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A B S T R A C T   

For over 150 years the local health departments of England have been critical in controlling 19th and 20th century 
infectious epidemics. However, recent administrative changes have hollowed out their flexibility to serve 
communities. We use administrative data on past budgetary allocations per capita to public health departments 
at upper tier local areas (UTLAs) of England to examine whether public health funding levels were correlated 
with more rapid control of the first wave of the COVID-19 pandemic between March and July of 2020. The 
dependent variable was the number of days between a UTLA’s 10th case of COVID-19 and the day when new 
cases per 100,000 peaked and began to decline. Our models controlled for regional socio-economic factors. We 
found no correlation between local public health expenditure and the speed of control of COVID-19. However, 
overall public expenditure allocated to improve local areas helped reduce time to reach peak. Contrary to 
expectation, more dense areas such as London experienced shorter duration. Higher income areas had more rapid 
success in accelerating the time of the first peak in the first wave of their local COVID-19 incidence. We 
contribute to understanding the impact of how public expenditure and socio-economic factors affect an epidemic.   

Background and motivation 

England has a glorious history of contributing to the practice of 
public health. The Public Health Acts of 1848 and 1874 conceived local 
health departments schools of public health where the establishment of 
a professional public health workforce was widely credited with Eng
land’s remarkable health revolution (Szreter, 1988). England’s local 
public services staff built the sewers and passed the local ordinances 
responsible for better housing, safer food, and ultimately dramatic 
control of regular cycles of contagious illnesses including cholera, 
typhoid, tuberculosis, diphtheria, etc. In the contentious debate over 
attributing causes to improvements in health, Szreter (1988) notes that 
the classic study by McKeown (McKeown et al., 1975) conservatively 
attributes to public health measures a mortality reduction of 25%. 

Given its historical legacy and centuries’ long lead in developing the 
profession and practice of public health, one would have expected that 

England would have successfully responsed to the 2020 COVID-19 
pandemic. Historically infectious disease outbreaks have been con
tained when local public health officials recognize cases, modify be
haviors of close contacts, and take general measures in behavioral 
change among citizens and leaders. Therefore, variation in recent 
funding levels for local health departments may be correlated with the 
ability of health officials to execute outbreak control measures. If his
torical expenditures show little connection to the control of COVID, it 
should lead to renewed consideration of ways to spend funds on local 
public health operations in a way that makes them more prepared to 
control infectious outbreaks. We seek to understand local public health 
preparedness for containing infectious disease outbreaks by determining 
the extent to which variation in local-level public health expenditure 
contributed to shortening the number of days to reach the peak infection 
level during the first wave of the pandemic from March to July of 2020. 

The period of 20 March to 31 July is recognized as the initial wave of 
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COVID-19 in England (Marmot et al., 2020). Restricting our focus to the 
first wave offers a more appropriate path to answer questions about how 
well prior investments in public health prepared local areas to control a 
new outbreak. As the pandemic in England continued, supplemental 
public health funding was released to local areas in patterns and 
amounts that have not yet been systematically made public. These funds 
would have given local areas a chance to upgrade their approach to 
outbreak control (Iabuci, 2020). The disbursement of public health 
funds in late 2020 is likely to have been correlated with both the prior 
public health investments as well as the early 2020 rates of COVID-19, 
thereby, making it counterproductive to use outcomes from the latter 
half of 2020 to examine the impact of pre-COVID era public health 
spending. 1Therefore, looking at time to first peak and its relationship to 
public health spending at a geographic level is indicative of how well 
public health is (or not) working at the community level and how pre
pared public health was (or note) at the start of the pandemic. Extending 
the time horizon fundamentally shifts our focus from public health’s 
ability to respond and react to the outbreaks to learning to do better over 
time conditional on new resources and experience. 

We focus on the local areas of England known as upper-tier local 
authorities (UTLAs). Sub-national levels in the UK exhibited different 
levels of COVID-19 infection rates (Corona Virus Daily Data, 2020; 
Landler, 2020; The Office of National Statistics, 2020a). For the period 
where a clear bend in infections had taken place, we observe 
wide-spread local variations that persists when the data is aggregated to 
the nine English regions (see Fig. 1a & b) for the first wave (March to 
July 2020). Local health department functions are relevant to infectious 
disease control because the process of communicable disease control 
requires the capacity to collect and process local epidemiological data 
allied with informative local advocacy. Historically, local health de
partments played an immense role in data collection and policy for
mation that led to reforms such as the public financing of a sewer 
construction, a bully pulpit to promote hand hygiene, or a multi-sectoral 
consortium to change food production practices (Cutler & Miller, 2005). 
Local health departments can often succeed even without a national 
backing if they are politically astute and equipped with a trusted public 
health workforce. 

For decades, preparedness for public health crises included local 
health departments in conjunction with national and regional public 
health officials. The local workforce’s role wrested with rapid detection 
of outbreaks and rapid measures to stem the spread of infection (Mid
dleton, 2017). Following the principles held in public health practice 
(Padamsee, 2018), local health departments are supposed to have built 
up channels of communication with citizens and local institutions such 
as schools, businesses, and politicians as part of the infrastructure of 
preparedness and community engagement. As such, local public health 
infrastructure is a source of potential variation in a pandemic’s rate of 
spread within the area. 

Citizens’ capacity, willingness to isolate, and ability to observe 
public health measures are additional sources of variation. The capacity 
to comply with lockdown orders and follow recommendations for pro
tective behavior depend on income, employment structure and local 
infrastructure such as accessibility of delivery services for necessary 
consumption. Economic conditions that would play a role in a pan
demic’s effect on health status are income-based poverty, employment 
status, and the stock of affordable housing. Population density and its 
age composition also matter. 

In 2012, the UK’s Health and Social Care Act (HSCA) moved the 

responsibility to commission public health services from the National 
Health Service (NHS) to ‘upper tier’ (‘county council’) or ‘unitary’ 
(‘metropolitan’) local authorities. The HSCA gave local authorities a 
statutory duty to improve their population’s health and provided nearly 
3 billion pounds in ring-fenced funds to enable them to implement their 
public health activities (Public Health England, 2015). These local 
health authorities received technical support from Public Health En
gland (PHE) through its central office and 9 regional offices. Local au
thorities were to carry out prescribed and non-prescribed functions and 
track their own spending. Data suggests local public health expenditure 
per capita varies widely across UTLAs in England with a coefficient of 
variation at 36%. Local public health expenditure is separate (ring-
fenced) from the NHS budget that pays for healthcare, where NHS 
spending per capita is relatively equal and delivered according to a 
standardized formula across the UK. 

While there are reasons to expect that the geographical variations in 
local public health spending should be related to the variations in 
COVID-19 control, in the case of England, there are reasons to doubt the 
efficacy of the spending. Austerity measures since 2010 have cut local 
government and social welfare budgets by 40%. Local governments are 
stressed in addressing social determinants of health with diminished 
resources. In addition, the prescribed areas of public health spending in 
the HSCA give local health departments little latitude to spend funds on 
pandemic preparedness and cross-cutting engagement. As can be seen 
from the allocations to local public health in Fig. 2, the largest expen
ditures are in categorical programs in child health, substance use, and 
sexual health (Public Health England, 2015). 

Even though local jurisdictions may have budgeted their public 
health funds in the past to other priorities besides pandemic prepared
ness, it is still plausible that having more public health assets offers a 
health department capacity to redirect or exhaust reserve funds. Many of 
the most successful responses to COVID-19 in East and Southeast Asia 
were staffed by health departments that had the administrative flexi
bility to draw public health nurses and sanitarians away from other 
duties (Tran BX, Hoang MT, Pham HQ, 2020; You, 2020). The additional 
capability, reflected in historically higher per capita sending, could and 
should have enabled a local health department to shift the resources into 
case detection, tracking, counseling, and communications for behavior 
change. This would result in a shorter interval between the epidemic’s 
start and its first peak. One may expect that a quicker resolution of the 
epidemic would translate to a relatively lower peak daily new case per 
100,000. Although COVID-19 requires multiple levels of specialized 
interventions, the existing pre-pandemic public health infrastructure 
should provide protection against the impact of the pandemic if struc
tured adequately. The duration of time to reach peak incidence is an 
indicator of a UTLA’s ability to respond quickly to control the outbreak 
of the pandemic. The hypothesis tested in this paper centers on the 
following precept: local-level public health infrastructure should influ
ence the spread and impact of COVID-19 (Cole & Fielding, 2007; Mid
dleton, 2017). 

We thus hypothesize that higher public health expenditure can 
shorten the time to reach peak infection level over a local area. Our 
hypothesis will be tested for UTLAs in England and not for the entire UK 
due to 1998 devolution allowing various degrees of autonomy to Scot
land, Wales and Northern Ireland over health and social services policies 
and the national variation in containment policies (Pope & Waters, 
2016). Broad policies affecting NHS are mandated from the UK central 
government, but our data shows that variation in local health depart
ment spending occurs in England (Torrence, 2019). 

