystals of 6, 7, 8, and 10 suitable for X-ray diffraction studies were grown
by diffusion of pentane layered over a CH2Cl2 solution of 6, 7, or 10 and by slow evap-
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oration of the solvent from a CH2Cl2 solution of 8. The molecular structures of com-
plexes 6, 7, 8, and 10 determined by single crystal X-ray crystallography are illustrated
in Figure 5. For 6, one of two crystallographically independent molecules is
shown (Figure 5a). One of the ethyl ester groups in the X-ray structure of 8 exhibits a minor
positional disorder over two occupancies (Figure 5c and Figure S6). The pertinent metric
data for the above new [(OC)5Cr(CNR)] species, along with those for [(OC)5Cr(CNtBu)] [32],
[(OC)5Cr(CNC2F3)] [10], and [(OC)5Cr(CNp-FArDArF2)] [6], are collated in Table 2. For 6, 7,
8, and 10, the Cr–CNR bond length, which reflects the π-acceptor/σ-donor ability of the
CNR ligand (particularly, the extent of π back-bonding interaction between the chromium(0)
center and the isocyanide) [33], is significantly shorter than that in [(OC)5Cr(CNtBu)]. More-
over, the Cr–CNR bond distance of 1.937(2) Å in 10 is 0.03 Å shorter than the corresponding
Cr–C bond length in [(OC)5Cr(CNp-FArDArF2)] and even slightly shorter (albeit at the edge
of the 3σ criterion margin) than the Cr–CNR bond distance of 1.942(2) Å documented for
perfluorinated [(OC)5Cr(CNC2F3)] (Table 2). While 10 and [(OC)5Cr(CNC2F3)] feature the
shortest Cr–CNR bonds among the compounds listed in Table 2, these complexes have
the longest Cr–COtrans bonds, which is consistent with the CNR and COtrans ligands being
in direct competition with each other for Cr(dπ)→ L(pπ*) back-bonding. In addition, the
data in Table 2 show that 10 has the longest C–NR distance and the most bent C–N–C
angle (164.8(3)◦). Both of these features can be viewed as hallmarks of more pronounced
Cr(dπ)→ CNR(pπ*) back-bonding, exerting partial rehybridization of the N-atom toward
the sp2 configuration [3,4]. However, for a metal–isocyanide complex, deviation of the
C-N-C angles from linearity must be taken cum grano salis because the magnitude of such
deviation can be affected by steric constraints in the vicinity of the coordinated isocyano
junction and/or by crystal packing forces (cf. two crystallographically unique molecules of
6: Table 2; Figure 5a, Figures S4 and S5).

Table 2. Selected bond distances (Å) and angles (◦) for [(OC)5Cr(CNR)] complexes.

Complex d(Cr–CN) d(C≡N) d(Cr-COtrans) ∠C-N-C

[(OC)5Cr(CNtBu)] 1 2.016 1.150 1.872 177.9

6 2 1.974(4)
1.987(4)

1.155(4)
1.153(4)

1.879(4)
1.882(4)

178.(4)
170.5(3)

7 1.981(1) 1.165(2) 1.885(1) 178.9(2)

8 1.977(2) 1.163(2) 1.881(2) 168.9(2)

[(OC)5Cr(CNp-
FArDArF2)]

3
1.967(2) 1.162(3) 1.894(2) 172.6(2)

[(OC)5Cr(CNC2F3)] 4 1.942(2) 1.162(2) 1.909(2) 173.6(2)

10 1.937(2) 1.176(3) 1.901(3) 164.8(3)
1 [32]. 2 Data for two crystallographically independent molecules in the unit cell of 6. 3 [6]. 4 [10].



Molecules 2021, 26, 981 7 of 19

Figure 5. (a) One of two crystallographically independent molecules in the solid-state structure of 6 (the other molecule is
shown in Figure S5); (b) the solid-state structure of 7; (c) the solid-state structure of 8 (one ethoxy group shows a minor
disorder over two positions; also see Figure S6); (d) the solid-state structure of 10. All thermal ellipsoids are drawn at the
50% probability level.
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2.4. Electronic Absorption, Infrared, and 13C NMR Spectroscopic Studies of 6, 7, 8, 9 and 10