We chose to study both size of the peak as well as duraction to peak 
instead of mortality for two reasons. First, the total number of deaths 
reflects both access to and outcomes of NHS funded hospital care. Sec
ond, dynamic changes in death rates in early 2020 were driven heavily 

1 Analysis examining the second wave would be testing a different hypothesis 
than the one tested here. The dependent variable itself is harder to define as the 
pandemic seemed to have been peaking by end of 2020 after the first wave. We 
have examined the possible suggestion that consideration of data after July 
should be a robust test for our results here; we do not find anything that 
contradict the results of this paper (see Annex V). 
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by shifts in the age composition of cases as well as rapid improvements 
in the medical management of cases. Thus, the time to bend a mortality 
curve is less reflective of the local health department’s ability to control 
cases.2 Further, while deaths and health impacts of COVID-19 infections 
is related to comorbidity (Sorci et al., 2020) direct linkages between 

becoming infected due to comorbidity has not been reported and can be 
ignored. We note that the incidence of deaths fell after the peak infection 
rate has been reached. For example, London areas reached their peak by 
late April 2020 and experienced the second lowest death rates after that 
having had the highest rate before that date. Thus, persistence of in
fections induced deaths from COVID-19. 

Related work 

This paper contributes to understanding geographical and ecological 
factors that affected the spread of COVID-19 in England. The UK Office 

Fig. 1. a: Unadjusted Heat map of days to reach peak by UTLAa, aThis heat map shows variation in days to reach peak COVID-19 incidence across UTLAs in England. 
See Annex I for calculation of days to reach peak from incidence data. COVID-19 incidence data source: ONS, time period March–July 2020, (The Office of National 
Statistics, 2020a). Figure 1b: Variation in time to reach COVID-19 peak across Englanda, aData source, the same as 1a. 
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NHS health check , 
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Public mental 
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Public health advice to NHS 
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Fig. 2. Distribution of Local Public Health Expenditure by Types of Spendinga, aSource: Ministry of Housing, Communities & Local Government Revenue Account 
Budget (Public Health England, 2015). 

2 Deaths during the first wave indicate different relations to factors used in 
this paper. Marmot et al. (2020) show there is a great deal of difference be
tween the first wave deaths and subsequent deaths by region and the overall 
case fatality rate. 
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of National Statistics (ONS) reported that England saw the second 
highest excess mortality—measured weekly against averaged values 
from the previous 5 years for the same period –during the week ending 
21 February to the week ending 12 June, when compared with figures 
from 21 European countries (Aron & Muellbauer, 2020). Further, during 
spring and summer of 2020, England had the longest period of excess 
mortality of these countries after the onset of COVID-19 (Campbell and 
Morgan, 2020). Duration of the epidemic is a likely factor in excess 
mortality. By 24 April 2020, the COVID-19 death rate per 100,000 was 
shown to be higher in local areas with larger Black or Asian populations 
and worse levels of self-reported health in England (Sá, 2020). In other 
countries also, the impact of COVID-19 pandemic reflects prevailing 
socio-economic conditions (Borjas, 2020). Marmot et al. (2020) examine 
COVID-19 mortality related to deprivation in areas of England. A focus 
on England is important due to the high level of excess mortality; and 
explaining aspects of how the spread of COVID-19 occurred through 
socio-economic factors is a natural question. 

Studies have examined the relation between the outbreak and health 
systems factors using cross-country data. Studies used varied 
geographical units: Allel et al. (2020) and Khan et al. (2020) use 
cross-country data from all regions of the world while Blondel, S. and 
Vranceanu, (2020) and Kapitsinis (2020) use data only from European 
countries or regions of a few European countries. The dependent vari
ables used are deaths/100,000 (Kapitsinis, 2020), case fatality rate 
(Blondel & Vranceanu, 2020; Khan et al., 2020) and infection rate 5, 10, 
and 15 days after detecting the first case (Allel et al. 2020). Results show 
that the COVID-19 situation improved with some features of the health 
systems and measures taken to tackle the outbreaks across region/
countries. Improved situation was not related to health expenditure 
measures (Blondel & Vranceanu, 2020; Khan et al. 2020); additionally, 
Kapitsinis (2020) concludes that lockdown measures may have been less 
effective due to deterioration of health systems in Europe over the recent 
years. 

These studies used COVID incidence rates from agreed upon sources 
at an earlier stage of the pandemic. The advantage for the current paper 
is that a focus on the regions within a country yields the use of data 
obtained through similar measurement methods. Incidence rates 
depend, even if adjustments are made, on testing which could not have 
been uniform across countries. Methods for attributing deaths to COVID 
could vary and be flawed although this data is important. Two studies 
report coefficient of variation greater than 1 for the dependent variable; 
this is not surprising and indicates that cross-country studies need 
cautious interpretation. 

The article also contributes to discussions unrelated to COVID. 
Literature emphasizing the social determinants of health rests on the 
recognition of the influences of non-health sectors on health (Marmot, 
2008); health can be affected by social factors including non-health 
social policy. Impacts of regional factors shaping general wellbeing 
has become a strong research subject in recent years (Chetty & Hendren, 
2018). 

Methods 

In this paper we explain the association between duration to peak 
incidence of COVID-19 cases at the UTLA level and corresponding local 
public health expenditure adjusting for socio-economic factors. Daily 
COVID-19 cases were first smoothed using a locally weighted regression 
of cases on days for UTLAs that registered more than 10 cases since 30 
January. The period between 1 and 10 cases may be long; however, 
never reaching 10 cases would make COVID a non-existent problem in 
the region in the period under consideration. Starting from a lower or 
higher number of cases does not change the results in the paper. We then 
used the smoothed time series of cases to compute daily incidence rates 
per 100,000 people (See Annex I). The peak is defined as the point where 
slope of the incidence curve is 0 signaling the rising incidence rate is 
followed by a declining incidence rate. A lower number of days to peak 

and reaching the peak does not mean that the pandemic is over, rather 
that it has been controlled. The peak did not remain flat for any of the 
UTLAs for a sustained period, so we are able to define the time to reach 
the peak clearly in all ULTAs except Oxfordshire (see Annex I). 

Covariates in our models are values reported after 2018 and chosen 
with considerations regarding collinearity and informed by the 
susceptible-infection-recovered (SIR) model. Our dependent and 
explanatory factors are measured at the UTLA level and can be catego
rized into five types. (1) Public Expenditure: Public health expenditure 
per capita (coded 390) was used for our main hypothesis. We also 
included an overall local expenditure per-capita (coded 799, Total Ser
vice Expenditure) to control for confounding with other expenditures at 
the UTLA level (Local authority revenue expenditure and financing, 
2020; Public Health England-Government of United Kingdom, 2020). 
Health expenditure can offer messaging affecting the disease-spreading 
behavior of both infected and susceptible groups in the SIR. (2) 
Socio-economic-status (SES) factors: We include median household in
come at the UTLA level measured weekly in GBP, percentage of the 
population experiencing fuel poverty and unemployment, and afford
ability of homes in the area. SES status affects the susceptible population 
by affecting exposure to infection through employment or dwelling 
type.3 (3) Density: Population density, measured as population per 
square kilometers, and infection disease would suggest that COVID-19 
spreads more in denser areas. We used a London borough dummy to 
adjust for the disparate income inequality and high population density. 
(4) Demography: We capture demographic makeup of areas by adjusting 
for the percent of the population under 18 and over 65. Over 65 are less 
likely to be exposed outside home and younger people have been less 
susceptible to COVID. (5) Health: Our models proxy local measures of 
health and wellbeing through percent feeling or experiencing social 
isolation among caregivers or receivers over 18. This can be an indicator 
for physical and psychological conditions. Our indicators for health were 
limited; we deemed self-reports about health conditions unusable as the 
variations across the UTLAs were small. One can think of comorbidities 
to play a role in prolonging the outbreak through making people ill for a 
longer period thus more infectious; in Annex V, we tested to examine if 
comorbidity may have played role. 

An epidemic would be clustered by regions; therefore, we sought to 
test whether there is geographical or spatial autocorrelation. We tested 
for spatial correlation through ordinary least square models (OLS) of the 
covariance in UTLA peak incidence (Drukker et al., 2013). We defined 
several alternative spatial weighting matrices based on contiguity and 
conducted Moran Tests to detect autocorrelation. We show in Annex III 
that spatial autocorrelation can be ignored. 

Factors affecting time to reach peak COVID-19 incidence are exam
ined through time to event models. The variations in time to reach the 
peak are hypothesized to be affected by variations in regional factors at 
the UTLA level through an accelerated failure time (AFT) model with log 
of time to peak as the variable to be explained by fixed time explanatory 
variables and a specified error term. Covariates act multiplicatively on 
the outcome of survival time. The baseline related hazard function was 
selected to be log-log distributed after finding the smallest Akaike In
formation Criterion (AIC, inverse of information matrix associated with 
the model) when judged against other specifications—exponential, 
Weibull, log-normal, and generalized gamma (Lee & Wang, 2003). As 
the Weibull distribution carries certain other advantages, results from 
models using the Weibull distribution are presented in Annex III. 