In our previous report [34], we showed via Time-Dependent Density Functional The-
ory (TDDFT) analysis that the highly intense bands at 522 nm in the electronic absorption
spectrum of dinuclear complex [{(OC)5Cr}2(µ-2,6-diisocyano-1,3-diethoxycarbonylazulene)]
(11, Figure 6) and at ca. 480 nm in the electronic absorption spectra of isomeric mononuclear
complexes [(OC)5Cr(2,6-diisocyano-1,3-diethoxycarbonylazulene)] (12 and 13, Figure 6) in
CH2Cl2 solutions arise from Cr(dπ)→ 2,6-diisocyano-1,3-diethoxycarbonylazulene(pπ*)
charge transfer excitations. By analogy, we assign the prominent bands at 409, 410, 441,
440, and 474 nm in the electronic absorption spectra (visible region) of CH2Cl2 solutions of
6, 7, 8, 9 and 10, respectively, to Cr(dπ)→ CNAz(pπ*) Metal-to-Ligand Charge Transfer
(MLCT) (Figure 7a). For example, the molecular orbitals involved in such MLCT in 10
are illustrated in Figure 7b. The energy of this MLCT transition decreases in the order
of increasing the electron withdrawing character of the substituents at the 1,3-positions
of the 2-isocyanoazulene ligand, i.e., H (6) ≈ CH3 (7) > CO2Et (8) ≈ Br (9) > CN (10)
(Table 3). The MLCT energy depresses further upon incorporating an electron with-
drawing substituent at an even-numbered position of the coordinated 2-isocyanoazulene
ligand. For instance, a 40 nm red shift of the Cr(dπ)→ CNAz(pπ*) MLCT band occurs
when the H-atom at position 6 of the azulenic scaffold in 8 is replaced with an isocyano
substituent (complex 12).

Figure 6. Di- and mononuclear complexes of 2,6-diisocyano-1,3-diethoxycarbonylazulene with
[Cr(CO)5] [34].

Figure 7. (a) Electronic absorption spectra of 6 (green), 7 (purple), 8 (blue), 9 (red), and 10 (black) in CH2Cl2; (b) DFT-
calculated molecular orbitals involved in Cr(dπ)→ CNAz(pπ*) MLCT for 10.
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Table 3. Properties of the MLCT (L = CNAz) bands observed in the electronic absorption spectra of 6,
7, 8, 9, and 10 in CH2Cl2 at 24 ◦C.

(OC)5Cr(CNAz) Complex λmax, nm υmax, cm−1

6 409 24,450
7 410 24,390
8 441 1 22,676
9 440 22,727
10 474 21,097

1 [19].

Coordination of an isocyanide ligand to the Cr(CO)5 motif exerts two mutually op-
posing effects on the vibrational force constant kN≡C and, hence, on the υN≡C stretching
frequency [4,6]. The σ-donation of the lone pair on the isocyanide’s carbon atom to the
metal center strengthens the C≡N bond, because the molecular orbital involving this lone
pair is antibonding with respect to the C≡N bond in the free isocyanide ligand. On the
other hand, the M(dπ)→ CNR(pπ*) back-bonding interaction weakens the C≡N bond. The
υN≡C bands at 2127, 2115, 2127, 2121, and 2114 cm−1 documented for the free isocyanides
1, 2, 3, 4, and 5, respectively, shift to higher energy by 11, 14, 13, 11, and 6 cm−1 upon
formation of the corresponding complexes 6, 7, 8, 9, and 10 (Table 4). While the σ-bonding
chromium-isocyanide interaction overpowers π-back-bonding in terms of its influence on
υN≡C, the relatively small blue shift in υN≡C accompanying the complexation of 5 to form
10 indicates a substantially higher π-acceptor/σ-donor ratio of 5 compared to those of 1, 2,
3, and 4.

Table 4. Infrared signatures of 6–10 and [(OC)5Cr(CNC6F5)] in υN≡C and υC≡O regions 1.

Complex υN≡C(A1),
cm−1

υC≡O(A1
(1)),

cm−1
νC≡O(A1

(2)),
cm−1

νC≡O(E),
cm−1

kC≡O,trans,
mdyne/Å

72 2129 2050 1957 1957 15.767
62 2138 2052 1957 1957 15.774
82 2140 2049 1959 1959 15.789
92 2132 2042 1963 1963 15.816

102 2120 2025 1972 1972 15.875
[(OC)5Cr(CNC6F5)] 3 2125 2041 1968 1968 15.877

1 Complexes are listed in order of increasing kC≡O,trans magnitude. 2 In CH2Cl2. 3 In pentane [12].

The FTIR spectra of 6–10 revealed typical υC≡O absorption profiles for the nearly C4v-
symmetric [M(CO)5L] complexes (Table 4). As in the case of many other [M(CO)5(CNR)]
complexes, the υC≡O(A1

(2)) band in the FTIR spectra of 6–10 is completely obscured by the
very intense υC≡O(E) band (e.g., Figure 8). This band overlap inherently limits precision
in determining the value of υC≡O(A1

(2)). The π-acceptor/σ-donor characteristics of the
isocyanide ligand in [(OC)5Cr(CNR)] affect electron richness of the Cr center, which, in
turn, is reflected in the magnitudes of the carbonyl vibrational force constants kC≡O,trans
and kC≡O,cis. The approximate values of these force constants can be deduced from the
υC≡O data by applying the Cotton–Kraihanzel approximation [35] or the newer variation
thereof developed by Karakaş and Kaya [36]. We employed the latter approach to calculate
the kC≡O,trans values for 6–10, as well as for [(OC)5Cr(CNC6F5)], from the corresponding
υC≡O(A1

(1)) and υC≡O(A1
(2)) experimental data. As shown in the right column of Table 4,

the magnitude of kC≡O,trans increases in the order 7 < 6 < 8 < 9 < 10 ≈ [(OC)5Cr(CNC6F5)].
Notably, there is a clear inverse-linear correlation between the 13C NMR chemical shifts δ
and the corresponding vibrational force constants kC≡O,trans for the above series of com-
plexes (Figure 9). Thus, the π-acceptor/σ-donor ratio of the 2-isocyano-1,3-dicyanoazulene
ligand 5 is comparable to that of CNC6F5.
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Figure 8. (a) IR-active υC≡O vibrational modes for [M(CO)5L]; (b) FTIR spectrum of 10 in CH2Cl2.

Figure 9. Plot of 13C NMR chemical shifts δ(13COtrans) vs. kCO,trans for the series of complexes 6, 7, 8, 9, 10, and
[(OC)5Cr(CNC6F5)] [12]. All 13C NMR data were recorded for solutions in CDCl3. The IR spectra of 6, 7, 8, 9, and 10 were
recorded for solutions in CH2Cl2, and the IR spectrum of [(OC)5Cr(CNC6F5)] was obtained for a solution in pentane.

Recently, we demonstrated the utility of 13C NMR δ(13COtrans) or δ(13COcis) vs.
δ(13CN) inverse-linear correlations in assessing the π-acceptor/σ-donor capabilities of
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6-substituted 2-isocyano-1,3-diethoxycarbonylazulene ligands in [(OC)5Cr(CNAz)] com-
plexes [19]. Similarly, Table 5 compiles the 13C NMR data documented for the [(OC)5Cr(CN)]
cores of 6–10 as well a few related complexes containing polyfluorinated isocyanide ligands.
Figure 10 features a graphical representation of the δ(13COtrans) vs. δ(13CN) data, whereas
the analogous δ(13COcis) vs. δ(13CN) plot is provided in Figure S7. The inverse-linear
correlations revealed in Figure 10 and Figure S7 underscore the electronic tunability of
the 2-isocyanoazulene ligand platform through 1,3-subsitution of the azulenic moiety and
further confirm that the π-acceptor/σ-donor ratio of the non-fluorinated isocyanide ligand
5 rivals those of perfluorinated CNC6F5 and CNC2F3.

Table 5. 13C NMR data for the [(OC)5Cr(CN)] core in complexes [(OC)5Cr(CNR)] dissolved in CDCl3.

Complex δ(13CN), ppm δ(13COtrans), ppm δ(13COcis), ppm

6 175.64 216.83 214.58
7 177.99 216.91 214.68
81 183.36 216.69 214.60
9 186.07 216.08 214.10
10 194.69 214.65 213.09

[(OC)5Cr(CNC6F5)] 2 193.8 214.6 213.3
[(OC)5Cr(CNC2F3)] 3 199.3 214.2 213.0

[(OC)5Cr(CNC(ClF)C(ClF2))] 3 208.2 212.0 212.0
[(OC)5Cr(CNCF3)] 4 211.1 211.5 211.7

1 [19]. 2 [12]. 3 [10]. 4 [8].

Figure 10. Plot of 13C NMR chemical shifts δ(13COtrans) vs. δ(13CN) for the series of [(OC)5Cr(CNR)] complexes listed in
Table 5. All 13C NMR data were collected for solutions in CDCl3.
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2.5. Electrochemical Studies

Complexes 6, 7, 8, and 10 undergo an irreversible, azulene-centered reduction with the
Ep,c values (vs. Cp2Fe/Cp2Fe+) spanning 0.68 V and becoming less negative in the order of
the decreasing net electron releasing character of the substituents X at positions 1 and 3
of the azulenic moiety: −2.06 V (7, X = CH3), −1.86 V (6, X = H), −1.56 V (8, X = CO2Et),
−1.38 V (10, X = CN); scan rate = 100 mV/s. The variable scan rate set of cyclic voltam-
mograms for 10 dissolved in CH2Cl2 containing [nBu4N][PF6] electrolyte is illustrated in
Figure 11a. At the scan rate of 1000 mV/s, 10 undergoes Cr-centered oxidation at the half-
wave potential E1/2(Cr0/+) = 946 mV (ic/ia = 0.8) vs. Cp2Fe/Cp2Fe+. In comparison, the
Cr0→ Cr+ oxidations of [(OC)5Cr(2,4,6-CNC6H2Cl3)] and [(OC)5Cr(4-CNC6H4CF3)] occur
at E1/2 = 771 mV (ic/ia = 0.92) and E1/2 = 706 mV (ic/ia = 0.91), respectively, as documented
by Johnston at the same scan rate of 1000 mV/s in CH3CN/[nBu4N]BF4] [37]. This indicates
that the π-acceptor/σ-donor ratio of 2-isocyano-1,3-dicyanoazulene (5) is substantially
higher than those of 2,4,6-trichlorophenyl isocyanide and 4-trifluoromethylphenyl iso-
cyanide. In fact, the half-wave redox potential of [(OC)5Cr(4-CNC6H4CF3)] nearly matches
that of 8 {E1/2(Cr0/+) = 777 mV, ic/ia = 0.83 at 100 mV/s scan rate, Figure 11b}. Thus,
2-isocyano-1,3-diethoxycarbonylazulene (3) is similar to 2,4,6-trichlorophenyl isocyanide
in terms of its electron donating/withdrawing characteristics as ligand. For 6 and 7, the
Cr0 → Cr+ oxidation is at least partially masked by irreversible oxidation of the azulenic
moieties in these complexes (Figures S8 and S9).
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3. Conclusions