As the dependent variable is not censored in completion of days to 

3 Marmot (et al.) show a concave but positive univariate relation with percent 
of overcrowded household in local regions and age-adjusted Covid-19 death 
rate. As death affected London at the onset, there are multiple poorer regions of 
London which are crowded. The data for crowded household is from 2011; we 
note crowdedness is highly correlated with death from Covid. This result could 
be due to early deaths occurring in the London area. 
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peak and not far from normal, to understand the explanatory factors 
more intuitively, we run OLS models with log-dependent variables and 
used results to simulate policy scenarios (StataCorp LLC, 2019). These 
involved increasing the value of a single factor by one standard devia
tion for all UTLAs. We examined policy impact in cases only when a 
welfare improving policy would significantly reduce the COVID-19 
impact. For example, if analysis suggested improving housing prices 
increased the number of days to reach peak, then this factor was not 
adjusted in the simulation exercise. 

As many of the explanatory covariates may be correlated, we esti
mated the marginal contribution of each of the five clusters of factors 
toward the explained variation in the data. We examine the percentage 
of contribution to the R-square in the OLS model from each of the 
clusters. We use a Shapley decomposition method where the marginal 
contribution to the R-Square of each cluster is averaged over every 
permutated regression estimation using the five clusters (Lipovetsky & 
Conklin, 2001). Measures of the contributions for each cluster are 
adjusted for multi-collinearity (See Annex IV). 

Data collected for the covariates at the UTLA level are not available 
from the same source or for the same year; they are all official and for 
years after 2018, fuel poverty is reported for the year 2017. Data on 
COVID-19 were made available by ONS (The Office of National Statis
tics, 2020a); data on socio-economic variables came from PHE (Public 
Health England-Government of United Kingdom, 2020). Population 
density data were obtained from ONS (The Office of National Statistics, 
2020b); and finally the expenditure data were obtained from website of 
ministries of housing, communities & local government, published in 
June 2019 (House Pricing-Nat’l Statistics, 2020; Public Health England, 
2015). 

Results 

As of July 26, 2020, there were 147 UTLAs in England that reported 
more than 10 cases of COVID-19. Twenty-five of these areas reached a 
peak infection incidence within a week, with a non-normal distribution 
(see Fig. 3a). The mean (standard deviation) number of days to a peak 
was 22 (15.76) in the full sample of 147 with a maximum of 112 days 
and a median of 20. However, not all 147 UTLAs could be used in the 
analyses due to results regarding the distribution of the data as 
explained below (See also Annex II). The final analytical sample was 
reduced to 136. 

Table 1 summarizes the covariates for the analytical sample of 136 
UTLAs that was used for the final analyses. Summaries for the larger 
sample are nearly the same. OLS models without any log forms were 
tested for contiguity and distance auto-correlation. Moran tests 

(StataCorp LLC, 2019) for spatial correlation revealed weak contiguous 
correlation (p-value < 0.08) and strong distance correlation (p-value <
0.00). The adjusted spatial-weighted models did not reveal uniform 
divergence from OLS (Annex II). With logged dependent variable, and 
with logged continuous non-proportional independent variables, we 

Fig. 3. a:Histogram: Days to reach peak, by UTLA (full sample = 147), Figure 3b: Density curve of errors from OLS, logged days to reach peak, (days to reach peak >
3 days, analytical sample = 136 to obtain normality). 

Table 1 
Summary values of days to reach peak and independent variables used in the 
analysis (days to reach peak > 3 days, analytical sample = 136).  

Covariates, Year of 
Observation 

Sample 
Description 

Description 
of Fastest 
10% to reach 
peak 

Description 
of Slowest 
10% to reach 
peak 

P-Value 
Difference 
Fast and 
Slow 

Days to Reach Peak 23.30 
(15.24) 

5.63 (1.09) 56.69 (17.26) <0.001 

Public Health 
Expenditure/ 
1000 people 
(Local), 2019 

62.96 
(22.99) 

79.82 
(26.90) 

52.27 (16.57) <0.005 

Public 
Expenditure/ 
1000 people 
(Local), 2019 

1705 (431) 2228 (485) 1360 (349) <0.05 

Median Weekly 
Income, GBP, 
2018 

582 (84.5) 628.45 
(104.87) 

488.08 
(49.09) 

<0.001 

Ratio of Housing 
Cost to Income, 
2018 

11.29 
(2.26) 

13.88 (4.01) 6.87 (1.15) <.001 

Unemployment, 
2018 (%) 

4.37 (1.24) 5.16 (0.92) 4.21 (0.97) <0.05 

Fuel Poverty, 2017 
(%) 

8.77 (4.10) 12.18 (2) 10.44 (1.99) <0.05 

Population/Square 
KM, 2019 

2774.60 
(3298) 

8315 (4395) 903 (1332) <.001 

London Burroughs, 
number 

29 15 0  

Under 18, 2019 
(%) 

21 (2) 22.55 (2.72) 21.39 (2.63) 0.257 

Over 65, 2019 (%) 17 (4) 11.76 (3.44) 20.21 (4.46) <.001 
Feeling of Social 

Isolation (%) 
among Care 
Givers, 18+, 
2018 (%) 

31.9 (6.8) 29.48 (8.46) 31.69 (4.82) 0.409 

Feeling of Social 
Isolation Care 
Receivers, 18+, 
2018 (%) 

45.6 (4.6) 42.53 (4.5) 45.49 (2.21) <0.05 

Number of 
Observation 

136 16 13   
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ruled out both contiguous and distance spatial autocorrelation as a 
major source of bias. Our analyses showed that modeling the logged 
value of day to peak COVID-19 incidence produces a normal distribution 
for error terms and the dependent variable when low values of the 
dependent variable were eliminated (Fig. 3a–b, See also Annex II). We 
find that no spatial autocorrelation of any kind is present in the logged 
model with data from the analytical sample of 136 UTLAs. 

The average time to peak was 23.3 days with a standard deviation of 
15.24 for the analytical sample (See Table 1). There are considerable 
differences between those 10% of UTLAs that peaked fastest and those 
10% that were slowest. Table 1 indicates that the slowest group of 
UTLAs spent less on local expenditure, experienced lower income, had a 
larger proportion of people over 65 and care recipients that felt more 
isolated in comparison to the fastest 10%. The slowest group also were 
less densely populated; and half of the London area UTLAs were among 
the fastest. Interestingly, the slowest regions, although having lower 
income, experienced lower unemployment and fuel poverty. 

The results of survival models (See Table 2) provide the main re
lationships between the dependent variable and some transformations of 
the independent variables listed in Table 1; some were log transformed 
or divided into quartiles. Model 1 in Table 2 demonstrates that if on 
average a UTLA fell within Quartile 3 for per-capita public health 
expenditure it experienced a statistically significant increased time to 
reach peak compared to Quartile 1. These UTLAs required nearly 40 
percent more days to peak in comparison to the average UTLA falling 
within the lowest quartile level of expenditure (TR 1.38, p < 0.01). The 
result is unexpected, we expected time to peak to be lower with higher 

public health expenditure. However, the effects of public health 
spending on duration to peak become statistically insignificant for all 3 
quartiles with the inclusion of measures of SES and other factors (models 
2–5). Though insignificant, the direction of the coefficients for Quartiles 
3 and 4 of local public health expenditure is in the hypothesized direc
tion. One important policy factor to note is that the log of overall local 
expenditure per capita is significant; thus, higher overall local-level 
spending decreases the time to peak by as much as 50% in the full 
model (TR = 0.472, p < 0.01). 

Higher median income for a UTLA is associated with significantly 
faster time to peak incidence in Model 2, though it does not remain 
significant after adjusting for density variables. Impact from unem
ployment is small but indicates that higher levels of unemployment in
crease the time to peak with statistical significance. UTLAs in London 
reached peak incidence nearly 60 percent faster in comparison to those 
not in London, holding other factors constant (TR = 0.429, p < 0.001). 
Additionally, higher population density (TR 0.82, p < 0.001) and a 
higher proportion of residents over the age of 65 years decreased the 
time to reach peak incidence for a UTLA, whereas the proportion of 
residents under age 18 had no significant impact on time to reach peak 
incidence. We do not observe any impact from health indicators used. 
The instability of some of the factors indicate correlations among the 
factors; our intuition of introducing them as clusters seem logical. The 
results from the Weibull survival model specification (Annex III) are 
similar to the logged OLS model discussed below (Table 3). The OLS 
model is presented as it clarifies intuitive policy implications. 

The OLS models (See Table 3) used factors measured as continuous 

Table 2 
Survival model, log-log distribution, dependent variable: Logged days to reach peak (N = 136).  