In this work, we systematically considered the structural, spectroscopic (UV-vis, 13C
NMR, and FTIR), as well as electrochemical properties of the [(OC)5Cr(CNAz)] complexes
containing 1,3-substituted 2-isocyanoazulene ligands. While 2-isocyanoazulenes 1 and 2
may be viewed as thermally and air stable, nearly odorless congeners of the malodorous
and air- and thermally sensitive phenyl isocyanide and 2,6-xylyl isocyanide, respectively,
the benzenoid analogues of 3 and 5 (i.e., 2,6-dialkoxycarbonylphenyl isocyanide and
2,6-dicyanophenyl isocyanide), are presently unknown. In our experience, free 2-isocyano-
1,3-dibromoazulene 4, which would be analogous to 2,6-dibromophenyl isocyanide [38],
proved to have quite limited thermal stability and is, therefore, best formed through 1,3-
bromination of the already coordinated “parent” 2-isocyanoazulene 1. The π-acceptor/σ-
donor ratio of the 1,3-X2-substituted isocyanoazulene ligands increases in the order of X
being CH3 ≈ H < CO2Et < Br << CN. The relative π-acceptor/σ-donor ratio of 2-isocyano-
1,3-dicyanoazulene 5 rivals those of perfluorinated CNC6F5 and CNC2F3 ligands. In the
context of the net π-acidity of isocyanoarenes, the upper limit has belonged to CNC6F5 to
date. Thus, cyanation is an effective alternative to polyfluorination in enhancing the net
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π-acidity of isocyanoarene ligands, as we demonstrated in this study for the isocyanide
ligand platform featuring the highly polarizable azulenic π-system with a relatively small
aromatic delocalization stabilization energy [39].

4. Materials and Methods
4.1. General Procedures, Starting Materials, and Equipment

Synthetic operations that required inert atmosphere conditions were performed un-
der 99.5% argon purified by passage through columns of activated BASF catalyst and
molecular sieves. All connections involving the gas purification systems were made of
glass, metal, or other materials impermeable to air. Solutions were transferred via stainless
steel cannulas whenever possible. Standard Schlenk techniques were employed with a
double manifold vacuum line. Dichloromethane was distilled over CaH2. Tetrahydro-
furan (THF) and toluene were distilled over Na/benzophenone. Pentane was distilled
over Na/benzophenone dissolved in a minimum amount of diglyme. Triethylamine
was distilled over NaOH. Following purification, all distilled solvents were stored un-
der argon. Deuterated chloroform was purchased from Cambridge Isotope Laboratories
(Tewksbury, MA, USA) and stored over activated molecular sieves.

Infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR spectrometer
with samples sealed in 0.1 mm NaCl cells. NMR samples were analyzed on Bruker Avance
400 or 500 spectrometers. 1H and 13C NMR chemical shifts are given with reference to
residual solvent resonances relative to Si(CH3)4. 14N NMR chemical shifts are referenced
to liquid NH3 at 25 ◦C. A solution of N,N-dimethylformamide in CD2Cl2 was used as an
external 14N NMR reference {δ(14N) = 103.8 ppm vs. liquid NH3 at 25 ◦C}. UV-vis spectra
were recorded in CH2Cl2 at 24 ◦C using a CARY 100 spectrophotometer.

Cyclic voltammetric (CV) experiments on ca. 0.02 mM solutions of 6, 7, 8, and 10
were conducted at room temperature using an EPSILON (Bioanalytical Systems, INC.,
West Lafayette, IN) electrochemical workstation. The electrochemical cell was placed in an
argon-filled Vacuum Atmospheres glovebox. Tetrabutylammonium hexafluorophosphate
([nBu4N][PF6], 0.1 M solution in CH2Cl2) was used as the supporting electrolyte. CV data
were recorded using a three-component system consisting of a platinum working electrode,
platinum wire auxiliary electrode, and a glass encased non-aqueous silver/silver chloride
reference electrode with a scan rate of 100 mV/s. The reference Ag/Ag+ electrode was
monitored with the ferrocenium/ferrocene couple. Prior to each CV scan, IR compensation
was achieved by measuring the uncompensated solution resistance followed by incremental
compensation and circuit stability testing. Background CV scans of the electrolyte solution
were recorded before adding the analytes. All potentials (E1/2) were referenced to an
external ferrocene/ferrocenium couple.