COVARIATES Model 1 Model 2 Model 3 Model 4 Model 5 

Local health expenditure per capita      
Quartile 2 1.091 0.895 1.043 1.049 1.033  

(0.15) (0.12) (0.13) (0.12) (0.12) 
Quartile 3 1.381** 0.859 0.974 0.993 0.99  

(0.22) (0.15) (0.17) (0.17) (0.16) 
Quartile 4 1.283 0.77 0.812 0.829 0.844  

(0.23) (0.15) (0.15) (0.16) (0.16) 
Log net current expenditure per capita 0.153*** 0.363*** 0.517*** 0.472*** 0.472***  

(0.15) (0.10) (0.13) (0.12) (0.12) 
Median Income      

Quartile 2  0.763** 0.855 0.875 0.887   
(0.09) (0.09) (0.09) (0.10) 

Quartile 3  0.714** 0.857 0.806 0.844   
(0.11) (0.12) (0.11) (0.12) 

Quartile 4  0.533*** 0.827 0.779 0.8   
(0.10) (0.15) (0.14) (0.13) 

Housing price to income ratio  0.959** 1.016 1.02 1.014   
(0.02) (0.02) (0.02) (0.02) 

Unemployment  1.004 1.099** 1.078* 1.088**   
(0.05) (0.05) (0.05) (0.05) 

Fuel poverty  0.969 1.006 1.013 1.013   
(0.03) (0.03) (0.03) (0.03) 

London dummy   0.429*** 0.419*** 0.419***    
(0.07) (0.07) (0.07) 

Log of population density   0.892** 0.825*** 0.823***    
(0.05) (0.05) (0.05) 

Percentage < 18 years    1.003 1.005     
(0.02) (0.02) 

Percentage > 65 years    0.966** 0.971*     
(0.02) (0.02) 

Social isolation: carers 18+ 0.994      
(0.01) 

Social isolation: care users 18+ 0.992      
(0.01) 

/lngamma − 1.15*** − 1.30*** − 1.42*** − 1.44*** − 1.44*** 
Constant 1.832e+07** 107,627*** 4431*** 26,176*** 37,790*** 
AIC 247.5 218.9 192.3 191.3 193.4 

***p < 0.01, **p < 0.05, *p < 0.1, Expenditure variable is measured as per capita. Standard errors in parentheses. 
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variables. Although there are some differences between the results from 
OLS and the survival models, the trends are similar; and they are more 
similar to the Weibull model (Annex III) than to log-log distribution 
model (Table 2). We mostly draw attention to the signs and significance 
of the coefficients in the OLS model. In the full OLS model a departure 
for the model corresponding to the one in Table 2 is that the public 
health expenditure contributes to lowering number of days to peak 
although is still insignificant. The level of overall local expenditure is 
significant at 0.05 level, consistent with Table 2. Higher population 
density lowers days to reach peak contrary to expectation. The in
dicators for ill health did not affect days to reach peak.4 The results from 
Tables 1–3 are consistent. 

The overall expenditure and the health expenditure variables are 
correlated at 0.698 level; and used separately (with all non-expenditure 
variables in place). The effect of the overall expenditure variable is 
stronger while both are significant (see Annex V). The impact of overall 
expenditure is twice as large and more strongly statistically significant. 
The interaction suggests the greater importance of non-health system 
expenditure while one would have suspected that health system factors 
would play a stronger role, and perhaps even the only role. 

Tables 2 and 3 both report negative contribution to days to reach 
peak from density; less dense areas have longer peak time. This result 
can be questioned on epidemiological grounds because ordinarily pop
ulation density increases human contact frequency and exacerbates the 
spread of infectious disease. We explored this as best as we can. Taking 
the linear model, we see that the coefficients for this variable move away 
from zero with additional variables contributing marginally toward the 
R-square value (Table 3 models 3–5). This is possible if the age variables 
(in the tail of the age distribution) and ill health variables in less dense 
areas contribute to increasing the days to reach peak. However, we 

should not rule out omitted variable bias and that the density variable 
over-reports an impact due to its correlation with unobservable factors 
(Oster, 2019). The linear models helped us identify how much of the 
variation has been explained in this simple model; 62.3% of the varia
tion has been explained by Model 3. Use of Shapley decomposition 
method for R-Square (Lipovetsky & Conklin, 2001) reveals marginal 
contribution of each of the clustered covariates to explaining the vari
ations in days to reach the peak: Expenditure at 19.5%, SES factors at 
25%, population density along with London factor at 38%, demographic 
factors at 13% and health factors at 4.5%. This is consistent with the 
survival model that density factor remains strongly significant when 
included in any specification. 

The predicted value for days to reach peak COVID-19 incidence from 
the OLS logged dependent variable model yielded the baseline value at 
21.45, nearly 2 days lower than the actual observed value (reported also 
in Table 1). This value differs from the actual values in Fig. 1b where the 
figures from all UTLA are used. This entails that there were many actual 
days to peak that were higher than predicted by the model, but not by a 
large amount. Confidence intervals overlap when comparing the basic 
prediction, the bar marked as baseline, with the actual average value of 
duration to peak. As the value predicted is not different, we show results 
from an exercise where we ask by how many days would time to peak be 
shortened if every UTLA had improved socio-economic and expenditure 
indicators by a single standard deviation? Fig. 4 shows the mean days to 
reach the peak and the confidence interval for improvements of a single 
covariate. Largest improvements come from rise in total local expendi
ture, yielding a reduction of nearly 4 days from baseline, and from 
increasing income, yielding a reduction of more than 3 days, at the UTLA 
level. Fig. 4 quantifies the contribution of socio-economic factors toward 
shortening the number of days to reach the COVID-19 peak infection 
level in the UTLAs of England. 

Discussion 

We note London is denser and richer. Much of Midlands and the 
northern parts of England are less dense and poorer on average (The 

Table 3 
OLS, logged Model, Dependent Variable: Logged Days to Reach Peak (N = 136).  

Covariates Model 1 Model 2 Model 3 Model 4 Model 5 

Log of Local Health Expenditure per capita 0.187 − 0.144 − 0.287 − 0.172 − 0.159  
(0.197) (0.202) (0.189) (0.200) (0.204) 

Log of Net Current Expenditure per capita − 1.708** − 1.059** − 0.687** − 0.802** − 0.780**  
(0.236) (0.259) (0.249) (0.267) (0.266) 

Log Median Income  − 2.210** − 1.079* − 1.171* − 1.049*   
(0.590) (0.593) (0.592) (0.623) 

Ratio of house price to earning  − 0.00831 0.0283** 0.0310** 0.0239   
(0.0203) (0.0136) (0.0154) (0.0173) 

Unemployment  − 0.0151 0.0743* 0.0545 0.0678   
(0.0443) (0.0416) (0.0425) (0.0429) 

Fuel poverty 2017  − 0.0444 − 0.00346 − 0.00355 − 0.00500   
(0.0291) (0.0282) (0.0280) (0.0271) 

London Dummy   − 0.817** − 0.821** − 0.828**    
(0.128) (0.135) (0.139) 

Log of people per square mile   − 0.0584 − 0.128** − 0.139**    
(0.0585) (0.0581) (0.0587) 

Percentage < 18 years    0.0154 0.0168     
(0.0212) (0.0214) 

Percentage > 65 years    − 0.0236 − 0.0191     
(0.0152) (0.0161) 

Social isolation: carers 18 + 2018/19     − 0.00755      
(0.00572) 

Social isolation: care users 18 + 2018/19     − 0.00844      
(0.00987) 

Constant 14.84** 25.89** 16.04** 17.64** 17.27**  
(1.244) (3.579) (3.905) (4.138) (4.232) 

R-square 0.345 0.541 0.623 0.634 0.642 

Standard errors in parentheses, P-Values: *p < 0.1, **p < 0.05. 

4 Other indicators of health status such as yearly averaged age-standardized 
cardiovascular death rates from 2015–17 or death rates from 2019 to 19 did 
not show significance in equation (5) of Table 3 either without the present 
health indicators or when added (see Annex V). 
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Office of National Statistics, 2020c). The London Dummy was a stable 
factor in all the models we estimated while population density was 
stable in many of the estimated models, but not in all specifications, and 
helped reduce days to peak. Regions with low income growth rate also 
have lower population density and lower housing price (House Pri
cing-Nat’l Statistics, 2020). The richer London areas managed a fast 
progression to bending the COVID-19 curve, while many of the regions 
in the north of England, poorer and less dense, experienced lengthier 
time to reach the peak. It is possible that public policy may have been 
more effective in denser areas or the population more effectively social 
distanced. Density may not always reflect the mass action (S x I) 
component in the SIR model, because viral exposure depends on be
haviors that create proximity of less than 2 m of distance. The correla
tion between dense areas and income is positive. Congruent with 
Marmot’s hypotheses regarding social determinants we note that the 
duration for a UTLA to achieve a bend in the infection level of COVID-19 
is affected by the availability of non-health factors that enrich lives: 
public goods and amenities, and higher income. 

Bending an outbreak curve to supress chains of infection during an 
infectious outbreak has been a fundamental role of public health de
partments. While one would expect a correlation between past in
vestments in staff and capability from public health expenditure and 
quicker control of an outbreak we found that there is no statistically 
significant evidence that public health expenditure played a role when 
confounders are considered in our setting. Although public health 
expenditure is rather low at 63 GBP per 1000 people on average, with a 
farily high variance its inclusion is highly justified. The failure of local 
public health expenditure to have a detectable effect may have been due 
to insufficient power to detect what may have been a small effect. That 
still begs the question, why would local health department resources, 
devoted to protecting the population from disease have a small effect? 
Fig. 2 might offer insight, because it shows that local public health de
partments’ budgetary allocations were not aligned ex ante with tasks 
related to rapid control of a contagious epidemic. It is common for staff 
in a public health department to become compartmentalized and super 
specialized in their various missions of children’s health, substance 
misuse, and sexual health. Fig. 2 shows that only 1% of local public 

health departments budgets were allocated to the cross-cutting area of 
health protection. This implies that many local health departments may 
have no full-time staff person assigned to cross-cutting health protec
tion. Prior investments in community engagement and multi-sectoral 
coordination with schools, law-enforcement, transport, and commerce 
may have only occurred in the context of a compartmentalized public 
health unit assigned to substance use, or children’ health, etc. However, 
being properly prepared for emerging health threats would require local 
public health departments to have standing relationships that could be 
leveraged to address a new problem like COVID-19. 

Public health experts in the UK are divided on assigning re
sponsibility for pandemic preparedness (Iabuci, 2020). In August 2020, 
England’s health secretary directed a change toward forming in
stitutions whose only job is to “prepare for and respond to external 
threats like the pandemic.” This would reshape PHE’s successor, the 
National Institute for Health Protection (NIHP) to work locally and focus 
on infectious disease control capacity. This may swing the pendulum 
away from compartmentalized programs to address non-communicable 
disease to compartmentalized programs to address communicable dis
ease and biosecurity. A focus on building the capability to execute the 
essential elements of a public health system would avoid the dysfunc
tional fragmentation from compartmentalized programs, but it is too 
soon to know how the new NIHP will evolve. 

There are limitations in this study. First, it may be possible to unpack 
local-level public expenditure to examine the type of expenditure that 
aided in achieving more rapid time to peak COVID-19 incidence. The 
hypothesis to examine first the impact of local-level public health 
expenditure along with over-all expenditure is a natural one. The low 
level of expenditure may have reduced the effect size making it too small 
to detect given the sample of 136 jurisdictions. Second, we may ask 
whether the multiple specifications of explanatory factors were correct 
although models had a reasonably high R-square. It is possible that a 
better variable for ill health prior to the epidemic would have improved 
the models; we did not find any useful one. Further, there may be 
omitted variables, such as crowded living quarters, although some of 
them could be reflected through variables that are already used. Third, 
our estimates provide evidence that regional socio-economic conditions 
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Fig. 4. Simulation, Covariates are improved by one standard deviation (N = 136), aFactors that can reduce the days to reach peak are improved by one standard 
deviation and are used in the OLS, Table 3 regression results to make predictions. Baseline bar is the prediction the regression makes with current data. 
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mattered in explaining the duration to peak along with local government 
expenditure on public goods. We have not provided causal mechanisms 
or pathways through which median income, housing or general local 
public expenditure affected days to reach the peak. Such pathways have 
been provided as supplemental explanations regarding persistent asso
ciations between gradients in health outcomes and those observed for 
socio-economic conditions (Braveman & Gottlieb, 2014). It is, of course, 
a topic for policy debates as to how social policies can effectively 
contribute to improving population health; in the literature the range of 
policy factors examined are wide, from ones that are obvious to ones 
that seem very indirect: improving the health system, environmental 
conditions, and growth rate of average income to ensuring political 
freedom (Varbanova & Beutels, 2020). 

A modest interpretation of our findings would be that local expen
diture can reduce the days to reach the peak incidence of a novel 
epidemic (Fig. 4). Perhaps factors associated with higher expenditure, 
such as being able to work from home, confounded this finding, even 

though we controlled for the median income of a UTLA. The contribu
tion here should be seen as initial exploration into the association of 
regional socio-economic factors and the duration to achieving control of 
an epidemic of COVID-19. 
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ANNEX. 

The Role of Public Health Expenditures in COVID-19 control: Evidence from Local Governments in England. 

Annex I: Calculating Days to Peak 
Annex II: Checking for Spatial Autocorrelation and Normality 
Annex III: Selecting the specification for the Survival Model 
Annex IV: Shapley Decomposition of R-Square 
Annex V: Further Analyses, Confirming the Results 

Annex I. Calculating Days to Peak 

The first step in obtaining days to peak was to smooth out COVID-19 cases after 10 cases were observed. The method for smoothed path for COVID 
incidences was the following. 

Smoothing the Curve 

Let C(dj) be the incidence level for a UTLA for the observed for the jth day. As each UTLA is treated individually we have no subscript for UTLAs. 

Let j = {1,…,…,D}; then d1is 30 January 2020 j = 1, and dD is 27 July 2020 A smoothed value Ĉ(dj) for the day dj is created the following way: For 
the given specific day dj, a weighted lowess smoothed value is generated using the incidence levels for all days of the period for every single UTLA with 
decreasing weights assigned to days further away from dj. Thus, for a given dj, the weight is inversely related to 

⃒
⃒dj − dk

⃒
⃒ for all k = {1,…,…,D} and 

j ∕= k. The smoothing uses both past and lead values. 

Calculating the days to reach peak 

The smoothing result could be thought of as yielding a function C(d, Do)that maps calendar date d to COVID incidences with Do denoting the date 
when cumulative number of infections reached 10. Define d* - Do, for some d > Doas the number days to reach the peak, where the global maximand 
d* meets the requirements: 

(1) C(d∗, Do) ≥ C(d, Do), for ​ all d > d∗

and further following two conditions are met 

(2a) ∃ d1 > d∗ ​ such ​ that C(d1, Do) ≤
1
2

C(d∗, Do)

and 

(2b) ∄ d2 > d1 ​ such ​ that ​ C(d2, Do) ≥
3
4

C(d∗, Do)

In all UTLAs except one the plateau fell sufficiently to meet 2 a-b in all UTLA within the period where we examine the data. Graphically we should 
observe figures similar to Figure Annex I, Fig. 1 for each UTLA. The figure is drawn for Herfordshire. Although the peak is reached in less than a month, 
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it does not come down slowly; reaching the ¾ of the peak rate takes longer than a month.

Annex I, Fig. 1. Example of a bending UTLA. The smoothed curve dips below ½ the peak level, below 6 per 100,000, and never reaches the ¾ of the peak level, 
incidence rate of 8 

Days to Reach Peak by UTLA. 
Below we present the days to reach the peak by UTLA used in this analysis. The period covered is from January to July. The table is sorted by UTLA 

code.  

Annex I Table 1 
Number of days to reach apex since the epidemic started by UTLA  

UTLA UTLA code Total Cases Date when epidemic started Date when apex was reached Days between apex and epidemic 

Hartlepool 6000001 594 3/28/2020 4/17/2020 20 
Middlesbrough 6000002 958 3/25/2020 3/31/2020 6 
Redcar and Cleveland 6000003 702 3/24/2020 4/14/2020 21 
Stockton-on-Tees 6000004 969 3/20/2020 4/17/2020 28 
Darlington 6000005 605 3/26/2020 November 4, 2020 16 
Halton 6000006 692 3/24/2020 3/27/2020 3 
Warrington 6000007 1327 3/23/2020 April 4, 2020 12 
Blackburn with Darwen 6000008 1137 3/24/2020 4/25/2020 32 
Blackpool 6000009 1031 3/25/2020 November 4, 2020 17 
Kingston upon Hull, City of 6000010 1547 3/26/2020 4/25/2020 30 
East Riding of Yorkshire 6000011 1645 3/16/2020 February 5, 2020 47 
North East Lincolnshire 6000012 208 3/25/2020 3/28/2020 3 
North Lincolnshire 6000013 724 3/26/2020 4/15/2020 20 
York 6000014 912 3/19/2020 4/20/2020 32 
Derby 6000015 1302 3/15/2020 3/16/2020 1 
Leicester 6000016 4488 3/18/2020 August 7, 2020 112 
Rutland 6000017 93 October 4, 2020 March 5, 2020 23 
Nottingham 6000018 1187 3/13/2020 June 4, 2020 24 
Herefordshire, County of 6000019 862 3/20/2020 4/23/2020 34 
Telford and Wrekin 6000020 612 3/23/2020 4/22/2020 30 
Stoke-on-Trent 6000021 1472 3/22/2020 4/28/2020 37 
Bath and North East Somerset 6000022 338 3/19/2020 February 4, 2020 14 
Bristol, City of 6000023 1297 3/15/2020 October 4, 2020 26 
North Somerset 6000024 912 December 3, 2020 June 5, 2020 55 
South Gloucestershire 6000025 746 3/13/2020 December 4, 2020 30 
Plymouth 6000026 663 3/19/2020 December 4, 2020 24 
Torbay 6000027 276 3/20/2020 April 4, 2020 15 
Swindon 6000030 758 3/22/2020 September 4, 2020 18 
Peterborough 6000031 1361 3/21/2020 October 5, 2020 50 
Luton 6000032 1465 3/18/2020 3/27/2020 9 
Southend-on-Sea 6000033 680 3/22/2020 3/23/2020 1 
Thurrock 6000034 556 3/18/2020 3/19/2020 1 
Medway 6000035 1065 3/15/2020 3/28/2020 13 
Bracknell Forest 6000036 382 3/21/2020 3/30/2020 9 
West Berkshire 6000037 478 3/19/2020 January 4, 2020 13 
Reading 6000038 778 3/17/2020 April 4, 2020 18 
Slough 6000039 652 November 3, 2020 February 4, 2020 22 
Windsor and Maidenhead 6000040 410 December 3, 2020 3/29/2020 17 

(continued on next page) 
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Annex I Table 1 (continued ) 

UTLA UTLA code Total Cases Date when epidemic started Date when apex was reached Days between apex and epidemic 