Melting points are uncorrected and were determined for samples in capillary tubes
sealed under argon. Elemental analyses (C, H, N) were carried out by Chemisar/Guelph
Chemical Laboratories Ltd., ON, Canada or by Micro-Analysis Inc., Wilmington, DE, USA.
2-Amino-1,3-diethoxycarbonylazulene [40], acetic-formic anhydride [41], 2-isocyanoazulene
(1) [13], 2-isocyano-1,3-diethoxycarbonylazulene (3) [20], 2-isocyano-1,3-dicyanoazulene
(5) [21], and [(OC)5Cr(2-isocyano-1,3-diethoxycarbonylazulene)] (8) [19] were prepared
according to the literature procedures. All other reagents were obtained from commercial
sources and used as received. Davisil (200–425 mesh, type 60 Å) silica gel was used for
chromatographic purifications.

All Density Functional Theory (DFT) calculations were performed using the ORCA
(v.3.0.1) program [42]. Geometric optimizations for azulene and 10 were performed using
the BP86 functional [43,44] with a Def2-TZVP (Alrichs triple-ζ valence polarized basis
set) [45,46]. The resolution of identity approximation (RI) was used along with the Def2-
TZVP/J auxiliary basis set [47]. Single point energy calculations used to create images of
orbital densities were then performed using the B3LYP functional [48–50], a Def2-TZVP
basis set, and a Def2-TZVP/J auxiliary basis set [47,51]. The Cartesian coordinates for the
DFT-optimized structures of azulene and 10 are provided in Tables S6 and S7.
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4.2. Synthesis of 2-Formamido-1,3-Dimethylazulene

A 60 wt. % solution of sodium bis(2-methoxyethoxy)aluminum dihydride (Red-Al®)
in toluene (2.50 mL, 8.74 mmol) was slowly added to a cold (0 ◦C) solution of 2-amino-
1,3-diethoxycarbonylazulene (0.2513 g, 0.8746 mmol) in 25 mL of toluene over a period
of 1 h. The reaction mixture was stirred for 15 h at 70 ◦C, at which point the reaction
flask was opened to air, and its content was poured slowly into a beaker containing
50 mL of 10% aqueous NaOH. After 15 min of stirring to quench any remaining Red-
Al®, the organic layer was separated, and the aqueous fraction was extracted with Et2O
(1 × 30 mL). The organic fractions were combined, dried over anhydrous MgSO4, and
filtered. All solvent was removed from the filtrate in vacuo. The resulting dark red
oil (presumably, 2-amino-1,3-dimethylazulene) was dissolved in a minimum amount
of CH2Cl2, and this solution was added to a freshly prepared mixture of formic acid
(3.50 mL) and acetic-formic anhydride (2.95 mL). After stirring for 1.5 h, all volatiles
were removed on a rotary evaporator, and the residue was treated with 100 mL of 10%
aqueous NaHCO3 with stirring to quench/neutralize any remaining anhydride/acid.
The aqueous phase was extracted with CH2Cl2 (2 × 20 mL). The organic fractions were
combined and dried over anhydrous MgSO4. Filtration followed by solvent removal from
the filtrate on a rotary evaporator produced a dark residue, which was subjected to column
chromatography on silica gel using 15 vol. % Et2O in CH2Cl2 as eluent. A blue band was
collected, which gave 2-formamido-1,3-dimethylazulene (0.0945 g, 0.4743 mmol) in a 55%
yield as a blue powder after solvent removal and drying of the solid at 10−2 torr. Mp:
178–181 ◦C. In a CDCl3 solution, 2-formamido-1,3-dimethylazulene exists as a mixture
of two rotamers due to hindered rotation about the C-N bond. In the following NMR
data, resonances corresponding to the minor (cis) rotamer are designated with an asterisk.
1H NMR (400 MHz, CDCl3, 25 ◦C): δ 2.60 (s, 6H, CH3), 7.12 (t, 2H, H5,7, 3JHH = 10 Hz), 7.51
(t, 1H, H6, 3JHH = 10 Hz), 8.08 (d, 1H, NH, 3JHH = 11 Hz), 8.15 (d, 2H, H4,8, 3JHH = 10 Hz),
8.70 (d, 1H, CHO, 3JHH = 11 Hz); 2.53 (s, 6H, CH3*), 7.05 (t, 2H, H5,7*, 3JHH = 10 Hz), 7.41
(s, 1H, NH*), 7.48 (t, 1H, H6*, 3JHH = 10 Hz), 8.15 (d, 2H, H4,8*, 3JHH = 10 Hz), 8.55 (s, 1H,
CHO*) ppm. 13C{1H} NMR (125.8 MHz, CDCl3, 25 ◦C): δ 10.5 (CH3), 115.8, 122.4, 132.5,
135.9, 136.3, 141.2 (azulenic C), 164.2 (CHO); 10.6 (CH3*) ppm.

4.3. Synthesis of 2-Isocyano-1,3-Dimethylazulene (2)

Excess phosphorous oxychloride (0.243 mL, 2.61 mmol) was added to a solution of
2-formamido-1,3-dimethylazulene (0.450 g, 2.26 mmol) and freshly distilled triethylamine
(7.86 mL) in 50 mL of dry CH2Cl2 at room temperature. The reaction mixture was stirred
for 0.5 h and then quenched with 100 mL of 10% aqueous NaHCO3. The organic layer was
separated, and the aqueous phase was extracted with CH2Cl2 (3 × 30 mL). The organic
fractions were combined, dried over anhydrous MgSO4, and filtered. Solvent removal
from the filtrate in vacuo gave a green microcrystalline product, which was subjected
to column chromatography on silica gel using neat CH2Cl2 as eluent. A dark aqua-blue
band was collected, which afforded green crystalline 2 (0.379 g, 2.09 mmol) in a 93%
yield following solvent removal and drying at 10-2 torr. The isocyanide 2 can be further
purified via recrystallization from hexanes (slow evaporation). Mp: 99–101 ◦C. Anal. Calcd.
for C13H11N: C, 86.15; H, 6.12; N, 7.73. Found: C, 85.53; H, 5.90; N, 7.77. IR (CH2Cl2):
υN≡C 2115 cm−1. 1H NMR (400 MHz, CDCl3, 25 ◦C): δ 2.64 (s, 6H, CH3), 7.09 (t, 2H, H5,7,
3JHH = 10 Hz), 7.55 (t, 1H, H6, 3JHH = 10 Hz), 8.18 (d, 2H, H4,8, 3JHH = 10 Hz) ppm. 13C{1H}
NMR (125.8 MHz, CDCl3, 25 ◦C): 10.1 (CH3), 120.2, 122.7, 134.8, 135.7, 139.2 (azulenic C),
170.7 (isocyano C) ppm. 14N NMR (36.2 MHz, CDCl3, 25 ◦C): 172.3 ppm. UV-vis (CH2Cl2,
λmax (log ε)): 732 (2.34), 671 (2.68), 624 (2.70), 354 (3.81), 338 (3.68), 298 (4.71), 290 (4.80),
242 (4.26) nm.

4.4. Synthesis of [(OC)5Cr(2-Isocyanoazulene)] (6)

A red-orange solution of [Cr(CO)5(THF)] was prepared in situ by photolysis of
Cr(CO)6 (0.120 g, 0.540 mmol) dissolved in 50 mL of THF using a Hanovia Hg 450 W
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immersion lamp. Upon completion of the photolysis as judged by IR of the mixture in
the υC≡O region, a solution of 2-isocyanoazulene (0.125 g, 0.816 mmol) in 50 mL of THF
was added via cannula to the [Cr(CO)5(THF)] solution at room temperature. The resulting
mixture was stirred for 18 h. The reactor was then opened to air, and its content was con-
centrated to dryness under vacuum. The residue was subjected to column chromatography
on silica gel using 1:1 CH2Cl2 / hexanes eluent. The first eluted band, dark green in color,
afforded microcrystalline 6 (0.112 g, 0.324 mmol) in a 60% yield after solvent removal and
drying of the product at 10−2 torr. Mp: 137–139 ◦C. Anal. Calcd. for C16H7CrNO5: C,
55.67; H, 2.04; N, 4.06. Found: C, 55.34; H, 2.08; N, 3.97. IR (CH2Cl2): υN≡C 2138 m, υC≡O
2052 m (A1

(1)), 1999 vw (B1), 1957 s (A1
(2) + E) cm−1. 1H NMR (400 MHz, CDCl3, 25 ◦C):

δ 7.29 (s, 2H, H1,3), 7.33 (t, 2H, H5,7, 3JHH = 10 Hz), 7.69 (t, 1H, H6, 3JHH = 10 Hz), 8.34 (d,
2H, H4,8, 3JHH = 10 Hz) ppm. 13C{1H} NMR (CDCl3, 125.8 MHz, 25 ◦C): δ 113.68, 125.59,
131.44, 138.61, 139.16 (azulenic C), 175.71 (isocyano C), 214.64 (CO, cis), 216.90 (CO, trans)
ppm. UV-vis (CH2Cl2, λmax (log ε)): 409 (4.21), 284 (4.83), 236 (4.69) nm.

4.5. Synthesis of [(OC)5Cr(2-Isocyano-1,3-Dimethylazulene)] (7)

A red-orange solution of [Cr(CO)5(THF)] was prepared in situ by photolysis of
Cr(CO)6 (0.097 g, 0.441 mmol) dissolved in 60 mL of THF over a period of 2.5 h using a
Hanovia Hg 450 W immersion lamp. A solution of 2 (0.100 g, 0.552 mmol) in 20 mL of THF
was added via cannula to the Cr(CO)5(THF) solution at room temperature. The reaction
mixture gradually turned dark green and was stirred for 16 h. All solvent was removed
under vacuum to provide a dark residue, which was subjected to column chromatography
on silica gel using neat CH2Cl2 to elute a dark green band. The collected dark green
solution was then concentrated to dryness under reduced pressure. The resulting solid was
recrystallized via slow evaporation of CH2Cl2 to afford green crystals of 7 (0.110 g, 0.294
mmol) in a 67% yield. Mp: 160–164 ◦C (dec). Anal. Calcd. for C18H11CrNO5: C, 57.92; H,
2.97; N, 3.75. Found: C, 57.98; H, 3.11; N, 3.72. IR (CH2Cl2): υN≡C 2129 m, υC≡O 2001 w
(B1), 2050 m (A1