Wokingham 6000041 599 3/15/2020 April 4, 2020 20 
Milton Keynes 6000042 862 3/18/2020 May 4, 2020 18 
Brighton and Hove 6000043 784 3/13/2020 February 4, 2020 20 
Portsmouth 6000044 503 3/16/2020 June 4, 2020 21 
Southampton 6000045 937 3/18/2020 September 4, 2020 22 
Isle of Wight 6000046 422 3/25/2020 4/23/2020 29 
County Durham 6000047 3330 3/20/2020 4/16/2020 27 
Cheshire East 6000049 2213 3/15/2020 4/19/2020 35 
Cheshire West and Chester 6000050 1996 3/17/2020 4/20/2020 34 
Shropshire 6000051 1409 3/18/2020 June 5, 2020 49 
Cornwall and Isles of Scilly 6000052 899 3/15/2020 May 4, 2020 21 
Wiltshire 6000054 1258 3/13/2020 4/23/2020 41 
Bedford 6000055 1284 3/22/2020 4/18/2020 27 
Central Bedfordshire 6000056 1244 3/15/2020 November 4, 2020 27 
Northumberland 6000057 1578 3/22/2020 May 4, 2020 14 
Bournemouth, Christchurch and Poole 6000058 819 3/18/2020 September 4, 2020 22 
Dorset 6000059 605 3/18/2020 September 4, 2020 22 
Bolton 8000001 1885 3/16/2020 August 4, 2020 23 
Bury 8000002 1294 3/18/2020 March 4, 2020 16 
Manchester 8000003 3004 3/13/2020 4/13/2020 31 
Oldham 8000004 1897 3/16/2020 May 4, 2020 20 
Rochdale 8000005 1692 3/17/2020 March 4, 2020 17 
Salford 8000006 1355 3/17/2020 February 4, 2020 16 
Stockport 8000007 1646 3/14/2020 July 4, 2020 24 
Tameside 8000008 1540 3/14/2020 April 5, 2020 51 
Trafford 8000009 1273 3/13/2020 April 4, 2020 22 
Wigan 8000010 2143 3/21/2020 4/14/2020 24 
Knowsley 8000011 997 3/22/2020 March 4, 2020 12 
Liverpool 8000012 2478 3/13/2020 3/30/2020 17 
St. Helens 8000013 1198 3/21/2020 March 4, 2020 13 
Sefton 8000014 1534 3/19/2020 3/30/2020 11 
Wirral 8000015 2039 3/19/2020 3/30/2020 11 
Barnsley 8000016 1927 3/18/2020 4/17/2020 30 
Doncaster 8000017 2012 3/19/2020 September 5, 2020 51 
Rotherham 8000018 1952 3/19/2020 4/13/2020 25 
Sheffield 8000019 4076 August 3, 2020 January 4, 2020 24 
Newcastle upon Tyne 8000021 1532 3/15/2020 3/30/2020 15 
North Tyneside 8000022 920 3/18/2020 3/30/2020 12 
South Tyneside 8000023 948 3/24/2020 August 4, 2020 15 
Sunderland 8000024 1772 3/20/2020 3/30/2020 10 
Birmingham 8000025 4946 November 3, 2020 3/27/2020 16 
Coventry 8000026 1345 3/16/2020 October 4, 2020 25 
Dudley 8000027 1310 3/14/2020 April 4, 2020 21 
Sandwell 8000028 1682 3/14/2020 3/31/2020 17 
Solihull 8000029 901 3/20/2020 3/23/2020 3 
Walsall 8000030 1498 December 3, 2020 February 4, 2020 21 
Wolverhampton 8000031 1391 November 3, 2020 June 4, 2020 26 
Bradford 8000032 4520 3/17/2020 5/22/2020 66 
Calderdale 8000033 733 3/25/2020 December 4, 2020 18 
Kirklees 8000034 2222 3/18/2020 4/22/2020 35 
Leeds 8000035 3704 November 3, 2020 4/17/2020 37 
Wakefield 8000036 1753 3/20/2020 4/19/2020 30 
Gateshead 8000037 1282 3/24/2020 January 4, 2020 8 
Barking and Dagenham 9000002 718 3/14/2020 3/21/2020 7 
Barnet 9000003 1621 September 3, 2020 3/16/2020 7 
Bexley 9000004 1068 December 3, 2020 3/25/2020 13 
Brent 9000005 1749 November 3, 2020 3/16/2020 5 
Bromley 9000006 1525 December 3, 2020 3/19/2020 7 
Camden 9000007 708 November 3, 2020 3/17/2020 6 
Croydon 9000008 1861 December 3, 2020 3/20/2020 8 
Ealing 9000009 1571 October 3, 2020 3/22/2020 12 
Enfield 9000010 1194 December 3, 2020 3/26/2020 14 
Greenwich 9000011 961 December 3, 2020 3/20/2020 8 
Hackney 9000012 853 November 3, 2020 3/16/2020 5 
Hammersmith and Fulham 9000013 760 November 3, 2020 3/24/2020 13 
Haringey 9000014 764 November 3, 2020 3/17/2020 6 
Harrow 9000015 1296 November 3, 2020 3/20/2020 9 
Havering 9000016 953 3/15/2020 3/22/2020 7 
Hillingdon 9000017 1117 December 3, 2020 3/24/2020 12 
Hounslow 9000018 1077 November 3, 2020 3/24/2020 13 
Islington 9000019 556 December 3, 2020 3/13/2020 1 
Kensington and Chelsea 9000020 560 May 3, 2020 3/16/2020 11 
Kingston upon Thames 9000021 744 3/16/2020 3/28/2020 12 
Lambeth 9000022 1370 October 3, 2020 3/14/2020 4 
Lewisham 9000023 1205 December 3, 2020 3/18/2020 6 
Merton 9000024 943 November 3, 2020 3/19/2020 8 

(continued on next page) 
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Annex I Table 1 (continued ) 

UTLA UTLA code Total Cases Date when epidemic started Date when apex was reached Days between apex and epidemic 

Newham 9000025 1290 3/14/2020 3/17/2020 3 
Redbridge 9000026 1129 3/15/2020 3/20/2020 5 
Richmond upon Thames 9000027 536 3/16/2020 3/17/2020 1 
Southwark 9000028 1451 August 3, 2020 3/16/2020 8 
Sutton 9000029 1011 3/13/2020 3/25/2020 12 
Tower Hamlets 9000030 821 November 3, 2020 3/17/2020 6 
Waltham Forest 9000031 1030 3/14/2020 3/18/2020 4 
Wandsworth 9000032 1170 October 3, 2020 3/14/2020 4 
Westminster 9000033 785 July 3, 2020 December 3, 2020 5 
Buckinghamshire 10000002 1704 October 3, 2020 November 4, 2020 32 
Cambridgeshire 10000003 2235 3/13/2020 4/25/2020 43 
Cumbria 10000006 2726 November 3, 2020 3/26/2020 15 
Derbyshire 10000007 3359 September 3, 2020 4/28/2020 50 
Devon 10000008 1213 March 3, 2020 September 4, 2020 37 
East Sussex 10000011 1552 3/17/2020 4/14/2020 28 
Essex 10000012 5483 November 3, 2020 October 4, 2020 30 
Gloucestershire 10000013 1841 3/13/2020 March 4, 2020 21 
Hampshire 10000014 5034 September 3, 2020 August 4, 2020 30 
Hertfordshire 10000015 4177 April 3, 2020 May 4, 2020 32 
Kent 10000016 7843 October 3, 2020 4/18/2020 39 
Lancashire 10000017 6810 December 3, 2020 4/19/2020 38 
Leicestershire 10000018 3127 December 3, 2020 May 5, 2020 54 
Lincolnshire 10000019 2472 December 3, 2020 4/30/2020 49 
Norfolk 10000020 2864 3/15/2020 4/13/2020 29 
Northamptonshire 10000021 3329 November 3, 2020 February 5, 2020 52 
North Yorkshire 10000023 2542 3/14/2020 4/19/2020 36 
Nottinghamshire 10000024 2997 November 3, 2020 4/17/2020 37 
Oxfordshire 10000025 3138 September 3, 2020 a  
Somerset 10000027 1288 3/13/2020 March 5, 2020 51 
Staffordshire 10000028 3752 3/13/2020 November 4, 2020 29 
Suffolk 10000029 2634 3/15/2020 4/16/2020 32 
Surrey 10000030 4626 September 3, 2020 March 4, 2020 25 
Warwickshire 10000031 2514 November 3, 2020 November 4, 2020 31 
West Sussex 10000032 2729 3/13/2020 4/13/2020 31 
Worcestershire 10000034 2374 December 3, 2020 May 4, 2020 24 

Note: (a) Apex was not reached. 

Annex II. Checking for Spatial Autocorrelation and Normality 

As we examine in this paper local level infectious disease patterns we should suspect spatial autocorrelation. Spatial autocorrelation makes 
estimation of non-linear relations such as survival model difficult. For policy analysis, we further examined ordinary least square results. OLS requires 
normality of the error terms. In this Annex we show that we can ignore spatial auto-correlation and are assured that OLS result with results with 
logged-transformed dependent variables are valid. 

Spatial Correlation 

Consider the basic model with day to reach peak within each UTLAs in England being related to socio-demographic factors. 