(1)), 1957 s (A1
(2) + E) cm-1. 1H NMR (500 MHz, CDCl3, 25 ◦C): δ 2.63 (s,

6H, CH3), 7.10 (t, 2H, H5,7, 3JHH = 10 Hz), 7.53 (t, 1H, H6, 3JHH = 10 Hz), 8.17 (d, 2H, H4,8,
3JHH = 10 Hz) ppm. 13C{1H} NMR (CDCl3, 125.8 MHz, 25 ◦C): δ 10.02 (CH3), 119.70, 122.84,
134.87, 135.30, 138.88 (azulenic C), 177.99 (isocyano C), 214.68 (CO, cis), 216.91 (CO, trans)
ppm. UV-vis (CH2Cl2, λmax (log ε)): 724 (2.76), 620 (2.91), 410 (4.23) nm.

4.6. Synthesis of [(OC)5Cr(2-Isocyano-1,3-Dibromoazulene)] (9)

N-Bromosuccinimide (0.017 g, 0.096 mmol) was added to a solution of 6 (0.017 g,
0.048 mmol) in 50 mL of CH2Cl2. The resulting mixture was stirred for 1.5 h at room
temperature. The solvent was then removed under reduced pressure to give a green
residue, which was subjected to column chromatography on silica gel using neat hexanes
to elute a light green band. This green solution was concentrated to dryness, and the solid
was dried at 10−2 torr to afford green powdered 9 (0.023 g, 0.046 mmol) in a 96% yield.
Anal. Calcd. for C16H5CrNO5Br2: C, 38.20; H, 1.00; N, 2.78. Found: C, 37.58; H, 1.21; N,
2.68. IR (CH2Cl2): υN≡C 2132 m, υC≡O 2042 s (A1

(1)), 1963 vs (A1
(2) + E) cm−1. 1H NMR

(400 MHz, CDCl3, 25 ◦C): δ 7.42 (t, 2H, H5,7, 3JHH = 10 Hz), 7.74 (t, 1H, H6, 3JHH = 10 Hz),
8.33 (d, 2H, H4,8, 3JHH = 10 Hz) ppm. 13C{1H} NMR (CDCl3, 125.8 MHz, 25 ◦C): δ 98.77,
126.32, 135.12, 138.16, 140.93, (azulenic C), 186.07 (isocyano C), 214.10 (CO, cis), 216.08 (CO,
trans) ppm. UV-vis (CH2Cl2, λmax (log ε)): 440 (4.19), 356 (4.19), 299 (4.70), 235 (4.71) nm.

Note: Free 2-isocyano-1,3-dibromoazulene ligand 4 can be generated via bromination
of 2-aminoazulene with 2 equivalents of N-bromosuccinimide followed by formylation of
the resulting 2-amino-1,3-dibromoazulene and subsequent dehydration of the resulting
2-formamido-1,3-dibromoazulene using the procedure described for the synthesis of 2.
However, while 4 was characterized in solution by FTIR and NMR, this compound proved
to be exceedingly thermally sensitive to be isolated pure in the solid state. IR (CH2Cl2):
υN≡C 2121 cm−1. 1H NMR (400 MHz, CDCl3, 25 ◦C): δ 7.42 (t, 2H, H5,7, 3JHH = 10 Hz), 7.78
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(t, 1H, H6, 3JHH = 10 Hz), 8.38 (d, 2H, H4,8, 3JHH = 10 Hz) ppm. 13C{1H} NMR (100.6 MHz,
CDCl3, 25 ◦C): 99.11, 126.23, 134.91, 139.10, 141.74 (azulenic C), 175.30 (isocyano C) ppm.

4.7. Synthesis of [(OC)5Cr(2-Isocyano-1,3-Dicyanoazulene)] (10)

A red-orange solution of [Cr(CO)5(THF)] was prepared in situ by photolysis of
Cr(CO)6 (0.145 g, 0.659 mmol) dissolved in 70 mL of THF over a period of 3 h using
a Hanovia Hg 450 W immersion lamp. A solution of 2-isocyano-1,3-dicyanoazulene
(0.200 g, 0.984 mmol) in 20 mL of THF was added via cannula to the [Cr(CO)5(THF)]
solution at room temperature. The reaction mixture gradually turned dark brown and
was stirred for 17 h. All solvent was removed under vacuum to provide a dark orange-
brown residue, which was subjected to column chromatography on silica gel using neat
CH2Cl2. The orange-colored third band was collected and concentrated to dryness un-
der reduced pressure. The resulting orange-brown residue was recrystallized via slow
evaporation of CH2Cl2 to afford orange crystalline 10 (0.050 g, 0.126 mmol) in a 19% yield.
Mp: 197–201 ◦C (dec). Anal. Calcd. for C18H5CrN3O5: C, 54.70; H, 1.28; N, 10.63.
Found: C, 54.60; H, 1.47; N, 10.43. IR (CH2Cl2): υC≡N 2222 w, υN≡C 2120 m, υC≡O 2025
s (A1

(1)), 1972 s (A1
(2) + E) cm−1. 1H NMR (500 MHz, CDCl3, 25 ◦C): δ 7.95 (t, 2H, H5,7,

3JHH = 10 Hz), 8.16 (t, 1H, H6, 3JHH = 10 Hz), 8.74 (d, 2H, H4,8, 3JHH = 10 Hz) ppm. 13C{1H}
NMR (CDCl3, 125.8 MHz, 25 ◦C): δ 95.16 (cyano C), 112.57, 133.00, 139.72, 142.63, 143.14
(azulenic C), 194.69 (isocyano C), 213.09 (CO, cis), 214.65 (CO, trans) ppm. UV-vis (CH2Cl2,
λmax (log ε)): 734 (2.55), 474 (4.32), 360 (4.23) nm.

4.8. X-ray Crystallographic Work

Single-crystal X-ray diffraction data were collected using graphite-monochromated
MoKα radiation (λ = 0.71073 Å) on Bruker APEX 2 diffractometers equipped with a SMART
CCD area detector. The Cambridge Crystallographic Data Centre (CCDC) entries 1,536,382,
1,536,384, 1,536,383, 1,449,131, 1,536,385 contain the supplementary crystallographic data
for compounds 2, 6, 7, 8, and 10, respectively. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/data_request/cif; by emailing data_request@ccdc.cam.ac.uk; or by
contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2
1EZ, UK; fax: +44-1223-336033.

Crystal data for 2, C13H11N (M = 181.23 g/mol): orthorhombic, space group Pbca
(no. 61), a = 13.789(3) Å, b = 9.154(2) Å, c = 15.737(3) Å, V = 1986.3(6) Å3, Z = 8, T = 100(2)
K, µ(MoKα) = 0.071 mm−1, Dcalc = 1.212 g/cm3, 20632 reflections collected (3.70◦ ≤ Θ ≤
30.10◦), 2903 unique (Rint = 0.070). The final R1 was 0.058 (I > 2σ(I)), and wR2 was 0.155
(all data).

Crystal data for 6, C16H7CrNO5 (M = 345.23 g/mol): monoclinic, space group P21/c
(no. 14), a = 7.3181(8) Å, b = 33.828(4) Å, c = 13.3970(12) Å, β = 115.582(5), V = 2991.4(6) Å3,
Z = 8, T = 100(2) K, µ(MoKα) = 0.789 mm−1, Dcalc = 1.533 g/cm3, 29797 reflections collected
(1.20◦ ≤ Θ ≤ 26.41◦), 6118 unique (Rint = 0.0956). The final R1 was 0.0522 (I > 2σ(I)), and
wR2 was 0.1303 (all data).

Crystal data for 7, C18H11CrNO5 (M = 373.28 g/mol): monoclinic, space group
P21/c (no. 14), a = 14.0814(9) Å, b = 16.5225(10) Å, c = 7.3496(5) Å, β = 103.8080(1),
V = 1660.54(18) Å3, Z = 4, T = 100(2) K, µ(MoKα) = 0.717 mm−1, Dcalc = 1.493 g/cm3, 23401
reflections collected (1.49◦ ≤ Θ ≤ 29.52◦), 4610 unique (Rint = 0.0210). The final R1 was
0.0340 (I > 2σ(I)), and wR2 was 0.0933 (all data).

Crystal data for 8, C22H15CrNO9 (M = 489.35 g/mol): monoclinic, space group
C2/c (no. 15), a = 23.9424(14) Å, b = 15.9966(9) Å, c = 12.3639(7) Å), β = 116.633(1),
V = 4232.9(4) Å3, Z = 8, T = 100(2) K, µ(MoKα) = 0.596 mm−1, Dcalc = 1.536 g/cm3, 27455
reflections collected (1.59◦ ≤ Θ ≤ 27.88◦), 5047 unique (Rint = 0.0337). The final R1 was
0.0343 (I > 2σ(I)), and wR2 was 0.0864 (all data).

Crystal data for 10, C18H5CrN3O5 (M = 395.25 g/mol): triclinic, space group P-1
(no. 2), a = 6.1716(14) Å, b = 9.244(2) Å, c = 15.070(3) Å, α = 85.048(4)◦, β = 87.266(4)◦,
γ = 76.705(4)◦, V = 833.2(3) Å3, Z = 2, T = 100(2) K, µ(MoKα) = 0.723 mm−1,

www.ccdc.cam.ac.uk/data_request/cif
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Dcalc = 1.575 g/cm3, 9244 reflections collected (1.36◦ ≤ Θ ≤ 25.00◦), 2929 unique
(Rint = 0.0309). The final R1 was 0.0426 (I > 2σ(I)), and wR2 was 0.1089 (all data).

Supplementary Materials: The following are available online: X-ray crystallographic details for 2, 6,
7, 8, and 10; 13C NMR δ(COcis) vs. δ(CN) trend plot, cyclic voltammograms for 6 and 7, and XYZ
Cartesian coordinates for azulene and 10.
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