Day to Reach Peak= α+ β1 ∗ (Public Expenditure)+ β2 ∗ (SES Factors ) +

β3 ∗ (Population Density)+ β4 ∗ (Age Demography )+ β5 ∗ (Base Health) + Error 

Associated spatial correlation tests are reported as Moran statistics for the basic model above that is run without any adjustments (See Annex II, 
Table 1). Model 1 offers the results of the basic relation with 145 UTLAs. When a simple continuous relation is tested there is considerable spatial 
autocorrelation when measured by distance of 1/6th size of England, which is around 115 km (See Moran Test for Model 1, Distance p-value = 0.029). 
When the model is tested for contiguous spatial autocorrelation a test indicates some spatial auto-correlation (See Moran test for Model 1, Contiguous 
p-value = 0.080). 

Model 2 shows the results of adjusted distanced correction; Model 3 shows the results for corrections for spatial correction due to correlation 
through contiguous relations. Correcting for spatial correlation does not show uniform trends; the method used for detecting contiguous correlation 
uses the command spmatrix for the weights in STATA and for correlation related to distance the available estimation method from spatwmat in STATA 
is used. 

Although coefficient values differ across the three models; the models do not differ much across as to what factors play a role in shaping the day to 
peak Covid value. The adjustments do not show any directions as to whether the coefficients are larger or smaller regarding any singular factors across 
the two correction. We then test for spatial correlation using a logged transformation for the dependent variable. As spatial correlation of either type is 
not significant in the logged model, we can ignore spatial correlation to estimate non-linear models such as survival analysis to reaching the peak. 
Model 4 shows a basic log model using continuous explanatory variables. When some of the variables are made into categorical variables the spatial 
correlation tests do not show different results. The Moran tests for confirming non-correlation shows a p-values of 0.61 contiguous correlation and 
0.287 for distance correlation. Ruling out spatial correlation allows us to use the survival model without adjustments.  
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Annex II, Table 1 
Spatial Model, Dependent Variable: Number of days to reach the peak Covid − 19 infections (n = 145)   

Model 1 Model 2 Model 3 Model 4 

COVARIATES Unadjusted Full Model Adjust Spatial Distance Adjust Spatial Contiguity Unadjusted Log Model 

Local health expenditure per capita − 121.8 − 106.0 − 132.5 − 0.650+
Log for Model 4 (96.75) (87.37) (90.91) (0.340) 
Net Current Expenditure per cap − 11.33* − 7.507+ − 8.863* − 0.416 
Log for Model 4 (4.617) (4.276) (4.493) (0.387) 
Median Income − 0.0791* − 0.0617* − 0.0642* − 2.157* 
Log for Model 4 (0.0230) (0.0212) (0.0220) (0.740)  

0.789 0.950* 0.791 0.0451+
(0.511) (0.463) (0.514) (0.0254) 

Unemployment 0.825 0.357 0.948 0.0962  
(1.404) (1.272) (1.346) (0.0756) 

Fuel poverty 2017 − 0.627 − 0.497 − 0.188 0.00775  
(0.736) (0.665) (0.710) (0.0403) 

London Dummy − 10.83* − 7.575 − 11.94* − 0.698*  
(5.421) (4.959) (5.469) (0.269) 

People per sq kilometers 0.0003 0.000035 0.00032 − 0.226* 
Log for Model 4 (0.000933) (0.000845) (0.000907) (0.0987) 
% under 18 years − 25.79 − 7.490 − 20.16 − 3.262  

(71.46) (64.63) (67.81) (3.372) 
% 65 years + − 39.88 − 39.85 − 27.55 − 4.494+

(52.94) (47.76) (49.05) (2.672) 
Social isolation: carers 18 + 2018/19 − 0.232 − 0.208 − 0.251 − 0.00677 

(0.168) (0.152) (0.157) (0.00887) 
Social isolation: care users 18 + 2018/19 0.0734 0.115 0.104 − 0.00354 

(0.302) (0.272) (0.285) (0.0159) 
Constant 106.5* 72.31* 84.27* 17.47*  

(32.02) (30.15) (30.75) (5.047) 

Adj R-Square 0.3196   0.4137 
rho_cons  0.471***     

(0.119)   
sigma constant  11.72***     

(0.691)   
W e.dayevent   0.466*     

(0.203)  

Standard errors in parentheses, Level of significance + p < 0.1 * p < 0.05. 
Moran Test, Model 1: Contiguity p-value 0. 0795, Distance p-value 0.029. 
Moran Test, Model 4: Contiguity p-value 0.61 Distance p-value 0.287.  

Normality 
Estimating the factors influencing day to peak Covid 19 infection level can be modeled through Ordinary Least Square if the estimations produce 

error terms that are normal. There are a few UTLAs that have zero and or near zero Covid infections; some local governance units reached peak within 
4 days. There are also some UTLA that reached peak at a late date. Logged value regressions lowers the impact of outliers. Non-logged value produced 
error terms that consistently failed normality tests. Further, logged-value model failed normality tests when UTLAs with lower values of day to peak 
were retained. Fig. 1 shows the distribution of error terms for the logged value regressed on factors slightly different from those reported in Model 4, 
Table 1 using OLS methods with robust error terms. The error terms come from a model where health expenditure and median income variable are 
divided into quartile levels and from the full model similar to Model 4 in Annex II, Table 1. The error terms are almost normal as shown in Fig. 1; the 
skewedness test shows the hypothesis of normality cannot be rejected at 0.05 p-value. Lower levels outliers (days to peak < 4) were eliminated which 
yielded a sample size of 136. Showing normality allows us to use the OLS model; thus Table 3 in the main text is justified. 

Annex III. Selecting the specification for the Survival Model 

Accelerated failure time (AFT) is an approach to survival analysis that models time as the outcome. Covariates act multiplicatively on the outcome 
of survival time. In this study, such an approach allows for the quantification of whether differences at the UTLA level are associated with increased or 
decreased time to reach peak incidence. AFT is a parametric model that requires specification of a distribution for the baseline hazard function. The 
baseline related hazard function was selected to be log-log distribution after finding the smallest Akaike information criterion (inverse of information 
matrix associated with the model) when judged against other specifications (exponential, Weibull, log-normal, and generalized gamma). Goodness of 
fit was confirmed using Cox-Snell residual plots. 

With time invariant covariates accelerated failure time model with the assumption of Weibull distribution produces the same results as the 
proportional hazard model. Thus, the results are less dependent on the underlying assumptions. For these reasons we present the Weibull model. The 
coefficients are time ratios. Thus, for example, London dummy reduces the time to reach peak by 60% according Model 5. Some of the coefficients are 
similar to those in Table 2 of the text. A notable difference is the resilience of the income categories. They consistently reduce the time to reach peak as 
income rises, nearly the same impact as London dummy in Model 5 for the 4th Quartile.  
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Annex III Table 1 
Survival Model, Weibull Distribution, Dependent Variable: Log Time to Reach Peak, (n = 136)  

COVARIATES Model 1 Model 2 Model 3 Model 4 Model 5 

Local health expenditure per capita      
Quartile 2 1.13 0.921 1.093 1.12 1.105  

(0.18) (0.13) (0.15) (0.15) (0.14) 
Quartile 3 1.586*** 0.947 1.105 1.152 1.112  

(0.28) (0.18) (0.20) (0.21) (0.21) 
Quartile 4 1.980*** 1.131 1.139 1.26 1.224  

(0.40) (0.29) (0.27) (0.30) (0.29) 
Log net current expenditure per capita, local level public spending 0.155*** 0.348*** 0.518** 0.449*** 0.462***  

(0.05) (0.10) (0.15) (0.12) (0.13) 
Median Income      

Quartile 2  0.507*** 0.524*** 0.626*** 0.619***   
(0.07) (0.07) (0.09) (0.09) 

Quartile 3  0.511*** 0.583*** 0.589*** 0.599***   
(0.09) (0.10) (0.10) (0.10) 

Quartile 4  0.345*** 0.514*** 0.464*** 0.485***   
(0.07) (0.11) (0.10) (0.11) 

Housing price to income ratio  0.978* 1.014 1.032** 1.027   
(0.012) (0.02) (0.02) (0.02) 

Unemployment  0.92 1.016 0.978 0.984   
(0.05) (0.06) (0.05) (0.06) 

Fuel poverty  0.993 1.028 1.006 1.01   
(0.03) (0.03) (0.03) (0.03) 

London dummy   0.461*** 0.442*** 0.423***    
(0.09) (0.08) (0.08) 

Log of population density   0.867** 0.784*** 0.782***    
(0.06) (0.06) (0.06) 

Percentage < 18 years    1.056* 1.054*     
(0.03) (0.03) 

Percentage > 65 years    0.959** 0.961*     
(0.02) (0.02) 

Social isolation: carers 18+ 1.002      
(0.01) 

Social isolation: care users 18+ 0.989      
(0.01) 

/ln_p 0.45*** 0.68*** 0.77*** 0.81*** 0.81*** 
Constant 1.908e+07*** 217,491*** 9343*** 42,966*** 53,657*** 
Observations 3371 3349 3349 3349 3349 
AIC 299.8 259.1 239.3 231.3 234.4 

***p < 0.01, **p < 0.05, *p < 0.1, Expenditure variable is measured as per capita. Standard errors in parenthesis. 

Annex IV. Shapley Decomposition of R-Square 

Shapley decomposition of R-Square examines the marginal contribution of each covariate (or a cluster of covariates) makes to the R-Square of the 
regression involving all covariates. It extracts the marginal contribution of a particular covariate from the R-Squares of all possible combinations of 
regression estimation in which a covariate can be involved, from having a univariate regression to those involving all covariates k = {1, ….,K}, K the 
number of total covariates. The marginal contributions are then averaged by weights for each marginal contribution. The weights are determined by 
inverse of number marginal values obtained through the k covariates used. For example, when 2 of 3 variables are used with K = 3, 6 marginal values 
are obtained. The marginal contributions add up to the total R-Square. We illustrate with three covariates used in the text: log of per-capita health 
expenditure (SPENDING), log median income (INCOME) and population density per square mile (DENSITY) which will be used to explain days to 
reach peak in the local area. There are seven regressions, from which we obtain 7 R-Squares. There is likely to be some multicollinearity, the approach 
shows a clearer contribution to the explained variations of these two variables. 

Regression, Independent Variable: Days to Reach Peak.   

Covariates R-Square From the R-Square column the specified value is subtracted to obtain the marginal value  

SPENDING Marginal Value INCOME 
Marginal Value 

DENSITY 
Marginal Value 

Weights/Totals  

1. SPENDING, INCOME and DENSITY 0.496 R-Square (4) 
0.014 

R-Square (3) 
0.099 

R-Square (2) 
0.07 

1/3  

2. SPENDING, INCOME 0.426 R-Square (6) 
0.229 

R-Square (5) 
0.299  

1/6 

3.SPENDING, DENSITY 0.397 R-Square (7) 
0.0041  

R-Square (5) 
0.27 

1/6 

4.INCOME, DENSITY 0.482  R-Square (7) 
0.0891 

R-Square (6) 
0.285 

1/6 

5.SPENDING 0.127 0.127, none   1/3 
6.INCOME 0.197  0.197, none  1/3 
7.DENSITIY 0.392   0.392, none 1/3 

(continued on next page) 
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(continued ) 

Covariates R-Square From the R-Square column the specified value is subtracted to obtain the marginal value  

SPENDING Marginal Value INCOME 
Marginal Value 

DENSITY 
Marginal Value 

Weights/Totals 

Summed Weighted Value  0.0858 0.1633 0.2468 Total 
0.496 

Explained Variation by a Covariate. %  17 33 50 100  

Annex V. Further Analyses, Confirming the Results 

In this section we examine how well the main results stand up to changing the model specifications slightly. First, a set of different independent 
variables is used to test the robustness of the results; then an alternate dependent variable is used. We use the OLS model which is easier to understand. 

Impact of public health expenditure as the sole public action: Our results are based on the hypothesis that public health expenditure is vital to con
trolling the outbreak along with other public expenditures. However, given that the health expenditure is correlated with overall expenditure, it is 
worth comparing multivariate models with models of the isolated effect of public health expenditure as the only included policy factor. Model 2 in 
Annex 5, Table 1 shows that public health expenditure by itself reduces days to reach peak; however, Model 3 shows that local overall expenditure has 
a larger impact. Model 3 has an R-Square equaling the Model 1 results below. Comparison of results across Models 1 to 3 shows that public health 
expenditure contributes little to reduce the days to peak is supported. 

Using different variables for health conditions: Comorbidities can affect infectivity. Past measures of health conditions across UTLAs could be highly 
correlated with current comorbidities at the local level for which we had no exogenous data. As noted in the paper self-reported health condition 
surveys from England showed little variation across UTLAs. We used past age-standardized death rates from all causes and, separately, cardio-vascular 
diseases. Models 4–6 show that these variables were not significant. Comorbidity measures did not play a role in determining the time to reach the 
peak level of infections in the local areas. 

Dependent variable duration: Our central question in this paper is what factors affected the first wave, specifically, what governance factors affected 
time to reach peak in the first wave. How prepared was England at the local level to bring down the infection rates? The first wave was clearly defined 
as the pandemic receded for a time being and remained flat. By July as there was a period where incidence rates were low, one could ask how the 
public sector shaped to reduce the infection rate. As noted in the paper there were changes made to Public Health Expenditure during the first wave. 
Thus, our main independent variable of interest, local public health expenditure, should not be a factor in determining the local outbreak trajectories 
after the first wave. Nonetheless, we test to see how the trajectory of the pandemic might have been affected by the factors we had chosen in explaining 
the days to reach peak during the first wave. 

After July, a second wave was not easy to define technically. In none of the UTLAs do we find smoothed incidence to be lower than 10. Thus, the 
starting point from which we could measure days to reach peak was no different from the starting point of the first wave. When incidence for start of 
the outbreak from 10 cases is considered the average number of days to reach peak for the UTLAs is 322 with coefficient of variation to be a low of 
7.8%. Annex V, Table 2 presents the results. The dependent variable is log of days to reach peak from 30 January to March of 2021. We find that local 
health expenditure does impact days to reach peak at a p-value < 0.10 level. However, as we noted, it is doubtful that the public expenditure variables, 
measured in 2019, remain relevant past summer of 2020 because supplemental fundings were made.  

Annex-V, Table 1 
Alternate Specifications Independent Variables to the Main Analyses, Dependent Variable: Log of Days to Reach Peak, 30 January to July 31, 2020 (n = 136)  

COVARIATES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Log of Local Health Expenditure per capita − 0.159 − 0.420*  − 0.142 − 0.160 − 0.317  
(0.204) (0.180)  (0.224) (0.222) (0.222) 

Log of Net Current Expenditure per capita − 0.780**  − 0.849** − 0.779** − 0.800** − 0.758**  
(0.266)  (0.228) (0.267) (0.268) (0.265) 

Log Median Income − 1.049+ − 0.987 − 1.020+ − 1.087 − 1.197+ − 0.968  
(0.623) (0.656) (0.613) (0.681) (0.659) (0.671) 

Ratio of house price to earning 0.0239 0.0208 0.0234 0.0222 0.0298+ 0.0530*  
(0.0173) (0.0177) (0.0167) (0.0171) (0.0157) (0.0213) 

Unemployment 0.0678 0.0812+ 0.0530 0.0674 0.0543 0.0507  
(0.0429) (0.0465) (0.0446) (0.0433) (0.0430) (0.0415) 

Fuel poverty 2017 − 0.00500 − 0.0170 − 0.00956 − 0.00395 − 0.00285 − 0.00222  
(0.0271) (0.0295) (0.0277) (0.0273) (0.0280) (0.0273) 

London Dummy − 0.828** − 0.922** − 0.801** − 0.825** − 0.819** − 0.801**  
(0.139) (0.144) (0.138) (0.137) (0.131) (0.135) 

Log of people per square mile − 0.139* − 0.157* − 0.153** − 0.140* − 0.129* − 0.133*  
(0.0587) (0.0682) (0.0550) (0.0588) (0.0583) (0.0591) 

Percentage < 18 years 0.0168 0.00667 0.0235 0.0173 0.0157 0.0140  
(0.0214) (0.0211) (0.0197) (0.0222) (0.0220) (0.0217) 

Percentage > 65 years − 0.0191 − 0.0124 − 0.0183 − 0.0209 − 0.0248 − 0.0186  
(0.0161) (0.0171) (0.0159) (0.0197) (0.0192) (0.0165) 

Social isolation: carers 18 + 2018/19 − 0.00755 − 0.00822 − 0.00750 − 0.00754    
(0.00572) (0.00559) (0.00573) (0.00573)   

Social isolation: care users 18 + 2018/19 − 0.00844 − 0.00937 − 0.00898 − 0.00855    
(0.00987) (0.0102) (0.00975) (0.00982)   

Log of age adj CVD death rate, avg 15-17    − 0.0753 − 0.0511      
(0.384) (0.398)  

Log of age adj death rate, avg 17-19      0.973 

(continued on next page) 
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Annex-V, Table 1 (continued ) 

COVARIATES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6       

(0.836) 
Constant 17.27** 12.59** 17.03** 17.79** 17.99** 9.741  

(4.232) (4.383) (4.194) (5.327) (5.379) (8.926) 

R-square 0.642 0.613 0.641 0.642 0.634 0.638 

Standard errors in Parentheses, P-Values: + p < 0.1, *p < 0.05, **p < 0.01.  

Annex V, Table 2 
Dependent Variable, Log of Days to Reach Peak, 
From 30 January to March 2021 (n =
127)  

COVARIATES Model 1 

Log of Local Health Expenditure per capita − 0.0688+
(0.0377) 

Log of Net Current Expenditure per capita − 0.0221  
(0.0340) 

Log Median Income 0.0813  
(0.0698) 

Ratio of house price to earning 0.00881**  
(0.00277) 

Unemployment − 0.0102  
(0.00870) 

Fuel poverty 2017 0.00895+
(0.00492) 

London Dummy 0.00453  
(0.0233) 

Log of people per square mile 0.00364  
(0.0108) 

Percentage < 18 years 0.000283  
(0.00399) 

Percentage > 65 years − 0.00003  
(0.00339) 

Social isolation: carers 18 + 2018/19 − 0.00166*  
(0.00081) 

Social isolation: care users 18 + 2018/19 0.00208  
(0.00180) 

Constant 5.497**  
(0.545) 

R-square 0.416 

Standard errors in Parentheses. 
P-Values: + p < 0.1, *p < 0.05, **p < 0.01. 
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